
1

ParIS+: Data Series Indexing
on Multi-Core Architectures

Botao Peng, Panagiota Fatourou, Themis Palpanas

Abstract—Data series similarity search is a core operation for several data series analysis applications across many different
domains. Nevertheless, even state-of-the-art techniques cannot provide the time performance required for large data series collections.
We propose ParIS and ParIS+, the first disk-based data series indices carefully designed to inherently take advantage of multi-core
architectures, in order to accelerate similarity search processing times. Our experiments demonstrate that ParIS+ completely removes
the CPU latency during index construction for disk-resident data, and for exact query answering is up to 1 order of magnitude faster
than the current state of the art index scan method, and up to 3 orders of magnitude faster than the optimized serial scan method.
ParIS+ (which is an evolution of the ADS+ index) owes its efficiency to the effective use of multi-core and multi-socket architectures, in
order to distribute and execute in parallel both index construction and query answering, and to the exploitation of the Single Instruction
Multiple Data (SIMD) capabilities of modern CPUs, in order to further parallelize the execution of instructions inside each core.

Index Terms—data series, time series, indexing, similarity search, query answering, multi-core architectures, parallelization

F

1 INTRODUCTION

[Motivation] An increasing number of applications across many
diverse domains continuously produce very large amounts of data
series1 (such as in finance, environmental sciences, astrophysics,
neuroscience, engineering, multimedia, etc. [1], [2], [3], [4]),
which makes them one of the most common types of data. When
these sequence collections are generated (often times composed
of a large number of short series [3]), users may need to query
and analyze them as soon as they become available. This process
is heavily dependent on data series similarity search (which apart
from being a useful query in itself, also lies at the core of several
machine learning methods, such as, clustering, classification, motif
and outlier detection, etc.) [5], [6], [7], [8]. The brute-force ap-
proach for evaluating similarity search queries is by performing a
sequential pass over the complete dataset. However, as data series
collections grow larger, scanning the complete dataset becomes a
performance bottleneck, taking hours or more to complete [9].
This is especially problematic in exploratory search scenarios,
where every next query depends on the results of previous queries.
Consequently, we have witnessed an increased interest in develop-
ing indexing techniques and algorithms for similarity search [10],
[11], [12], [13], [9], [14], [15], [16], [17], [18], [19], [6], [20],
[21].
[Scalability problem] Nevertheless, the continued increase in the
rate and volume of data series production with collections that
grow to several terabytes [1] renders existing data series indexing
technologies inadequate. For example, the current state-of-the-art
index, ADS+ [9], [22], requires more than 4min to answer any

• Botao Peng and Themis Palpanas are affiliated with LIPADE, Université de
Paris.E-mail: botao.peng@parisdescartes.fr, themis@mi.parisdescartes.fr

• Panagiota Fatourou is affiliated with ICS, FORTH, and with the Dept. of
Computer Science, University of Crete. E-mail: faturu@csd.uoc.gr

Manuscript received date; revised date.
1. A data series, or data sequence, is an ordered sequence of data points. If

the ordering dimension is time then we talk about time series, though, series
can be ordered over other measures (e.g., angle in astronomical radial profiles,
mass in mass spectroscopy, position in genome sequences, etc.).

single exact query on a moderately sized 250GB sequence collec-
tion. Moreover, index construction time also becomes a significant
bottleneck in the analysis process [9], especially in cases where
new data arrive frequently and need to be indexed [3]. Thus,
traditional solutions and systems are inefficient at, or incapable
of managing and processing the voluminous sequence collections
that already exist in several domains. Finally, we note that, given
the evolution of CPU performance, where the processor clock
speed is not increasing due to the power wall constraint, efforts
for algorithmic speedups now exploit the parallelism opportunities
offered by modern hardware [23], [24], [25], [26], [27].
[Parallel Indexing] In this work, we propose the Parallel Index for
Sequences (ParIS), the first data series index that inherently takes
advantage of modern hardware parallelization, and incorporate
the state-of-the-art techniques in sequence indexing, in order to
accelerate processing times. ParIS, which is a disk-based index
based on the principles of ADS+, takes advantage of multi-core
and multi-socket architectures, in order to distribute and execute
in parallel the computations needed for both index construction
and query answering. Moreover, ParIS uses the Single Instruction
Multiple Data (SIMD) CPU instructions, in order to further par-
allelize the execution of individual instructions inside each core.
Overall, ParIS achieves very good overlap of the CPU computation
with the required disk I/O. To completely remove the CPU cost
during index creation, we present ParIS+, an alternative of ParIS
that results in index creation that is purely I/O bounded. ParIS+
is 2.6x faster than the current state-of-the-art approach [9]. ParIS
and ParIS+ employ the same algorithmic techniques for query
answering. The experiments also demonstrate their effectiveness
in exact query answering: they are up to 1 order of magnitude
faster than the state-of-the-art index scan method [9], and up to 3
orders of magnitude faster than the state-of-the-art optimized serial
scan [11]. We also note that ParIS and ParIS+ have the potential
to deliver more benefit as we move to faster storage media.

In developing ParIS+ (and ParIS), we made careful design
choices in the coordination of the compute and I/O tasks, and
consequently, developed new algorithms for the construction of

2

the index and for answering similarity search queries on this index.
We note that even though scaling out to multiple machines

is also a valid research direction [25], [14], [19], in this work,
we focus on addressing the problem in the context of a single
machine, so as to maximize the benefit we can get out of the
hardware. Our results can be combined with a scale-out solution.
Examining other hardware solutions, like GPUs and FPGAs are
also very promising directions, but ouf of the scope of this work.
[Contributions] Our contributions2 are summarized as follows:
• We propose ParIS, the first data series index designed for
multi-core architectures. We describe parallel algorithms for index
creation and exact query answering, which employ parallelism
in reading the data from disk and processing them in the CPU.
Moreover, we propose ParIS+, a ParIS alternative that completely
masks out the CPU cost when creating the index. ParIS+ results
in improved performance during index creation in systems that
support a reasonable level of parallelism (more than four cores).
• In order to further speedup query answering, we exploit SIMD
for complex vectorial computations: we develop novel vectorized
implementations for computing lower bounding distances between
the Piecewise Aggregate Approximation (PAA) [29] and indexable
Symbolic Aggregate Approximation (iSAX) [10] representations.
• Finally, we experimentally evaluate ParIS and ParIS+ using a
variety of synthetic and real datasets. The results demonstrate the
efficiency of the proposed approach, which is orders of magnitude
faster for exact query answering than the state-of-the-art methods.
Moroever, the results show that, in settings of more than 4 cores,
ParIS+ completely hides the CPU time during index creation.

2 PRELIMINARIES

We now provide some necessary definitions, and introduce the
related work on state-of-the-art data series indexing.

2.1 Data Series and Similarity Search
[Data Series] A data series, S = {p1, ..., pn}, is a sequence of
points, where each point pi = (vi, ti), 1 ≤ i ≤ n, is associated to
a real value vi and a position ti. The position corresponds to the
order of this value in the sequence. We call n the size, or length
of the data series. We note that all the discussions in this paper are
applicable to high-dimensional vectors, in general. (In the case of
streaming series, we first create subsequences of length n using a
sliding window, and then index those.)
[Similarity Search] Analysts perform a wide range of data mining
tasks on data series including clustering [30], classification and
deviation detection [31], [32], and frequent pattern mining [33].
Existing algorithms for executing these tasks rely on performing
fast similarity search across the different series. Thus, efficiently
processing nearest neighbor (NN) queries is crucial for speeding
up the above tasks. NN queries are formally defined as follows:
given a query series Sq of length n, and a data series collection S
of sequences of the same length, n, we want to identify the series
Sc ∈ S that has the smallest distance to Sq among all the series
in the collection S . Figure 1 depicts an example of a query series
and a candidate answer (the 1-NN, in this case).

Common distance measures for comparing data series are
Euclidean Distance (ED) [34] and dynamic time warping
(DTW) [11]. While DTW is better for most data mining tasks,
the error rate using ED converges to that of DTW as the dataset

2. A preliminary version of this work appeared in [28].

1 64 127

Query

Candidate answer

128

Fig. 1. Query series and candidate answer (length 128; SALD dataset)

(a) a raw data series (b) its PAA representation

10

00

1111

10

01

00

N
 (

0
, 1

)

(c) its iSAX representation

ROOT

0 0 0 . . . 1 0 1 . . . 1 1 1

10 0 1 11 0 1

10 00 1 11 01 1

(d) ADS+ index

Fig. 2. The iSAX representation, and the ADS+ index structure

size grows [10]. Therefore, data series indices for massive datasets
use ED as a distance metric [10], [11], [12], [13], [9], though
simple modifications can be applied to make them compatible with
DTW [10]. Euclidean distance is computed as the sum of distances
between the pairs of corresponding points in the two sequences.
Note that minimizing ED on z-normalized data (i.e., a series whose
values have mean 0 and standard deviation 1) is equivalent to
maximizing their Pearson’s correlation coefficient [35].
[Distance calculation in SIMD] Single-Instruction-Multiple-Data
(SIMD) refers to a parallel architecture that allows the execution
of the same operation on multiple data simultaneously [36]. Using
SIMD, we can reduce the latency of an operation, because the
corresponding instructions are fetched once, and then applied
in parallel to multiple data. Modern CPUs support 256-bit wide
SIMD vectors, which means that some floating point (or other 32-
bit data) computations can be up to 8 times faster when executed
using SIMD [36]. Even though no SIMD solutions have been
proposed so far for data series indices, this idea has been exploited
for the computation of distance functions [37]. In our study, we
take an extra step, and we also use SIMD for operations related
to the proposed data series index structure (i.e., for conditional
branch calculations during the computation of the lower bound
distances; see Section 3.3).

