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SEAnet: A Deep Learning Architecture for
Data Series Similarity Search

Qitong Wang, Themis Palpanas

Abstract—A key operation for massive data series collection analysis is similarity search. According to recent studies, SAX-based
indexes offer state-of-the-art performance for similarity search tasks. However, their performance lags under high-frequency, weakly
correlated, excessively noisy, or other dataset-specific properties. In this work, we propose Deep Embedding Approximation (DEA), a
novel family of data series summarization techniques based on deep neural networks. Moreover, we describe SEAnet, a novel
architecture especially designed for learning DEA, that introduces the Sum of Squares preservation property into the deep network
design. We further enhance SEAnet with SEAtrans encoder. Finally, we propose novel sampling strategies, SEAsam and SEAsamE,
that allow SEAnet to effectively train on massive datasets. Comprehensive experiments on 7 diverse synthetic and real datasets verify
the advantages of DEA learned using SEAnet in providing high-quality data series summarizations and similarity search results.

Index Terms—data series, similarity search, neural networks, sampling.

✦

1 INTRODUCTION

W ITH the rapid developments and deployments of
modern sensors, massive data series1 datasets are

now being generated, collected and analyzed in almost
every scientific domain [1]. Typical data series analysis
techniques are querying [2], classification [3], clustering [4],
anomaly detection [5], and visualization [6], for all of which
similarity search plays a central role. Data series similarity
search aims to find the closest series in a dataset to a
given query series according to a distance measure, such
as Euclidean distance, which is one of the most widely
used [7]. Similarity search can be divided into exact search
and approximate search [8]. Approximate similarity search
may not always produce the exact answers, but in most
cases it produces answers that are very close to the exact
ones [2]. Thus, it is very popular in practice, and widely
used on massive series collections to enable interactive data
exploration and other latency-bounded applications [9]. In
this work, we focus on approximate similarity search under
Euclidean distance.

Indexes are widely employed to speed up data series
similarity search [2], [8]. Most indexes are based on summa-
rized representations of the data series [7] of lower dimen-
sionality2. Symbolic Aggregate approXimation (SAX) [10]
is a popular and effective discretized summarization. SAX-
based indexes [11] are the state-of-the-art (SOTA) data series
similarity search methods [2], [8].

Nevertheless, SAX-based indexes suffer from the prob-
lem that SAX fails in hard datasets with specific prop-
erties [12]. Since SAX is the symbolization of Piecewise
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1. A data series, or data sequence, is an ordered sequence of points.
The most common type of data series is time series, where the dimen-
sion that imposes the sequence ordering is time; though, this dimension
could also be mass, angle, or position [1].

2. In the data-series literature, dimensionality is used interchangeably
with length, to refer to the number of values of a univariate series.

(a) PAA works to approximate and reconstruct a RandWalk series

(b) PAA fails to approximate and reconstruct a Deep1B series

Fig. 1. Case studies where PAA and DFT work or fail to approximate and
reconstruct series from RandWalk and Deep1B datasets. In both cases,
DEA works to approximate and reconstruct series. All summarizations
use the same memory budget.

Aggregate Approximation (PAA) [10], failure of PAA to
correctly represent some data series directly translates to
failure of the PAA-based SAX. Figure 1 illustrates a working
and a failing case. The high frequency of the Deep1B series
(Figure 1b) implies more periodic intervals than the avail-
able SAX words: each PAA segment has to average values
over ≥1 intervals, leading to similar PAA values across
different segments, and to indistinguishable SAX words
across different series. Introducing more SAX words could
alleviate the problem, but would lead to an undesirably long
summarization that could not be effectively indexed.

In this work, we propose to build a data series index
based on Deep Embedding Approximations (DEA), i.e., data
series summarizations derived from embeddings learned
using deep neural networks. Embedding techniques, or rep-
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Fig. 2. Replace PAA by DEA for SAX symbolization.

resentation learning, is to learn vectors possessing necessary
latent information for classification, clustering and other
downstream applications. Its success in data series, as well
as high-dimensional vectors has been reported in many
applications [13]. Embedding techniques have been proven
to be capable of capturing frequency [14] and other latent
properties. However, to the best of our knowledge, data
series embedding has not been adapted to and evaluated
for similarity search.