2.2 iSAX Representation and ADS+ Index
[iSAX Representation] The iSAX representation is based on the
Piecewise Aggregate Approximation (PAA) representation [29],
which divides the data series in segments of equal length, and
uses the mean value of the points in each segment in order
to summarize a data series. Figure 2(b) depicts an example of
PAA representation with three segments (depicted with the black
horizontal lines), for the data series depicted in Figure 2(a).
Based on PAA, the indexable Symbolic Aggregate approXimation
(iSAX) representation was proposed in [10].

3

This method first divides the (y-axis) space in different regions,
and assigns a bit-wise symbol to each region. In practice, the num-
ber of symbols is small: iSAX achieves very good approximations
with as few as 256 symbols, the maximum alphabet cardinality,
which can be represented by 8 bits [13]. It then represents each
segment of the series with the symbol of the region the PAA
falls into, forming the word 102002112 shown in Figure 2(c)
(subscripts denote the number of bits used to represent the symbol
of each segment).

For an overview of iSAX-based indices, see [21].
[ADS+ Index] Based on this representation, the state-of-the-
art ADS+ index was developed [9]. It makes use of variable
cardinalities (i.e., variable degrees of precision for the symbol of
each segment; see Figure 2(c)) in order to build a hierarchical
tree index (see Figure 2(d)), consisting of three types of nodes:
(i) the root node points to several children nodes, 2w in the
worst case (when the series in the collection cover all possible
iSAX representations), where w is the number of segments; (ii)
each inner node contains the iSAX representation of all the series
below it, and has two children; and (iii) each leaf node contains
both the iSAX representation and the raw data of all the series
inside it (in order to be able to prune false positives and produce
exact, correct answers). When the number of series in a leaf node
becomes greater than the maximum leaf capacity, the leaf splits: it
becomes an inner node and creates two new leaves, by increasing
the cardinality of the iSAX representation of one of the segments
(the one that will result in the most balanced split of the contents
of the node to its two new children [13], [9]). The two refined
iSAX representations (new bit set to 0 and 1) are assigned to the
two new leaves. In our example, the series of Figure 2(c) will be
placed in the outlined node of the index (Figure 2(d)).

The ParIS and ParIS+ indices use the iSAX representation
and basic ADS+ index structure, but implement techniques and
algorithms specifically designed for multi-core architectures.

3 PROPOSED SOLUTION: PARIS AND PARIS+

In this section, we describe our approach, called Parallel Indexing
of Sequences (ParIS), for parallel index construction and query
answering. We then present, ParIS+, an improved version of ParIS
(in settings with reasonable levels of parallelism).

Figure 3 provides a high level overview of the entire pipeline
of how the ParIS index is created and then used for query
answering. This pipeline is comprised of four stages. In Stage 1,
a thread, called the Coordinator worker, reads raw data series
from the disk and transfers them into the raw data buffer in
main memory. In Stage 2, a number of IndexBulkLoading workers,
process the data series in the raw data buffer to create their iSAX
summarizations. Each iSAX summarization determines to which
root subtree of the tree index the series belongs. Specifically, this is
determined by the first bit of each of the w segments of the iSAX
summarization. The summarizations are then stored in one of the
index Receiving Buffers (RecBufs) in main memory. There are
as many RecBufs as the root subtrees of the index tree, each one
storing the iSAX summarizations that belong to a single subtree.
This number is usually a few tens of thousands and at most 2w,
where w is the number of segments in the iSAX representation
of each time series (w is fixed to 16 in this paper, as in previous
studies [9]). The iSAX summarizations are also stored in the array
SAX (used during query answering).

When all available main memory is full, Stage 3 starts. In
this stage, a pool of IndexConstruction workers processes the
contents of RecBufs; every such worker is assigned a distinct
RecBuf at each time: it reads the data stored in it and builds
the corresponding index subtree. So, root subtrees are built in
parallel. The leaves of each subtree is flushed to the disk at the
end of the tree construction process. This results in free space in
main memory. These 3 stages are repeated until all raw data series
are read from the disk, the entire index tree is constructed, and
the SAX array is completed. The index tree together with SAX
form the ParIS index, which is then used in Stage 4 for answering
similarity search queries.

In the following, we elaborate on the stages of this pipeline.

3.1 Index Construction: ParIS

The main challenge in devising an algorithm for the creation of
our index in parallel is that a significant part of time is required
for disk I/O (i.e., for reading the raw data and writing the index
leaves). In order to address this challenge, we concentrate our
efforts in two directions: execute the CPU computations so as to
achieve the largest possible overlap with the required disk I/O, and
reduce the number of random accesses to disk as much as possible.
We achieve these by maintaining the synchronization cost among
different threads as low as possible.

3.1.1 Index Initialization

In this section, we describe Stages 1 and 2. Figure 4(a) summarizes
how the coordinator and IndexBulkLoading workers work.

The raw data buffer is implemented using double buffering.
So, it is comprised of two parts, one on which the Coordinator
works, and another on which the IndexBulkLoading workers work.
In this way, the data the Coordinator is accessing and the data
the IndexBulkLoading workers are handling form two independent
sets. So, all these threads work in parallel (as much as possible).
Our tuning experiments (refer to Figure 11) showed that setting the
size of the double buffer to 2MB results in the best performance
(the time cost reduces as the buffer size increases until we reach
2MB and then it stabilizes).

The pseudocode for the Coordinator worker is shown in
Algorithm 1. We assume that the index variable is a data structure
containing all buffers, a pointer to the root of the tree index,
some arrays of locks that are needed for synchronizing access to
RecBufs, and SAX. In this algorithm, B1 and B2 are pointers to
the two parts, TS[0] and TS[1], of the raw data buffer. Moreover,
we denote by nt the number of IndexBulkLoading workers that
are created by the coordinator (see discussion below about the
value of nt). The algorithm works as follows. The Coordinator
worker first fills in the part of the raw data buffer pointed to
by B1 (line 3). Then, the Coordinator worker creates the nt

IndexBulkLoading worker threads (lines 4). These threads create
the iSAX summarizations of the data in the raw data buffer part
pointed to by B1 and place them in the appropriate RecBufs and
in SAX (see Figure 4(a)); for each data series, we also store in
RecBuf its offset in the raw data file. While the IndexBulkLoading
workers are performing this task, the Coordinator concurrently
fills in the other part of the raw data buffer (line 8). This process
is repeated until the main memory is exhausted.

The Coordinator worker is aware of the current memory usage
by monitoring the number of data series that it has processed.

4

index bulk loading

fill up index Receiving Buffers(RecBufs)

index construction

index
tree

Disk

Main memory

process summarizations
in each buffer

grow subtree

flush subtree leaves to disk

split based on iSAX
summarization SAX: array of iSAX

summarizations

query

answers

iterate

Stage 3
Grow index and persist index leaves to

disk by IndexConstruction workers

Stage 4
Similarity search query answering

Raw data

Index Construction Query Answering

SAX: array of iSAX
summarizations

Raw Data
Buffer

Stage 2
Load data to index by

IndexBulkLoading workers

Stage 1
Preprocessing by the
coordinator worker

ParIS

ParIS+

index

Fig. 3. Overview of the pipeline for creating the ParIS/ParIS+ index, and using the index for query answering.

RAW Data

Double
Buffer

ROOT

0 0 0 1 1 1. . .

IdxBulkLoading worker

Disk

Main memory

RecBuf RecBuf
Array of iSAX

Summarizations

Raw Data Buffer

create

thread

B2

SAX

Coordinator

B1

. . .

(a) Create index Coordinator & IndexBulkLoading workers

RAW Data

ROOT

0 0 0 1 1 1. . .

Disk

Main memory

0 00 0 0 01 0

1 10 11 1 11 11

1 1 10 1 1 11

OutBuf OutBuf OutBufOutBuf

IdxConstr worker 1 IdxConstr worker k
RecBuf RecBuf

…
create thread

create thread

Coordinator

(b) IndexConstruction workers

Fig. 4. Workflow and algorithms relevant to index creation.

When the available memory is (nearly) exhausted3 (line 10), then
the Coordinator creates the IndexConstruction worker threads
(lines 12), which build the part of the index that corresponds to
the iSAX summarizations stored in the RecBuf, and flush the leaf
nodes of the tree to disk.

The pool of IndexBulkLoading workers could be as big as
the number of cores in our machine (minus one which is re-
served for the Coordinator). The IndexBulkLoading workers are
assigned each RecBuf one-at-a-time in round-robin fashion, by
using either an atomic fetch and increment primitive, or a lock.
As we will discuss later (in Section 4), for ParIS we see the best
performance when we use five IndexBulkLoading workers and six
IndexConstruction workers; note that these numbers are orders
of magnitude less than the number of the index root subtrees
(usually tens of thousands). Note that because of the small number
of BulkIndexLoading (and IndexConstruction workers), the use
of locks for synchronizing access to RecBufs (or the assignment
of subtrees) does not result in any synchronization bottlenecks.

3. Note that we only need a small amount of additional memory for creating
new index nodes in the subtree of the root currently being processed, which
can have a maximum depth of w(|alphabet|−1) [9], where |alphabet| is the
cardinality of the alphabet. Moving data inside the index (e.g., from RecBuf to
OutBuf, as we will discuss later) does not require extra memory: we reallocate
the same memory addresses between the buffers.

Algorithm 1: Coordinator
Input: File* file, Index index, Integer nt

1 Pointer B1 ← index.TS[0], B2 ← index.TS[1];
2 Integer p = 0;
3 B1 ← read data from file;
4 while not reached end of file do
5 for i← 0 to nt − 1 do
6 create a thread to execute an instance of

IndexBulkLoading(index,B1 + i ∗ chunksize,
p+ i ∗ chunksize);

7 B2 ↔ B1;
8 B1 ← read data from file ;
9 Wait for IndexBulkLoading workers to finish;

10 if main memory is full then
11 for i← 1 to nt + 1 do
12 create a thread to execute an instance of

IndexConstruction(index);
13 Wait for IndexConstruction workers to finish;
14 p← p+ nt ∗ chunksize;

Moreover, because the computation is heavily I/O bounded at this
stage, the performance does not degrade even if the Coordinator
creates the IndexBulkLoading workers from scratch each time
it fills up a part of the raw data buffer. For the same reason,
techniques like thread pinning does not improve performance.

5

Algorithm 2: IndexBulkLoading
Input: Index index, Raw data buffer TS[], Integer p

1 for i← 0 to chunksize− 1 do
2 index.SAX[p+ i] = ConvertToSAX (TS[i]);
3 acquire appropriate lock from index.RecBufLock[];
4 InsertIntoRecBuf (〈index.SAX[p+ i], p+ i〉);
5 release the acquired lock;

The pseudocode that the IndexBulkLoading workers execute
is shown in Algorithm 2. Each such worker has been assigned a
chunk, of size chunksize, in each part of the raw data buffer
(therefore, the size of the raw data buffer is 2 ∗ chunksize ∗ nt).
Each worker operates only on its chunk. In this way, no syn-
chronization is needed between the IndexBulkLoading workers
for accessing the raw data buffer. Each IndexBulkLoading worker
reads the data series in its chunk one after the other (line 2), and
calculates the iSAX summarization for each of them by calling the
ConvertToSAX() function (line 2). These summaries are stored
in SAX, the Array of iSAX Summarizations (line 2), and in the
appropriate RecBuf (line 4; refer also to Figure 4(a)). Recall that
each RecBuf gathers together all data that must be stored into the
same root subtree. These data may exist in chunks of the raw data
buffer that are associated to different IndexBulkLoading workers.
So, more than one such workers may require to concurrently
access the same RecBuf. Therefore, synchronization is needed.
This synchronization is achieved by using a lock for each such
buffer, stored in array RecBufLock[] of index.

To eliminate the need for synchronization between the In-
dexBulkLoading workers in accessing SAX, the iSAX summa-
rization of the data series stored in the p position of the raw data
file, is stored in the p position of SAX.

3.1.2 Subtree Construction and Leaf Materialization
We now describe Stage 3, where the index is gradually constructed
and its leaves materialized. On top of the raw data buffer and the
RecBufs, ParIS makes use of an additional set of main memory
buffers, the Output Buffers (OutBufs). Each OutBuf is associated
to one leaf of the index tree and stores the iSAX representations
of the data series and pointers to them in the raw data file.

The Coordinator worker creates a number of IndexConstruc-
tion workers when it discovers that the main memory is exhausted.
(Based on our experiments, the best number of IndexConstruction
workers is 6.) These workers process the data in the RecBufs in
order to grow the corresponding subtree, until the data end up in
the OutBufs of that subtree. Finally, the OutBufs are flushed to
disk. This process is illustrated in Figure 4(b), (where we have
assumed that the contents of the OutBuf for the leftmost leaf have
been flushed to disk, whereas the rest OutBufs have not).

All IndexConstruction workers process different root subtrees,
so they work independently and no synchronization is needed. A
worker that finishes its work on one subtree gets assigned to a
new RecBuf, until all RecBufs are processed. In order to maintain
the scheme simple and efficient, we have chosen not to parallelize
processing inside each one of the index root subtrees since that
would require a lot of synchronization (due to node splitting).
Our experiments have shown that this decision does not have any
negative impact in the performance of our scheme.

The pseudocode that the IndexConstruction workers execute is
shown in Algorithm 3. An IndexConstruction worker first selects
one of the RecBufs to process in an atomic way (line 3). This

Algorithm 3: IndexConstruction
Input: Index index

1 Shared integer nb = 0;
2 while (TRUE) do
3 i←Atomically fetch and increment nb;
4 if (i ≥ 2w) then break;
5 for every 〈isax, pos〉 pair ∈ index.RecBuf [i] do
6 targetLeaf ← Leaf of index tree to insert 〈isax, pos〉;
7 while targetLeaf is full do
8 SplitNode(targetLeaf);
9 targetLeaf ← New leaf to insert 〈isax, pos〉;

10 Insert 〈isax, pos〉 in targetLeaf ’s OutBuf buffer;
11 Flush targetLeaf ’s OutBuf buffer to disk;
12 Clear this node OutBuf;

can be done by using either an atomic fetch and increment
primitive (nb in Algorithm 3), or a lock. Then, it moves the
data to the appropriate OutBuf in the index (line 10), and if
necessary (i.e., if the leaf node is full), it (repeatedly) performs
node splitting (line 8). When node splitting is performed, the iSAX
summarizations (i.e., the contents of the leaf node to be split) are
read from disk and they are placed in the appropriate OutBuf (if
they have already been flushed). Then, the leaf node is split to two
new leaf nodes, the data of the original leaf are moved to the new
leaves, and finally the OutBufs corresponding to the leaves of the
subtree currently processed are flushed to disk (line 11).

We note that 80% of the leaves (and therefore also the
corresponding OutBufs) have size less than the block size. So,
flushing them to disk results in disk random accesses. For this
reason, the use of a lock to synchronize disk accesses of threads
during leaf materialization would cause performance degradation.

3.2 Index Construction: ParIS+
In this section, we present Paris+, which improves ParIS by
completely masking out the CPU cost when creating the index.
This is not true for ParIS, whose index creation (stages 1-3) is
not purely I/O bounded (as we will see in Figure 9). The reason
for this is that, in ParIS, the IndexConstruction workers do not
work concurrently with the Coordinator worker. Moreover, the
IndexBulkLoading workers do not have enough CPU work to do
to fully overlap the time needed by the Coordinator worker to read
the raw data file.

ParIS+ (Algorithms 4-6) is an optimized version of ParIS,
which achieves a complete overlap of the CPU computation with
the I/O cost. In ParIS+, the IndexBulkLoading workers have
undertaken the task of building the index tree, in addition to
performing the tasks of stage 2. The IndexConstruction workers
now simply materialize the leaves by flushing them on disk.

In ParIS+, the Coordinator worker (Algorithm 4) creates the
IndexBulkLoading workers right after it has finished filling in
one part of the raw data buffer for the first time (line 2). Note
that before starting to fill in this part again, the Coordinator
reaches a barrier (line 8 of Algorithm 4), which ensures that the
IndexBulkLoading workers have finished processing it (line 10 of
Algorithm 5). An additional barrier (line 14 of Algorithm 4) be-
tween the Coordinator and each of the IndexBulkLoading workers
is necessary to ensure that no IndexBulkLoading worker accesses
the OutBuf buffers as long as the IndexConstruction workers
operate on them.

Algorithm 5 provides pseudocode for the IndexBulkLoading
workers. Note that the IndexBulkLoading workers have to reach

6

ROOT

0 0 0 1 1 1
...

RecBuf RecBuf

0 00 0 0 01 0 10 1 1 11 1 1

OutBuf OutBuf OutBuf OutBuf

IdxBulkLoading worker 1 IdxBulkLoading worker k

Coordinator

create thread

create
thread

(a) IndexBulkLoading worker after synchronization barrier

RAW Data

ROOT

0 0 0 1 1 1. . .

Disk

Main memory

0 00 0 0 01 0

1 10 11 1 11 11

1 1 10 1 1 11

OutBuf OutBuf OutBufOutBuf

IdxConstr worker 1 IdxConstr worker k

RecBuf RecBuf

…

create thread

create thread
Coordinator

(b) index construction

Fig. 5. Workflow and algorithms relevant to ParIS+ index building.

a barrier (line 10) after they finish processing the part of the raw
data buffer they have been assigned. This barrier is necessary since
more than one IndexBulkLoading worker adds items in each of
the RecBufs, and the tree index construction should start only
after all of them have finished their current phase of adding items
in the RecBufs. Additional barriers (lines 22 and 23) ensure the
necessary synchronization of the IndexBulkLoading workers with
the Coordinator thread (as discussed above).

The IndexConstruction workers (Algorithm 6) simply flush the
Outbufs of the leaves of each subtree of the index tree on disk. This
is depicted in Figure 5.

Finally, we note that we also considered an alternative, where
the IndexBulkLoading workers were performing their work con-
currently with the tree index construction phase performed by the
IndexConstruction workers. However, this design did not have any
positive impact in performance, and thus, do not discuss it further.