In the case of data series similarity search, DEA may re-
place PAA, and then be symbolized and indexed by an iSAX
index as illustrated in Figure 2. DEA targets to preserve
original pairwise distances in the lower-dimensional DEA
space. Thus, it is naturally capable of being symbolized into
SAX, on which an iSAX index can be built. Our work shows
that compared to PAA and (PAA-based) SAX, DEA better
preserves pairwise distances, leading to a more effective
index for data series similarity search.

To effectively learn DEA on massive series collections,
we propose a novel autoencoder architecture SEAnet (SEries
Approximation network). SEAnet’s basic structure follows
a full-preactivation ResNet [15]. It adopts the idea of ex-
ponentially increasing dilations, which has been verified to
be efficient for data series applications [16]. Moreover, we
further design a new SEAtrans encoder, enhanced by Trans-
former blocks [17] to improve the fixed global dependence
framed by deeper dilated layers. In contrast to existing con-
volutional autoencoders for series embedding [18], SEAnet
comprises both an encoder and a decoder. We argue (and
experimentally verify) that a decoder is necessary to learn
high-quality DEA for similarity search. Moreover, SEAnet
is the first architecture to formally introduce the principle
of Sum of Squares (SoS) preservation, and incorporate it
into the network design. SoS preservation aims to keep the
sum of squared values invariant throughout the transfor-
mations. We observe that defining new axes based on the
largest SoS is equivalent to selecting the largest eigenvalues
in eigenvalue-based linear dimensionality reductions on
z-normalized datasets (i.e., mean=0, stddev=1) [19]. They
both aim at preserving the largest variances in the dataset
through linear transformations. In this sense, SoS could be
regarded as an indicator of the quality of the transformation
to a reduced dimensionality space performed by SEAnet (or
other deep network architectures). Hence, we introduce SoS
as an invariant to regularize SEAnet and other networks,
and demonstrate its benefits.

Finally, we observe that training a deep neural network
on very large sequence collections is prohibitively expen-
sive. Thus, for efficient training, we propose SEAsam (SEA-
sampling), a novel sampling strategy based on a sortable
data series summarization [20]. SEAsam enables SEAnet
(and other networks) to effectively fit a large dataset, leading
to improved performance. Moreover, based on the observa-
tion that the raw data series are not the only sampling space
to be preserved, we extend SEAsam by SEAsamE. SEAsamE
offers to SEAnet representative training samples covering
all three major sampling spaces, i.e., the raw data series, the
data series pairs, and the reconstruction errors.

Comprehensive experiments verify that, compared to
PAA and DEA generated by other SOTA architectures (FD-
JNet [18], TimeNet [21] and InceptionTime [3]), the DEA
generated by SEAnet is more effective in preserving the
original pairwise distances in the lower-dimensional sum-
marized space. This advantage also leads to more accurate
approximate similarity search across several synthetic and
real data series collections with diverse properties.
[Contributions] Our contributions3 are as follows.

1) We propose the use of deep learning embeddings
for data series similarity search. We introduce novel Deep
Embedding Approximations, and show how these can be
used to index the original data series and then support
(approximate) similarity search queries. Our results can be
used as a blueprint to facilitate further progress in this area.

2) We propose SEAnet, a novel architecture that is
specifically built to support high-quality DEA and similar-
ity search. SEAnet incorporates modern architectural ele-
ments designed for data series applications, including a full-
preactivation ResNet and exponentially increasing dilations.
We extend SEAnet with a new SEAtrans encoder to provide
learnable global dependence for deeper layers.

3) We introduce and formalize the principle of Sum of
Squares (SoS) preservation. SoS preservation is a general
principle for any architecture to learn high-quality DEA for
dimensionality reduction. We explain how it can benefit the
DEA architectures (including SEAnet), and how to incorpo-
rate it into the architecture designs.