3.3 Query-Answering
In this section, we describe methods for parallel query-answering.

The algorithm first performs an approximate search to obtain
the first Best-So-Far (BSF) answer, and then proceeds with a
sequential scan of the raw data that could not be pruned using
the BSF, in order to produce the exact, final answer to the query.
The approximate search is really fast, requiring only a negligible
percentage (a few msec) of the (mostly) on-disk sequential scan
cost. It is a simple, in-memory path traversal from the index root

Algorithm 4: Coordinator (ParIS+)

Input: File* file, Index index, Integer nb, Integer chunksize
1 Pointer B1 ← index.TS[0], B2 ← index.TS[1];
2 B1 ← read data from file;
3 for i← 0 to nw − 1 do
4 create a thread to execute an instance of

IndexBulkLoading(index,i, nw , chunksize);
5 while not reached end of file do
6 B2 ↔ B1;
7 B1 ← read data from file ;
8 Barrier to synchronize with the IndexBulkLoading workers;
9 if main memory is full then

10 for i← 0 to nw do
11 create a thread to execute an instance of

IndexConstruction(index);
12 Wait for IndexConstruction workers to finish;
13 for i← 0 to nw − 1 do
14 Barrier to synchronize with IndexBulkLoading worker i;
15 Kill IndexBulkLoading workers;

Algorithm 5: IndexBulkLoading (ParIS+)

Input: Index index, Integer id, Integer nw , Integer chunksize

1 Shared integer fw = 0;
2 Integer p = id ∗ chunksize, cnt = 1;
3 Boolean toggle = 0;
4 while (TRUE) do
5 for i← 0 to chunksize− 1 do
6 index.SAX[p+ i] = ConvertToSAX

(index.TS[toggle][i]);
7 acquire appropriate lock from index.RecBufLock[];
8 InsertIntoRecBuf (〈index.SAX[p+ i], p+ i〉);
9 release the acquired lock;

10 Barrier to synchronize the IndexBulkLoading workers with one
another;

11 while (TRUE) do
12 i←Atomically fetch and increment fw ;
13 if (i ≥ cnt ∗ 2w) then break ;
14 for every 〈isax, pos〉 pair ∈ index.RecBuf [i] do
15 targetLeaf ← Leaf of index tree to insert

〈isax, pos〉;
16 while targetLeaf is full do
17 SplitNode(targetLeaf);
18 targetLeaf ← New leaf to insert 〈isax, pos〉;
19 Insert 〈isax, pos〉 in targetLeaf ’s OutBuf buffer;
20 p = p+ nb ∗ chunksize;
21 toggle = 1− toggle;
22 Barrier to synchronize the IndexBulkLoading workers with one

another and with the Coordinator worker;
23 Barrier to synchronize this IndexBulkLoading worker with the

Coordinator worker;

to the leaf with the iSAX representation that is the most similar to
that of the query. Once a leaf is reached, the distance between the
query and each of the leaf’s data series is calculated. The minimum
distance found is the first BSF answer (see left part of Figure 7).
This BSF is used to prune the candidate series by computing lower
bound distances to their summarizations. The series that are not

Algorithm 6: IndexConstruction (ParIS+)

Input: Index index

1 Shared integer fc = 0;
2 while (TRUE) do
3 i←Atomically fetch and increment fc;
4 if (i ≥ 2w) then break;
5 For each leaf in the subtree rooted at the i-th root child;
6 Flush leaf’s OutBuf buffer to disk;
7 Clear the OutBuf buffer;

7

pruned will be visited in the raw file, and the true distance will be
computed (the BSF may be updated during this phase).

In the following, we concentrate on our algorithm for paral-
lelizing the scan phase. We first describe how we exploit SIMD
for performing the lower bound distance calculations. Then, we
present, in Section 3.3.2, a simple technique for further paralleliz-
ing this phase (nb-ParIS+, which stands for non-balanced ParIS+),
which however does not result in optimal performance, because
of the lack of load balancing. Finally, we present in Section 3.3.3
our proposed method for exact search in ParIS+ (the exact search
algorithm for ParIS is the same).

3.3.1 Lower-Bound Distance Calculation

The algorithm starts by calculating the lower bound distance
between the query series and the iSAX summarizations of all
series in the index. This is a main memory operation, since the
iSAX summarizations are small enough to fit in the memory of
modern servers4. This is a procedure that we execute using SIMD,
since both the queries and the index series are vectors, on which
we perform the same operation (i.e., a distance calculation).

Using SIMD, we can perform eight calculations in parallel,
using a single instruction (we assume 256-bit SIMD vectors,
containing 8 32-bit float elements). We need to implement a con-
ditional branch in SIMD, but contrary to previous solutions [37],
this is a complex branch: not only do we have to use different
conditional branches for different positions in the SIMD vector,
but also need to make different assignments for different branches.

In our case, the calculation of the lower bound distance
between the PAA of the query series and an iSAX summarization
has 3 branches (conditions): checking whether the PAA lies
(i) ABOVE, (ii) BELOW, or (iii) IN the iSAX interval. Thus, we
need to choose different values from different dictionaries in order
to perform the distance computations in SIMD (see Figure 6).
We first calculate the distance results of the above 3 branches for
every point in the SIMD vector. We then use a conditional mask
to extract the results in the correct branch.

In particular, we generate 3 branch masks, i.e., ABOVE, BE-
LOW, and IN. These masks contain a value of true (i.e., 1) only
in the SIMD vector positions for which the corresponding branch
is true. In Figure 6 for example, the first query PAA segment
is above the corresponding candidate series iSAX representation,
which means that only the ABOVE mask will be true for this
position; consequently we will consider the Dist ABOVE distance
value for this position of the SIMD vector. Using the appropriate
SIMD instruction (AVX, AVX2 and SSE3) [38], we can efficiently
calculate the value of the 3 branch masks. Next we apply a logical
”AND” between the 3 branch results and their masks. After that,
all bits of the branch result in the wrong branch will be zero. Now
there is only one value at the same position in those 3 branch
results. Finally, we merge all possible branches in one vector,
which is the correct final result.

In this way, we have a SIMD version of the distance compu-
tation function, which is a frequent and (CPU) time-consuming
operation. Our solution renders all computations vectorial, which
can not only accelerate the calculations, but also reduce the time
spent for changing register types (the registers used for vector and
normal values are different).

4. The highest granularity iSAX summarizations for 1 billion data series
(occupying 1TB on disk) only need about 10GB of space in main memory.

Algorithm 7: nb-ParIS+: ExactSearch
Input: querySeries QTS, query iSAX isax, Index index, File*

file
Output: realDistance

1 float BSF ,Vbsf [];
// Perform an approximate search

2 BSF = approxSearch (QTS, isax, index);
// distribute BSF into Vbsf

3 Vbsf ← BSF ;
// calculate minDist and realDist in parallel

4 create a number of threads, each executing an instance of
DistCompWorker(TS, isax, Vbsf , appropriate part of
index.SAX , file);

5 Wait for all threads to finish;
6 return (min (Vbsf));

Algorithm 8: nb-ParIS+: DistComp
Input: querySeries TS, query iSAX isax, float Vbsf [], iSAX

summarizations SAX part[], Index index, File* file
Output: BSF

1 float BSF = read initial BSF value from Vbsf ;
2 for i← 1 to size of SAX part do
3 minDist = LowerBound SIMD (TS, SAX part[i]);
4 if minDist < BSF then
5 Move file pointer to appropriate position in file;
6 rawData = read raw data series from file;
7 realDist = Dist (rawData, TS);
8 if realDist < BSF then
9 BSF ← realDist;

3.3.2 Exact Search in nb-ParIS+

We now present nb-ParIS+ that served as an intermediate step for
developing ParIS+, using a simple design with no communication
among the distance computation worker threads (see also § 3.3.4).

Exact Search in nb-ParIS+ is illustrated in Figure 8, and shown
in Algorithm 7. It employs a standard parallelization technique,
which splits SAX in blocks and has different workers, called
Distcomp workers, work on different blocks independently. When
a thread t executes an ExactSearch (Algorithm 7), it first performs
an approximate search to get the initial BSF value (line 2). BSF
is used for pruning. Each Distcomp worker updates its own copy
of BSF to store the minimum distance it has calculated so far.
This copy is stored in an appropriate element of vector Vbsf . Note
that since each worker calculates its own estimate of BSF, no
synchronization is needed among them.

When t creates the Distcomp workers (line 4), it informs
them about the initial BSF value through vector Vbsf . Each such
worker computes the lower bound distance between the query
PAA and each iSAX summarization in its SAX part (Algorithm 8,
line 3). It does so using the SIMD approach we described in
Section 3.3.1. If this distance is higher than the current value of the
worker’s copy of BSF, then the data series is pruned. Otherwise,
the Distcomp worker reads the required data from disk, calculates
the real distance (line 7), and if necessary, updates the appropriate
element of Vbsf (line 9). Finally, t waits for all DistComp workers
to finish, calculates the minimum value stored by these workers
in VBSF , and returns this value. We use one DistComp Worker
thread per core (thus resulting in 24 DistComp workers in total).
Note that nb-ParIS+ does not necessarily balance the work among
the DistComp workers, since the pruning degree may turn out to
be different for each worker. Moreover, different threads produce
disk requests concurrently, which results in random accesses to
disk. ParIS+ improves upon nb-ParIS+ to address these problems.

8

Result ABOVE branch Dist_ABOVE[1] Dist_ABOVE[2] Dist_ABOVE[3] Dist_ABOVE[4] …

SIMD vector (8 points)

Mask ABOVE branch true true …

Result BELOW branch Dist_BELOW[1] Dist_BELOW[2] Dist_BELOW[3] Dist_BELOW[4] …

Mask BELOW branch true …

Result IN branch Dist_IN[1] Dist_IN[2] Dist_IN[3] Dist_IN[4] …

Mask IN branch true …

Final Result Dist_ABOVE[1] Dist_IN[2] Dist_ABOVE[3] Dist_BELOW[4] …

query series:
PAA representation

candidate series:
iSAX representation

…

query ABOVE candidate

query IN candidate

query BELOW candidate

Fig. 6. SIMD conditional branch calculation.

ROOT

0 0 0

0 00 0 0 01 0

0 01 00 0 01 01

.

RAW File

LBC Worker

BSF

…

RDC Worker

3. Read raw data
for series in leaf

4.Get BSF

5. Calculate LB distance
& generate candidate list 6. Read raw data

using candidate
list order

7. Update BSF

LB_dist
LB_dist
LB_dist

LB_dist
LB_dist

Array of

Candidate List
Array of iSAX

Summarizations

1. Query q arrives

Disk

Main memory

SAX C l

2. Run
approximate
search

ExactSearch worker

Fig. 7. Workflow and algorithms for query answering with ParIS+ (balanced).

ExactSearch worker

ROOT

0 0 0

0 00 0 0 01 0

0 01 00 0 01 01

.

RAW File

4.Get BSF

5. Calculate LB distance
& read raw data

6. Update BSF

Array of iSAX

Summarizations

1. Query q arrives

Disk

Main memory

2. Run
approximate
search

3. Read raw data
for series
in leaf

BSF

SAX

DistComp Worker

LB_dist
LB_dist
LB_dist

…

Fig. 8. Workflow and algorithms for query answering with nb-ParIS+
(non-balanced).

3.3.3 Exact Search in ParIS+
As in nb-ParIS+, the exact search algorithm in ParIS+5 employs
approximate search as a first step and uses the approximate answer
as the initial BSF (see Algorithm 9). Unlike to nb-ParIS+ though,
BSF is now stored in a variable shared by all workers.

We note that the state-of-the-art sequential index similarity
search algorithm spends more than 95% of its time on I/O (on
our server, described below) and in particular, on reading data
from disk. In order to achieve better parallelism, the ExactSearch
algorithm separates the phase of the lower bound calculation
from that of the real distance calculation and has two types of
worker threads, namely the Lower Bound Computation (LBC)
and the Real Distance Computation (RDC) workers, respectively,
executing each type of calculation (see right part of Figure 7).

When a thread t executes an ExactSearch (Algorithm 9), it
first performs an approximate search to get the initial BSF answer
(line 3), and then it initiates a number of LBC workers (line 5).
Different LBC workers work on different parts of SAX. Each such
worker computes the lower bound distance between the query
PAA and each iSAX summarization in its SAX part and records
the data series for which this distance is less than the current
BSF in a local candidate list, which it eventually returns to t (see

5. Note that the exact search algorithm of ParIS is the same as in ParIS+.

Algorithm 9: ParIS+: ExactSearch
Input: querySeries QTS, query iSAX isax, Index index, File*

file
1 candidate list Cl, subCl[];
2 float BSF ;
3 BSF = approxSearch(QTS, isax, index);
4 create a number of threads, each executing

subCl ← LBCWorker(QTS, proper part of index.SAX ,
BSF);

5 Wait for all threads to finish;
6 Cl ← merge all sublists (subCl) returned by the LBCWorker

threads;
7 create a number of threads, each executing an instance of

RDCWorker (QTS, Cl, BSF, file);
8 Wait for all threads to finish;
9 return (BSF);

Algorithm 10). This list contains the position and the lower-bound
distance, needed to read the raw data and to calculate the real
distance for the data series. Once all LBC workers have finished, t
merges the candidate lists they have created (Algorithm 9, line 6)
and initiates the RDC Workers (line 7).

Each RDC Worker (Algorithm 11) repeatedly retrieves a
(minDistance, position) pair from the merged candidate list (Cl)
in an atomic way (line 2). Atomicity is achieved with the use of
a lock which all RDC workers share. The worker then reads the
required data from disk, calculates the real distance (line 6), and
if necessary, updates the shared BSF variable (line 8). A thread
lock ensures that the BSF modification is done atomically. Storing
BSF in shared memory and updating it during the course of the
execution contributes towards reducing the number of calculations
that RDC workers perform.

In this study, we use 1 LBC Worker thread per core, and 5 RDC
Worker threads per core. Oversubscribing the RDC Workers (that
are involved in expensive I/O operations) ensures that we saturate
the disk I/O bandwidth and the CPU remains busy. Our experi-
ments showed that time performance remains relatively stable as
we vary the number of RDC Worker threads per core (especially
between 3-5 threads for the HDD server, and 4-10 threads for the
SSD server), while 1 LBC Worker thread was enough to achieve
the best performance (results omitted for brevity).

3.3.4 Discussion of nb-ParIS+ and ParIS+
Using nb-ParIS+, we were able to identify some design choices
that resulted in bad performance during query answering. Specif-

9

Algorithm 10: ParIS+: LBC −Worker

Input: querySeries QTS, iSAX summarizations SAX part[],
float BSF

1 local candidate list subCl;
2 for i← 1 to size of SAX part do
3 minDist← LowerBound SIMD (QTS, SAX part[i]);
4 if minDist < BSF then
5 add (minDist, Raw Data file position of SAX part[i])

pair in subCl;
6 return (subCl)

Algorithm 11: ParIS+: RDC −Worker
Input: querySeries QTS, candidate list Cl, float BSF, File* file

1 while not reached end of Cl do
2 Atomically read the next (minDist,position) pair from Cl;
3 if minDist <BSF then
4 Move file pointer to the proper position in file;
5 rawData← read raw data series from file;
6 realDist← Dist (rawData, QTS);
7 if realDist < BSF then
8 Atomically update BSF to the value of realDist;

ically, nb-ParIS+ needs synchronization between the different
threads only for computing the minimum BSF value, but may
result in load imbalance in terms of real distance calculations
performed in each chunk. Since each real distance calculation
performs I/O (to read the raw data series), some threads may
finish much later than others. Moreover, as the requests of dif-
ferent threads are interleaved, nb-ParIS+ may perform random
I/Os. ParIS+ addresses these problems in common cases (when
the pruning ratio is large), by separating the phase of lower
bound distance calculations from that of real distance calculations
through the use of the candidate list. The candidate list is sorted to
ensure that random accesses to disk are minimized. Moreover, a
fetch&add is used to assign entries of the candidate list to threads
for processing, in order to achieve load balancing. In this way, it
is ensured that all threads finish at about the same time.

4 EXPERIMENTAL EVALUATION

[Setup] We ran the experiments on two servers, whose physical
memory was limited to 75GB6. The first server (default) comprises
two Intel Xeon E5-2650 v4 2.2Ghz processors with 12 cores each,
and has 10.8TB (6 x 1.8TB) 10K RPM SAS HDD drives in
RAID0, with sequential access throughput of the RAID0 array
being 1200MB/sec and random access throughput 12MB/sec. The
second server, with the same setup for CPUs and memory, has
3.2TB (2 x 1.6TB) SATA SSD drives in RAID0, with 500MB/sec
sequential throughput and 450MB/sec random access throughput.

All algorithms were implemented in C, and compiled using the
GCC6.2.0 with the O3 optimization flag on Ubuntu Linux 16.04.
Unless otherwise mentioned, in our experiments we use one socket
for index creation and two sockets for query answering.
[Datasets] In order to evaluate the performance of the proposed
approach, we use several synthetic datasets for a fine grained
analysis, and two real datasets from diverse domains. Unless
otherwise noted, the series have a size of 256 points, which is
a standard length used in the literature, and allows us to compare
our results to previous work.

6. We used GRUB to limit the amount of RAM, so that all methods are
forced to use the disk. Note that GRUB prevents the operating system from
using the rest of the RAM as a file cache.

0

50

100

150

200

250

300

350

1 2 4 6 12 2 4 6 12 24 2 4 6 12 2 4 6 12 24

ADS+ ParIS in 1 socket ParIS in 2 sockets ParIS+ in 1 socket ParIS+ in 2 sockets

Ti
m

e
(S

ec
o

n
d

s)

Algorithms

Read Write CPU

Fig. 9. Index creation time (HDD) as the number of cores increases.

We used synthetic datasets of sizes 50GB-250GB (default size:
100GB), and a random walk data series generator that works
as follows: a random number is first drawn from a Gaussian
distribution N(0,1), and then at each point in time a new number
is drawn from this distribution and added to the value of the last
number. This generator has been extensively used in the past (and
has been shown to model real-world financial data) [39], [10],
[12], [13], [9]. We used this process to generate 100 query series.