4) A novel sampling strategy, SEAsam, is proposed to
draw representative samples from massive data series col-
lections, enabling effective training for the deep models.
SEAsamE further extends SEAsam by exploiting three major
sampling spaces in DEA learning and facilitates deep model
training.

5) We also describe alternative deep architectures for
DEA, based on the SOTA designs of FDJNet, TimeNet, and
InceptionTime. We explain how our ideas can be applied on
these architectures, and study in detail their performance.

6) Comprehensive experiments on three synthetic
datasets and four real-world datasets verified the effective-
ness of DEA and SEAnet for data series summarization and
approximate similarity search, outperforming traditional
iSAX-based solutions, as well as three other SOTA RNN and
CNN architectures for series embedding. Datasets, codes
and pre-trained models are available online4.

3. Compared to the previous conference version [22], this paper de-
scribes an enhanced encoder architecture and a new sampling method.
It also includes more detailed discussions and additional experiments.

4. https://helios.mi.parisdescartes.fr/∼themisp/seanet/

https://helios.mi.parisdescartes.fr/~themisp/seanet/
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2 RELATED WORK

[Data Series Indexes] The most prominent data series
indexing techniques can be categorized into graph-based
indexes [23], inverted indexes [24], Locality Sensitive Hash-
ing (LSH) [25], optimized scans [26], and tree-based in-
dexes [10], [27]. Recent studies [2], [8] have demonstrated
that the SAX-based indexes [11] achieve SOTA performance
under several conditions.

SAX [10] is a discretized series summarization based on
PAA. PAA first transforms the data series into l real values,
and then SAX quantizes each PAA value using discrete
symbols. SAX quantization utilizes a scalar alphabet of size
a. The number of bits used to encode a is called the cardi-
nality of SAX. iSAX [10] enables the comparison of SAXs of
different cardinalities, which makes SAX indexable. iSAX2.0
and iSAX2+ [28] improve iSAX with a better node-splitting
policy and a bulk-loading strategy. ADS+ [29] makes
iSAX adaptive, ULISSE [30] adapts iSAX to variable-length
queries, DPiSAX [31] makes iSAX distributed, MESSI [11]
make iSAX highly concurrent, Dumpy [32] introduces an
adaptive node splitting algorithm that leads to a multi-ary
data structure, and Hercules [33] combines the iSAX and
APACA [27] summarizations. Coconut-Trie and Coconut-
Tree [34] transform SAX into a sortable summarization to
enable more bulk loading opportunities.

In this work, we employ MESSI [11] as our indexing
and query answering framework, because its memory-based
concurrent design leads to SOTA performance. Moreover,
since all SAX-based indexes share the same summarization
techniques, improving the query answers quality of MESSI
translates to the same improvements for all SAX-based
indexes.
[Learned Data Series Embeddings] Deep representation
learning has been popular and successful in several do-
mains [35], [36], [37]. On the other hand, few recent
works [18], [21] focus on data series representation learning,
none of which targets similarity search.

Autoencoder is a category of deep neural networks
to learn embeddings [18]. The encoder component of an
autoencoder maps a dataset to lower dimensional vectors,
i.e., embeddings; the decoder reverses this procedure. It has
been empirically verified in many domains that embedding
learns useful latent information [14].

TimeNet [21] and FDJNet [18] are two SOTA archi-
tectures for data series representation learning. TimeNet
deploys a multi-layer GRU to embed and reconstruct se-
ries. FDJNet is based on Temporal Convolutional Network
(TCN) to embed series. Aside from representation learning,
deep models are exploited in other data series applications.
The SOTA series classification method, InceptionTime [3]
employs the Inception module for data series classification.
However, neither TimeNet, FDJNet nor InceptionTime has
been adapted and evaluated for similarity search before.

In contrast to all the above methods, the proposed
SEAnet not only adopts design choices suitable for distance
preservation, but also introduces a novel and general prin-
ciple of SoS preservation for dimensionality reduction.