For the Seismic real dataset, we used the IRIS Seismic Data
Access repository [40] to gather 100M series representing seismic
waves from various locations, for a total size of 110GB. The SALD
real dataset includes neuroscience MRI data series [41], for a total
of 200M series of length 128 points each, and total size 100 GB.
In both cases, we used as queries 100 series that were not part of
the datasets (produced using our synthetic series generator, since
these datasets do not come with query workloads).

In all cases, we ran the experiments 5 times and report the
mean values. We omit reporting error bars, since all runs gave
results that were very similar (<3% difference). Queries were
always run in a sequential fashion, one after the other, in order to
simulate an exploratory analysis scenario, where users formulate
new queries after having seen the results of the previous one.
[Algorithms] We experiment with our ParIS and ParIS+ al-
gorithms, and compare those to the sequential state-of-the-art
data series index, ADS+ [9]. We also compare to (i) the UCR
Suite [11], the state-of-the-art, optimized serial scan technique for
exact similarity search, and (ii) DS-Tree [12], a modern data series
index that stores the raw data in the leaves. All algorithms are
available online [42]. For the disk-resident experiments, we never
load the datasets in main memory. In order to mitigate the effects
of caching, we clear the caches before each experiment (i.e., before
running index creation and before executing each query).

4.1 Results

We present the performance results for ParIS/ParIS+, and compare
them to two modern data series indices, ADS+ and DS-Tree.

4.1.1 Index Creation Performance Evaluation
In our first experiment (Figure 9), we evaluate the time it takes
to create the tree index for a synthetic dataset of 100M series.
The figure illustrates that the performance of ParIS and ParIS+
improves as the number of cores grows from 4 to 6 (note that a
single thread runs on each core); after 6 cores the improvement
is rather small. The reason for this behavior is illustrated in
Figure 10. Note that there are 4 types of time costs: (i) read
raw data from disk; (ii) write raw data to disk; (iii) CPU time
by IndexBulkLoading workers; and (iv) CPU time by Index-
Construction workers. When we use more than one core, the

10

 4 6 8 12

0
5

0
1

0
0

1
5

0

T
im

e
(S

ec
o

n
d

s)

Number of cores

Write
Read

IndexConstruction
IndexBulkLoading

(a) ParIS on 1 Socket

0
5

0
1

0
0

1
5

0

4 6 8 12 18 24

T
im

e
 (

S
e
c
o

n
d

s)

Number of cores

(b) ParIS on 2 Sockets

 4 6 8 12

0
5

0
1

0
0

1
5

0

T
im

e
 (

S
e
c
o

n
d

s)

Number of cores

(c) ParIS+ on 1 Socket

0
5

0
1

0
0

1
5

0
4 6 8 12 18 24

T
im

e
 (

S
e
c
o
n
d
s)

Number of cores

(d) ParIS+ on 2 Sockets

Fig. 10. Overlap of I/O time and CPU time during index creation (HDD).

time to read the data from disk and the management of data
series are performed concurrently. Moreover, the time cost for the
management of data series decreases with the number of cores,
since the data that each core needs to process gets reduced. The
cost of the index construction also reduces. However, the time cost
to read data is always the same, since we access the same disk.

Figure 9 shows that ParIS results in performance which is up
to 2.4x faster than ADS+. Still, ParIS does not completely hide
the CPU latency. This is achieved by ParIS+, when 6 or more
threads are used, as can be seen in Figures 9 and 10. Note that
in ParIS+, more work is performed than in ParIS, because the
IndexBulkLoading workers traverse the tree more than once. This
cost is more evident in the 2 sockets case, where the threads do not
benefit from the use of the L3 cache. However, ParIS+ achieves
better overlap of CPU time with I/O cost (Figure 10). Therefore,
the time to execute the additional work completely overlaps with
the I/O cost when the number of threads is at least 6, and ParIS+
achieves better performance than ParIS.

Overall, these results demonstrate that not only does the
proposed solution completely hide the CPU latency (using ≥ 6
cores), but it will continue to do the same when the storage
medium of the dataset becomes much faster, e.g., with NVRAMs.
In the following, we use 6 cores by default. The results with SSD
follow the same trends (in this case ParIS+ completely hides the
CPU latency when using≥ 4 cores), and we omit them for brevity.

Figure 11 shows the impact of the double buffer size on perfor-
mance (for the same experiment as in Figure 9). The results show
that a good choice for the size of the raw data buffer is 1MB for
ParIS, whereas it is 5MB for ParIS+. The reason for this difference
is that as the buffer size increases, the IndexBulkLoading workers
in ParIS+ traverse the index tree fewer times, and achieve better
overlap with the work performed by the coordinator.

We now turn our attention to datasets of increasing size, and
additionally compare ParIS to another competitive data series
index, DS-Tree. Figures 12 and 13 depict the results for HDD
and SSD, respectively. The results show that the performance of
ParIS and ParIS+ is always better than that of ADS+ and DS-Tree.
Moreover, ParIS+ is always faster than ParIS. This improvement
is up to 7% on HDD. However, it is smaller on SSD because the
SSD I/O bandwidth in our server is smaller than that of the HDD,
resulting in higher read cost. However, the time to build the tree
index does not change, and therefore, it now accounts for a smaller
percentage of the I/O time. Note that the DS-Tree is always one

order of magnitude slower than the other approaches, so we do not
consider the DS-Tree in the rest of our experiments.

4.1.2 Query Answering Performance Evaluation

We now present results on ParIS+’s efficiency in query answering.
Figure 14 shows the exact query answering time for ParIS+,

nb-ParIS+, and ADS+, as we vary the number of cores. We
observe that the performance improves as we increase the number
of cores (though the improvement is rather small when we go
beyond 6 cores). For example, for 24 cores, nb-ParIS+ is no more
than 2 times faster than ADS+, whereas ParIS+ is almost 6 times
faster than ADS+.

Figure 15 shows how the time for executing the two stages
of query answering in ParIS+ is influenced as we increase the
number of cores and the number of threads running on each
core. The results show that the LBC workers execution time
decreases as the number of cores increases, with the degree of
oversubscribing not playing an important role in performance
(Figure 15(a)). On the contrary, for the RDC execution time the
degree of oversubscribing is crucial, both for HDD (Figures 15(b))
and SSD (Figure 15(c)). The reason is that the LBC workers
perform in memory computations, for which it is important to use
more cores to execute them faster. On the other hand, the RDC
workers perform I/O to read the required data from disk, and thus,
oversubscribing is useful to keep the CPU busy at all times. These
diagrams justify the use of 1 LBC worker per core and 5 RDC
workers per core, which are the default values we have used here.

Figure 16 (log-scale y-axis) shows the performance of query
answering for UCR Suite, ADS+, nb-ParIS+, and ParIS+ as the
dataset size increases. We observe that nb-ParIS+ is about 2 times
faster than ADS+ and about 20 times faster than UCR Suite in gen-
eral. ParIS+ is much better than this: it is one order of magnitude
faster than ADS+, and more than two orders of magnitude faster
than UCR Suite. We also note that the performance improvement
of ParIS+ gets larger with increasing dataset sizes, so ParIS+ is
able to scale better than UCR Suite. This is because ParIS+ can
effectively prune the search space, while UCR Suite always has to
read all the data from disk.

Figure 17 (log-scale y-axis) shows the performance of exact
query answering for the SSD server. All three algorithms, ADS+,
nb-ParIS+, and ParIS+ benefit from the SSD’s low random access
latency. The performance improvement of ParIS+ is increasing
with the size of the dataset (since the number of random disk ac-
cesses increases, too), achieving in our experiments performance
up to 15x faster than ADS+, and 2000x faster than UCR Suite.
(Note that nb-ParIS+ results in lower numbers: it is about 7.5x
faster than ADS+ and up to 1000x faster than UCR Suite.)
[Vectorial (SIMD) Lower Bound Distance Calculation] In order
to evaluate the effect on performance of our new lower bound
distance calculation function that uses SIMD, we conducted an
experiment that factors out the disk I/O cost: we measured the
execution time of exact similarity search when all data are loaded
in main memory. We compared our solution to the case where all
computations are performed using Single Instruction Single Data
(SISD). The results (refer to Table 1 show that the average time
cost per lower-bounding calculation when using SIMD is 3.5x
faster than the SISD solution. This is a non-negligible speedup,
attributed to the large number of vectorial computations executed
in data series similarity search (refer to Algorithm 10).

11

10

100

1000

10000

0.20.5 1 2 5 10 20 40

Ti
m

e
(S

ec
o

n
d

s)

Double Buffer Size (MB)

ParIS ParIS+

Fig. 11. Index creation
time vs double buffer size.

50 100 150 200 250

1
0

1
0

0
1

0
0

0
1

0
0

0
0

T
im

e
 (

S
e
c
o

n
d

s)

Data Size/GB

DS−Tree ADS+ ParIS ParIS+

Fig. 12. Index creation time (HDD) vs
dataset size.

50 100 150 200 250

1
0

1
0

0
1

0
0

0
1

0
0

0
0

T
im

e
 (

S
e
c
o

n
d

s)

Data Size/GB

DS−Tree ADS+ ParIS ParIS+

Fig. 13. Index creation time (SSD) vs
dataset size.

0
1

0
2

0
3

0
4

0

1 2 4 6 8 10 12 18 24

T
im

e
 (

S
e
c
o

n
d

s)

Number of cores

ADS+

nb−ParIS+

ParIS+

Fig. 14. Exact query answering time vs
number of cores (HDD).