Other data series embedding techniques that do not
use neural networks include RWS [38], SPIRAL [39], and
GRAIL [40]. These are built upon various matrix factoriza-
tion techniques, e.g., Kernel Principal Component Analysis

Calculate DEA-based SAX

SEAsam sample (3.3)

Embed series to DEA

Symbolize DEA

Data Series
Collection

DEA-based
SAXs

Construct index

Answer Query

Query

Approximate
Answer

Train SEAnet (3.1)

DEA-
based

iSAX Index

Indexing and Query Answering

Fig. 3. Workflow of DEA-based approximate similarity search.

(KPCA) [41]. However, their high time and space complexi-
ties (mostly O(mn2)), prevents such techniques from being
deploying on massive collections with hundreds of millions
of data series, which is our goal.

3 BACKGROUND

A data series, S = {p1, ..., pm}, is a sequence of points,
where each point pi = (vi, ti), 1 ≤ i ≤ m is associated to
a real value vi and a position ti. The position corresponds
to the order of this value in the sequence. We call m the
length of the series. S denotes a collection of data series, i.e.,
S = {S1, ..., Sn}. We call n the size of the series collection.

A summarization E = {e1, ..., el} of a series S is a
lower, l-dimensional representation, which preserves some
desired properties of S . For similarity search, the target
property is pairwise distance space structure of S , i.e.,
∀Si, Sj ∈ S, d′(Ei, Ej) ≈ d(Si, Sj), where Ei, Ej are
summarizations of Si, Sj , d(·, ·), and d′(·, ·) are distance
measures in series and summarization spaces, respectively.

The distance measure d deployed in our work is Eu-
clidean distance, which is a widely adopted and effective
measure for data series similarity search [7].d′ in the sum-
marization space needs not be the same as d, e.g., for PAA,
d′(·, ·) =

√
m√
l
× d(·, ·). d′ for DEA is the same as PAA if it’s

scaled for SoS preservation. Otherwise, d′(·, ·) = d(·, ·).
Given a query series Sq of length m, a series collection

S of size n and length m, a distance measure d, similarity
search targets to identify the series Sc ∈ S whose distance
to Sq is the smallest, i.e., ∀So ∈ S, So ̸= Sc, d(Sc, Sq) ≤
d(So, Sq). Instead of finding the exact answer Sc, approx-
imate similarity search targets to find very fast a series
S′
c ∈ S , whose distance to Sq is small, without guaranteeing

it is the smallest. d(Sc,Sq)
d(S′

c,Sq)
∈ (0, 1] is called S′

c’s tightness.

4 DEA-BASED SIMILARITY SEARCH

In this section, we present the proposed DEA-based data
series similarity search framework, including the SEAnet ar-
chitecture. The complete workflow is illustrated in Figure 3.
Given a series collection, SEAsam first draws representative
samples to train SEAnet. After SEAnet converges, it embeds
all series into DEAs, which are further discretized into SAXs.
Thus, DEA-based SAXs are used in an iSAX index, where
approximate similarity search can be efficiently conducted.
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Fig. 4. The SEAnet architecture and the details of a dilated full-preactivation ResBlock.

SEAnet is a novel autoencoder proposed to learn high-
quality DEA. Unlike FDJNet [18] and other SOTA con-
volutional architectures for series embedding, SEAnet is
composed of both an encoder and a decoder. The inclusion
of the decoder is beneficial, since it can act as a regularizer
to prevent SEAnet from falling into bad local optima, where
DEAs become very similar to each other (and hence, not
suitable for similarity search). SEAnet stacks dilated full-
preactivation ResBlocks [15]. Its dilations increase expo-
nentially with deeper layers. Moreover, SEAnet introduces
the principle of SoS preservation for lower dimensionality
representation learning. We present the details of SEAnet’s
design in Section 4.1, and further discuss the SoS preserva-
tion principle in Section 4.2.

To improve the fixed global dependence framed by
the exponentially-increasing dilations, we propose a new
SEAtrans encoder. SEAtrans encoder replaces SEAnet’s
deeper ResBlocks by Transformer blocks (TransBlocks) [17]
to aggregate high-level information with learnable depen-
dence. We present the SEAtrans encoder in Section 4.1.