Number of cores

1 2 4 6 8 12 18 24 Number of workers

967248241812 8 6 4 2 1

Ti
m

e
(S

ec
on

ds
)

0
1
2

3

4

(a) Lower Bound Calculation (LBC) worker

Number of cores

1 2 4 6 8 12 18 24 Number of workers

967248241812 8 6 4 2 1

Ti
m

e
(S

ec
on

ds
)

0
10
20
30
40
50

(b) Real Dist. Calculation (RDC) worker - HDD

Number of cores

1 2 4 6 8 12 18 24 Number of worker

 96 72 48 24 18 12 8
 6 4 2 1

Ti
m

e
(S

ec
on

ds
)

0
1
2
3
4
5
6
7

(c) Real Dist. Calculation (RDC) worker - SSD

Fig. 15. Time cost of ParIS+’s query answering workers, varying the number of cores and the number of workers.

50 100 150 200 250

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

T
im

e
 (

S
e
c
o
n
d
s)

Data Size/GB

UCR Suite ADS+ nb−ParIS+ ParIS+

Fig. 16. Exact query answering
time (HDD), varying dataset size.

50 100 150 200 2500
.1

1
0

.0
1

0
0

0
.0

T
im

e
 (

S
e
c
o
n
d
s)

Data Size/GB

UCR Suite ADS+ nb−ParIS+ ParIS+

Fig. 17. Exact query answering
time (SSD), varying dataset size.

TABLE 1
Time cost of lower bound distance calculations.

Implementation technology Time (nanoseconds)

SISD 107.5
SIMD 31.142

4.1.3 Real Datasets
Figure 18(a) shows the result of index creation time cost on the
SALD and Seismic real datasets. Similar to our previous results,
ParIS+ is faster than ADS+ during index creation: ParIS+ is up to
2.4x faster for SALD, and 2x faster for Seismic. Moreover, ParIS+
is slightly faster than ParIS, as expected. Figure 18(b) (log scale y-
axis) reports the exact similarity search time cost on HDD for UCR
Suite, ADS+, nb-ParIS+, and ParIS+. The results differ for the two
real datasets. For SALD, ParIS+ is 140x faster than UCR Suite and
4x faster than ADS+, while for Seismic, ParIS+ is 130x faster than
UCR Suite and 5x faster than ADS+. The SSD experiments show
similar, yet more pronounced trends (Figure 18(c), log scale y-
axis): ParIS+ is almost 1 order of magnitude faster than ADS+,
and 3 orders of magnitude faster than UCR Suite.

We also observe that nb-ParIS+ is much slower than ParIS+
on HDD. Apart from the fact that nb-ParIS+ does not manage in

an optimal way the disk read operations and the corresponding
load in the individual worker threads, the major reason for its
low performance is the lack of communication among the nb-
Paris+ worker threads during the execution of the similarity search
algorithm. (Recall that during query answering in nb-ParIS+, the
workers have a local copy of the BSF, while in ParIS+, all workers
share a common copy of BSF.) Consequently, when one worker
finds a better BSF value that can help prune more data series,
this value (contrary to ParIS+) is not shared with the rest of the
workers, who perform unnecessary expensive disk read operations.
Figures 19(a) and 19(b), illustrate the above observation. The
results show that the extra work for sharing a common BSF pays
off for ParIS+, since it leads to both a smaller number of BSF
updates (i.e., we arrive to a better BSF earlier), and a reduced
number of raw data to read (i.e., we prune more). This gives
ParIS+ an edge that is more pronounced on the HDD server, rather
than on the SSD one: having to read fewer raw data translates to a
smaller number of the expensive HDD seek/rotation operations.

We note that it is possible for nb-ParIS+ to perform better than
ParIS+: this happens when the queries are very hard [43] and the
resulting pruning ratio is small. In such cases, the creation and
manipulation of the (long) candidate list results in high overheads,
while the benefit of having all RDC worker threads of ParIS+
communicating in order to update the BSF, which leads to saving
some real distance computations, is not significant (results omitted
for brevity). Usually though, the query workload is not very hard
overall, which justifies the use of ParIS+ as the method of choice.

5 RELATED WORK

[Data series summarization and indexing] Various dimension-
ality reduction techniques exist for data series, which can then be
scanned and filtered [44], [45] or indexed and pruned [46], [47],
[12], [10], [31], [9], [15], [17], [21] during query answering. We
follow the same approach of indexing the series based on their

12

0
1

0
0

2
0

0
3

0
0

4
0

0

SALD Seismic

T
im

e
 (

S
e
c
o

n
d
s)

Dataset

ADS+

ParIS

ParIS+

(a) Index creation time
1

1
0

1
0

0
1

0
0

0
1

0
0

0
0

SALD Seismic

T
im

e
 (

S
e
c
o
n
d
s)

Dataset

UCR Suite

ADS+

nb−ParIS+

ParIS+

(b) Exact query answering
time (HDD)

0
.1

1
0
.0

1
0

0
0
.0

SALD Seismic

T
im

e
 (

S
e
c
o
n
d
s)

Dataset

UCR Suite

ADS+

nb−ParIS+

ParIS+

(c) Exact query answering
time (SSD)

Fig. 18. Time cost for index creation and similarity search for real data.

0

100

200

300

400

Synthetic
(100GB)

SALD Seismic

Dataset

nb-ParIS+

ParIS+

To
ta

l N
u

m
b

er
 o

f
B

SF
 U

p
d

at
es

(a) BSF Updates

0

100

200

300

400

Synthetic
(100GB)

SALD Seismic

Dataset

nb-ParIS+
ParIS+

To
ta

l N
u

m
b

er
 o

f
Se

ri
es

 t
o

 R
ea

d
 (

x1
0

0
0

)

(b) Raw Series to Read

Fig. 19. Effort of ParIS+ and nb-ParIS+ (number of non-pruned
raw data series).

summaries, though our work is the first to exploit the paralleliza-
tion opportunities offered by multi-core architectures, in order to
accelerate data series index construction and similarity search.
FastQuery is an approach used to accelerate search operations in
scientific data [48], based on the construction of bitmap indices.
In essence, the iSAX summarization used in our approach is an
equivalent solution, though, specifically designed for sequences.
[Data structures for SIMD] While the interest in using SIMD for
improving performance is not new [49], there are still many algo-
rithms that do not take advantage of this hardware characteristic.
The problem of developing a SIMD-friendly B+-Tree index was
recently studied [50], with a focus on a basic B+-Tree method,
the k-ary search algorithm. For data series in particular, previous
work has used SIMD for Euclidean distance computations [37].
In our work, we go beyond this straightforward use of SIMD, and
we propose an algorithm that uses SIMD for the computation of
lower bounds, which involve branching operations.
[Modern Hardware] Multi-core CPUs offer thread parallelism
through multiple cores and simultaneous multi-threading (SMT).
Thread-Level Parallelism (TLP) methods, like multiple indepen-
dent cores and hyper-threads are commonly used to increase algo-
rithm efficiency [51]. A recent study proposed a high performance
temporal index similar to time-split B-tree (TSB-tree), called
TSBw-tree, which focuses on transaction time databases [52].
However, this is designed for temporal data, which are 2-
dimensional, while in our case, data series can have thousands of
dimensions (i.e., the length of the sequence). Graphics Processing
Units (GPUs) are another modern hardware option, which allows
for massively parallel computations. A recent study described the
use of GPUs for accelerating similarity search in a Trajectory
Indexing system [53]. In this work, we do not use GPUs.
[Scans vs indexing] Even though recent works have shown that
sequential scans can be performed efficiently [11], [54], such
techniques are applicable when the dataset consists of a single,
very long data series, and queries are looking for potential matches
in small subsequences of this long series. Such approaches, in
general, do not provide any benefit when the dataset is composed
of a large number of small data series, like in our case. Therefore,
indexing is required in order to efficiently support data exploration
tasks, where the query workload is not known in advance.

6 CONCLUSIONS

We presented ParIS and ParIS+, the first data series indices that ex-
ploit multi-core architectures, leading to performance 2-3 orders of
magnitude faster than previous approaches. In our future work we
will study in more depth parallel I/O techniques [55], combine our
approach with solutions developed for distributed systems [19],

extend it to support the DTW distance, and study other hardware
parallelization opportunities, e.g., GPUs and FPGAs.

Acknowledgments Work partially supported by the Chinese
Scholarship Council, FMJH Program PGMO, EDF, Thales and
HIPEAC 4. Part of work performed while P. Fatourou was visiting
LIPADE, and while B. Peng was visiting CARV, FORTH ICS.

REFERENCES
[1] T. Palpanas, “Data series management: The road to big sequence

analytics,” SIGMOD Record, 2015.
[2] K. Zoumpatianos and T. Palpanas, “Data series management:

Fulfilling the need for big sequence analytics,” in ICDE, 2018.
[3] T. Palpanas and V. Beckmann, “Report on the First and Sec-

ond Interdisciplinary Time Series Analysis Workshop (ITISA),”
SIGMOD Rec., vol. 48, no. 3, 2019.

[4] A. J. Bagnall, R. L. Cole, T. Palpanas, and K. Zoumpatianos,
“Data series management (dagstuhl seminar 19282),” Dagstuhl
Reports, vol. 9, no. 7, 2019.