Our SEAsam strategy makes use of the inverse iSAX
sortable summarization [20]. In this scheme, SAX bits are
interleaved, such that all significant bits across SAX words
precede less significant bits, which renders the resulting rep-
resentation, InvSax, sortable. This order has been shown to
imply the distribution information of the dataset [20]. Thus,
sampling proceeds by drawing series of equal intervals from
dataset sorted in InvSAX order (cf. Section 4.3).

SEAsamE further extends SEAsam by exploiting three
major sampling spaces for DEA learning, i.e., the spaces of
raw data series, data series pairs and reconstruction errors.
Hence, not only does it better represent the data series
collection, but it also facilitates the convergence of SEAnet.
We present SEAsamE in Section 4.3.

Since DEA acts as a replacement for PAA, indexing and
query answering procedures remain similar to an ordinary
iSAX. Considering the low-latency requirement of approx-
imate similarity search applications, our design follows
MESSI [11], the SOTA concurrent in-memory iSAX index.

4.1 SEAnet Architecture

The SEAnet architecture is illustrated in Figure 4a. It com-
prises a convolutional encoder and a homogeneous decoder.
We first overview the architecture and then present details.
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Fig. 5. The SEAtrans encoder architecture.

The first part of the SEAnet encoder, from ConvLayer1
to MaxPool, comprises k stacked dilated full-preactivation
ResBlocks [15] for nonlinear transformations. The dilated
ResBlock is illustrated separately in Figure 4b. Its dilation in-
creases exponentially with the depth of the layer. Compared
to constant dilations, this has been verified to effectively
broaden the receptive fields for data series applications [16].
The dimension of latent vectors and number of channels are
the same as the dimension of the input series. Thus, after
MaxPooling within channels and squeezing, the first part
could be regarded as an equi-length nonlinear transforma-
tion. The second part of the SEAnet encoder, from Linear1 to
LayerNorm2, comprises two linear layers for dimensionality
reduction. Unlike most existing encoders with linear final
layers [18], the SEAnet encoder is finalized by LayerNorm2,
which is specifically designed using the SoS preservation
principle. We elaborate on this in Section 4.2.

The SEAnet decoder corresponds to the encoder, except
for a preceding Tanh-activated linear layer, introduced to
adjust dimensionality. We claim that the encoder and de-
coder need not be homogeneous. Although encoder-only
architectures is the popular choice [18], we argue (and exper-
imentally verify) that the decoder is necessary in similarity
search applications in order to regularize the DEAs, so that
they are distinguishable among each other. This results to
a better indexing structure, and to a more effective and
efficient similarity search.
[Extending SEAnet with SEAtrans encoder] As shown in
Figure 5, the SEAtrans encoder is composed by inserting k2
stacked TransBlocks between the MaxPool and Linear1 lay-
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ers. A TransBlock consists of one multiheaded self-attention
layer and one feedforward layer [42]. The input tokens to
the stacked TransBlocks are the ResBlocks’ output vectors
split by dimensions, concatenated by learnable positional
encodings [43]. Each token corresponds to a dimension.
Hence, each token represents the latent feature across all
channels of each dimension. In addition, we append a
special embedding token (EmbToken) as the learning target,
following the convention of classification token [17].

The SEAtrans encoder complies to the SEAnet frame-
work and is open to decoder architecture choices. SoS
preservation (LayerNorm2 in Figure 5) and SEAsam sam-
pling also work for SEAtrans. We use the SEAtrans encoder
with the the regular SEAnet decoder.
[Training Procedure] We first provide the intuitions behind
SEAnet training, and then the mathematical formalization.

SEAnet is trained pairwisely by mini-batched Stochastic
Gradient Descent (SGD). Its loss function is a linear combi-
nation of two components: (1) The Compression Error LC ,
i.e., the average differences between the original distance
of data series pairs (Si, Sj) and their DEA distance. LC
evaluates whether original distances are well-preserved in
the DEA space. (2) The Reconstruction Error LR, i.e., the
average distance between the original series Si and the
reconstructed series. LR evaluates how well the original
series can be reconstructed using SEAnet. Moreover, we
divide both the series and their DEAs by the square root of
their lengths in LC and LR. Together with the LayerNorm2
in SEAnet, this scaling not only preserves SoS for better
dimensionality reduction, but also stabilizes the gradient
propagation. The rationale behind these steps is further
explained in Section 4.2.