[5] C. W. Tan, G. I. Webb, and F. Petitjean, “Indexing and classi-
fying gigabytes of time series under time warping,” in ICDM,
2017.

[6] K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Benbrahim,
“The lernaean hydra of data series similarity search: An experi-
mental evaluation of the state of the art,” PVLDB, 2019.

[7] P. Boniol, M. Linardi, F. Roncallo, and T. Palpanas, “Automated
Anomaly Detection in Large Sequences,” in ICDE, 2020.

[8] P. Boniol and T. Palpanas, “Series2Graph: Graph-based Subse-
quence Anomaly Detection for Time Series,” PVLDB, vol. 13,
no. 11, 2020.

[9] K. Zoumpatianos, S. Idreos, and T. Palpanas, “Ads: the adaptive
data series index,” VLDB J., vol. 25, no. 6, 2016.

[10] J. Shieh and E. Keogh, “i sax: indexing and mining terabyte
sized time series,” in SIGKDD, 2008.

[11] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A.
Batista, M. B. Westover, Q. Zhu, J. Zakaria, and E. J. Keogh,
“Searching and mining trillions of time series subsequences
under dynamic time warping,” in SIGKDD, 2012.

[12] Y. Wang, P. Wang, J. Pei, W. Wang, and S. Huang, “A data-
adaptive and dynamic segmentation index for whole matching
on time series,” VLDB, vol. 6, no. 10, 2013.

[13] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and
E. Keogh, “Beyond One Billion Time Series: Indexing and
Mining Very Large Time Series Collections with iSAX2+,”
KAIS, vol. 39, no. 1, pp. 123–151, 2014.

[14] D.-E. Yagoubi, R. Akbarinia, F. Masseglia, and T. Palpanas,
“Dpisax: Massively distributed partitioned isax,” in ICDM, 2017.

[15] H. Kondylakis, N. Dayan, K. Zoumpatianos, and T. Palpanas,
“Coconut: A scalable bottom-up approach for building data
series indexes,” PVLDB, vol. 11, no. 6, pp. 677–690, 2018.

[16] M. Linardi and T. Palpanas, “Ulisse: Ultra compact index for
variable-length similarity search in data series,” in ICDE, 2018.

[17] ——, “Scalable, variable-length similarity search in data series:
The ulisse approach,” PVLDB, 2019.

13

[18] H. Kondylakis, N. Dayan, K. Zoumpatianos, and T. Palpanas,
“Coconut palm: Static and streaming data series exploration now
in your palm,” in SIGMOD, 2019.

[19] D.-E. Yagoubi, R. Akbarinia, F. Masseglia, and T. Palpanas,
“Massively distributed time series indexing and querying,”
TKDE, vol. 32, no. 1, 2019.

[20] K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Benbrahim,
“Return of the Lernaean Hydra: Experimental Evaluation of
Data Series Approximate Similarity Search,” PVLDB, 2019.

[21] T. Palpanas, “Evolution of a Data Series Index,” Communica-
tions in Computer and Information Science (CCIS), vol. 1197,
pp. 61–75, 2020.

[22] A. Gogolou, T. Tsandilas, T. Palpanas, and A. Bezerianos, “Pro-
gressive similarity search on time series data,” in Proceedings of
the Workshops of the EDBT/ICDT Joint Conference, 2019.

[23] L. Xiao, Y. Zheng, W. Tang, G. Yao, and L. Ruan, “Parallelizing
dynamic time warping algorithm using prefix computations on
gpu,” in (HPCC EUC). IEEE, 2013, pp. 294–299.

[24] A. Ailamaki, “Databases and hardware: The beginning and
sequel of a beautiful friendship,” VLDB, 2015.

[25] T. Palpanas, “The parallel and distributed future of data series
mining,” in HPCS, 2017.

[26] B. Peng, P. Fatourou, and T. Palpanas, “MESSI: In-Memory Data
Series Indexing,” in ICDE, 2020.

[27] Botao Peng (supervised by Panagiota Fatourou and Themis
Palpanas), “Data Series Indexing Gone Parallel,” in Proc. ICDE,
2020.

[28] B. Peng, P. Fatourou, and T. Palpanas, “Paris: The next destina-
tion for fast data series indexing and query answering,” in IEEE
BigData, 2018.

[29] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Di-
mensionality reduction for fast similarity search in large time
series databases,” KIS, 2001.

[30] T. Rakthanmanon, E. J. Keogh, S. Lonardi, and S. Evans,
“Time series epenthesis: Clustering time series streams requires
ignoring some data,” in ICDM, 2011, pp. 547–556.

[31] J. Shieh and E. Keogh, “iSAX: disk-aware mining and indexing
of massive time series datasets,” DMKD, no. 1, 2009.

[32] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:
A survey,” CSUR, 2009.

[33] A. Mueen, E. J. Keogh, Q. Zhu, S. Cash, M. B. Westover, and
N. B. Shamlo, “A disk-aware algorithm for time series motif
discovery,” DAMI, vol. 22, no. 1-2, pp. 73–105, 2011.

[34] R. Agrawal, C. Faloutsos, and A. N. Swami, “Efficient similarity
search in sequence databases,” in FODO, 1993.

[35] A. Mueen, S. Nath, and J. Liu, “Fast approximate correlation for
massive time-series data,” in SIGMOD, 2010.

[36] C. Lomont, “Introduction to intel advanced vector extensions,”
Intel White Paper, pp. 1–21, 2011.

[37] B. Tang, M. L. Yiu, Y. Li et al., “Exploit every cycle: Vectorized
time series algorithms on modern commodity cpus,” in IMDM,
2016.

[38] I. Corporation, “Intel 64 and ia-32 architectures optimization
reference manual,” https://software.intel.com/, 2016.

[39] B.-K. Yi and C. Faloutsos, “Fast time sequence indexing for
arbitrary lp norms,” in VLDB, 2000.

[40] “Incorporated Research Institutions for Seismology – Seismic
Data Access,” http://ds.iris.edu/data/access/, 2016.

[41] “Southwest university adult lifespan dataset (sald),” http://fcon
1000.projects.nitrc.org/indi/retro/sald.html, 2018.

[42] “Source code and datasets used in this paper,”
http://www.mi.parisdescartes.fr/˜themisp/paris/, 2018.

[43] K. Zoumpatianos, Y. Lou, I. Ileana, T. Palpanas, and J. Gehrke,
“Generating data series query workloads,” VLDBJ 27(6), 2018.

[44] S. Kashyap and P. Karras, “Scalable knn search on vertically
stored time series,” in SIGKDD, 2011, pp. 1334–1342.

[45] C. Li, P. S. Yu, and V. Castelli, “Hierarchyscan: A hierarchical
similarity search algorithm for databases of long sequences,” in
ICDE, 1996, pp. 546–553.

[46] A. Guttman, “R-trees: A dynamic index structure for spatial
searching,” in SIGMOD, 1984, pp. 47–57.

[47] I. Assent, R. Krieger, F. Afschari, and T. Seidl, “The ts-tree:
efficient time series search and retrieval,” in EDBT, 2008.

[48] J. Chou, K. Wu et al., “Fastquery: A parallel indexing system
for scientific data,” in CLUSTER. IEEE, 2011, pp. 455–464.

[49] J. Zhou and K. A. Ross, “Implementing database operations
using simd instructions,” in SIGMOD. ACM, 2002.

[50] S. Zeuch, J. Freytag, and F. Huber, “Adapting tree structures for
processing with SIMD instructions,” in EDBT, 2014.

[51] P. Gepner and M. F. Kowalik, “Multi-core processors: New way
to achieve high system performance,” in PAR ELEC, 2006.

[52] D. B. Lomet and F. Nawab, “High performance temporal index-
ing on modern hardware,” in ICDE, 2015.

[53] M. G. Gowanlock and H. Casanova, “Distance threshold simi-
larity searches: Efficient trajectory indexing on the GPU,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 9, 2016.

[54] A. Mueen, H. Hamooni, and T. Estrada, “Time series join on
subsequence correlation,” in ICDM, 2014, pp. 450–459.

[55] P. Ghodsnia, I. T. Bowman, and A. Nica, “Parallel i/o aware
query optimization,” in SIGMOD. ACM, 2014.

Botao Peng received a BSc on optronics en-
gineering from the Huazhong University of Sci-
ence and Technology (China), in 2014, and a
MSc on embedded systems from the University
of Paris-Saclay (France), in 2016. He is currently
pursuing a Ph.D. degree on database manage-
ment at the Department of Computer Science,
University of the Paris, under the supervision of
Themis Palpanas.

Panagiota Fatourou is an Associate Profes-
sor of Computer Science at the University of
Crete and at the Foundation of Research and
Technology-Hellas (FORTH ICS), Greece. She
has worked as a visiting Professor at EPFL, she
is the chair of the ACM Europe Council and
an ACM Distinguished Speaker, and has served
as General Chair of ACM PODC 2013, and PC
chair of OPODIS 2016 and SSS 2017.

Themis Palpanas is Senior Member of the
French University Institute (IUF), and Professor
of computer science at the University of Paris
(France). He is the author of 9 US patents, 3
of which have been implemented in commercial
products. He is the recipient of 3 Best Paper
awards, and the IBM SUR Award. He is serving
as Editor in Chief for BDR Journal, Associate
Editor for PVLDB 2019 and TKDE journal, and
Editorial Advisory Board member for IS journal.