During each training epoch, for every series Si in the
training set, a random but different series Sj is drawn from
the training set to form pairs (Si, Sj) for LC . Since both Si
and Sj are from the training set, Sj is detached (treated as
constants instead of variables) to prevent its gradients from
being back-propagated twice within one epoch.

We now formalize LC and LR. First, we introduce
the formula of SEAnet encoder as Ei = ϕ(Si|Θϕ) and
decoder as S̃i = ψ(Ei|Θψ) = ψ · ϕ(Si|Θϕ,ψ), where ϕ
and ψ are mappings with parameters Θϕ and Θψ , Si
is a series, Ei is Si’s DEA and S̃i is Si’s reconstruc-
tion. Without scaling, LC = 1

Np

∑
(Si,Sj)∈S×S |d(Si, Sj) −

d(ϕ(Si), ϕ(Sj))|, where Np is the number of sampled se-
ries pairs (Si, Sj), and LR = 1

Ns

∑
Si∈S d(Si, ψ · ϕ(Si)),

where Ns is the number of sampled series Si. With scaling,
LC = 1

Np

∑
(Si,Sj)∈S×S | 1√

m
d(Si, Sj) − 1√

l
d(ϕ(Si), ϕ(Sj))|,

and LR = 1
Ns

∑
Si∈S

1√
m
d(Si, ψ · ϕ(Si)). Thus, the loss

function L = LC + αLR, where α is a hyperparameter to
balance between LC and LR.

4.2 Sum of Squares Preservation
We propose a SoS preservation framework for effective DEA
learning. SoS preservation has been observed before [19],
but to the best of our knowledge, has never been formally
introduced to representation learning. Given an n×m ma-
trix M , where row Mi,∗ corresponds to a series and column
M∗,j corresponds to a position, SoS =

∑
i,jM

2
i,j . Note

that in linear dimensionality reductions on z-normalized

datasets, defining new axes based on the largest SoS is
equivalent to selecting the largest eigenvalues, with the pur-
pose of preserving information (measuerd by total variance)
about the dataset through linear transformations [19]. Thus,
SoS could be regarded as a useful indicator of the transfor-
mation quality. In SEAnet, by using SoS preservation as an
invariant regularization, the quality of DEAs is upheld from
this perspective, such that the neural network can focus on
learning the nonlinear transformations.

Given the (z-normalized) input dataset, the proposed
SoS preservation requires two steps: (1) z-normalizing the
output of encoder (DEAs) and decoder (the reconstructed
series); and (2) dividing the series and their DEAs by
the square of their lengths in loss function L. Note that
step (2) also takes the neural network convergence into
consideration, as it benefits from the stabilization of the
latent variables and variances [44]. We now elaborate on
the design of SEAnet under this principle.

Considering the fact that z-normalizing data series is a
very common operation [1], we constrain SEAnet to keep
SoS invariant by forcing each DEA to preserve the SoS of its
corresponding series. This is achieved by the following two
steps: (1) z-normalizing the output of encoder, i.e., DEA; and
(2) scaling DEA by

√
m/l. We formalize this idea below, and

prove it by Lemma 1.

Lemma 1. Given a z-normalized series dataset S of size n and
its DEAs E , E ′ is derived by z-normalizing and then multiplying
E by

√
m√
l

. E ′’s SoS is the same to S , that is

∑
Si∈S

∑
pij∈Si

pij
2
=

∑
Ei∈E

∑
eij∈Ei

(

√
m

√
l

eij − ei

σei
)2 (1)

where ei and σei are the mean and standard deviation of DEA ei

(without loss of generality, we assume σei ̸= 0.).

Proof. First, as S is z-normalized with mean = 0 and vari-
ance = 1, the left side

∑
Si∈S

∑
pij∈Si

pij
2
=

∑
Si∈S

m×

∑
pij∈Si

(pij − 0)2

m

=
∑
Si∈S

m× 1 = nm

For the right side of the equation,

∑
Ei∈E

∑
eij∈Ei

(

√
m

√
l

eij − ei

σei
)2 =

∑
Ei∈E

∑
eij∈Ei

m

l

(eij − ei)2

σ2
ei

=
∑
Ei∈E

m×
1

σ2
ei

×

∑
eij∈Ei

(eij − ei)2

l

=
∑
Ei∈E

m× 1 = nm

Thus, the conclusion holds that

∑
Si∈S

∑
pij∈Si

pij
2
= nm =

∑
Ei∈E

∑
eij∈Ei

(

√
m

√
l

eij − ei

σei
)2

[Scaling in Losses] Scaling the DEAs raises another prob-
lem: its values will have a much larger variance. This hin-
ders the convergence of the network, because of the internal
covariate shift and other problems [44]. Latent variables
with µ = 0 and σ = 1 are widely considered among the best
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choices for the gradients’ back-propagation [44]. Hence, we
keep the DEAs z-normalized, and scale the series by

√
1/m

and DEA by
√

1/l in LC and LR. This does not penalize SoS
preservation, as shown in Equation 2, which is equivalent to
Equation 1 by dividing m on both sides.

∑
Si∈S

∑
pij∈Si

(
1

√
m

pij)
2 = n =

∑
Ei∈E

∑
eij∈Ei

(
1
√
l

eij − ei

σei
)2 (2)

By further analyzing the distributions of distances under
an ideal setting, we find that scaling series by

√
1/m and

DEAs by
√

1/l in LC and LR would largely stabilize their
pairwise distance distributions. We formalize and prove this
observation in Lemma 2.

Lemma 2. Given two series S1 = {p11, ..., p1m} and S2 =
{p21, ..., p2m}. Ideally, assume p11, ..., p

1
m, ..., p

2
1, ..., p

2
m are i.i.d.

∼ N(0, 1). Scaling S1 and S2 by 1√
m

will reduce the mean and
variance of d(S1, S2) by

√
m and m, respectively.

Proof. As ∀i ∈ [1, ...,m], p1i and p2i are i.i.d. ∼ N(0, 1), we
have

p1i − p2i ∼ N(µ1 − µ2, σ
2
1 + σ2

2) ∼ N(0, 2),

d(S1, S2) =

√√√√ m∑
i=1

(p1i − p2i )
2 ∼ χm(

√
2)

where χm(
√
2) is a centered χ distribution with m degree

of freedom, derived from i.i.d. variables ∼ N(0, 2).
For x ∼ χm(

√
2), we have

µχm(
√
2) =

√
2
Γ(m+1

2
)

Γ(m
2
)

×
√
2,

σ2
χm(

√
2)

= 2(
m

2
− (

Γ(m+1
2

)

Γ(m
2
)

)2)× 2

Similarly, dividing p1i and p2i by
√
m, we have

p1i√
m

and
p2i√
m

∼ N(0,
1

m
),

p1i√
m

−
p2i√
m

∼ N(0,
2

m
),

d(
S1√
m

,
S2√
m

) ∼ χm(

√
2

m
)

And for x ∼ χm(
√

2
m ),

µ
χm(

√
2
m

)
=

√
2
Γ(m+1

2
)

Γ(m
2
)

×
√

2

m
,

σ2

χm(
√

2
m

)
= 2(

m

2
− (

Γ(m+1
2

)

Γ(m
2
)

)2)×
2

m

Thus, the conclusion holds that

µ
χm(

√
2
m

)

µχm(
√
2)

=
1

√
m

,
σ2

χm(
√

2
m

)

σ2
χm(

√
2)

=
1

m

Typical examples of scaling are presented in Table 1.
We make three observations: (1) After scaling short se-
ries by

√
256/m, the means of distance distributions are

comparable to series of length 256. This confirms that our
design of SoS preservation is indeed helpful to preserve
pairwise distances. (2) However, the variance of distance
distributions increases dramatically after scaling, e.g., 16×
from 0.984 to 15.743 for length 16. This introduces extra
noise that hinders convergence. (3) By scaling both series
and DEAs in the loss functions, not only are the means of

TABLE 1
Mean and Variance of the distribution of pairwise distances between
two ideal series. Scaling by

√
256/m is to preserve SoS by scaling

DEA itself. Scaling by
√

1/m is the case where we scale both series
and DEA in loss functions. (Note that for length 256, scaling by√

256/m does not change the original behavior.)

Length Before Scaling ×
√

256/m ×
√

1/m

m Mean Var Mean Var Mean Var

256 22.605 0.999 22.605 0.999 1.4128 0.0039
128 15.969 0.998 22.583 1.9961 1.4115 0.0078
96 13.820 0.997 22.569 2.6597 1.4105 0.0104
16 5.5692 0.984 22.277 15.743 1.3923 0.0615
8 3.8772 0.967 21.933 30.944 1.3708 0.1209

distance distributions kept roughly the same (≈1.4), but also
their variances are suppressed to a small value. This helps
SEAnet focus on learning from the differences between
series distance and DEA distance, without being interfered
by endogenous noises of the distance distributions.

Finally, we observe that scaling series and DEA will not
only keep the two distances to the same level, but will
also largely stabilize the distance distributions. Both effects
are beneficial to SEAnet’s learning and convergence. Thus,
by z-normalizing DEA, and scaling series and DEA in LC
and LR, SEAnet succeeds in providing high-quality DEAs
by preserving SoS, and in converging fast to good optima
(thanks to the stable latent variables and gradients).

4.3 Sampling with SEAsam and SEAsamE

The representativeness of the training set upper bounds
the quality of the deep models. To effectively train SEAnet
on very large (≥1e8) series collections, a good sampling
strategy is essential for providing representative subsets.
This means that the sample should effectively cover the
entire space of a given dataset, and we need to efficiently
select this sample without having to perform expensive
computations on the full dataset. For example, an effective
but prohibitively expensive sampling strategy would be to
sample from all leaves of an index built on the entire dataset,
since such an index would cover the entire space, and each
leaf would gather similar series.

To this end, we propose SEAsam (SEA-sampling), a
novel data series sampling strategy based on the sortable
data series representation, InvSAX [20]. Recall that SAX
first transforms the data series into l real values (i.e., the
mean values of l segments of consecutive points of the
series), and then quantizes these real values, representing
them using discrete symbols (usually of cardinality 256) [10].
The core observation is that every subsequent bit in a SAX
word contains a decreasing amount of information about
the location of its corresponding data point, and simply in-
creases the degree of precision. Interleaving SAX’s bits such
that all significant bits across each SAX word precede all
less significant bits presents a value array with descending
significance, i.e., InvSAX.

The procedure to generate InvSAX is shown in Figure 6.
The most significant bits {1, 1, 0, 0} across the original SAX
words are moved to the first 4 bits of InvSAX, making
its first and most significant value 6 (shown in red/bold).
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Most Significant Least Significant

Fig. 6. SEAsam transformation and InvSAX [20].

InvSAX order

1 2 3 4 5 6 7 8 9 10 …

15 8 21 7 1 37 14 2 53 27…

Order in disk

SEAsam Samples

Data Series Collection
……… …

Fig. 7. SEAsam sampling workflow.

The second most significant bits {1, 0, 1, 1} are moved to
InvSAX’s 5-8 bits, making the second value 2. The last bits
{0, 1, 1, 0} are moved to InvSAX’s 9-12 bits, making the last
two values 2 and 6. Thus, this series will be order by its
InvSAX [6, 2, 2, 6].

As illustrated in Figure 7, SEAsam orders the series col-
lection by their InvSax representations, and draws samples
at equal-intervals (e.g., every 1,000 series) from this sorted
order. Thus, SEAsam samples are expected to preserve the
distribution of the series collection by evenly covering its
InvSAX space. Moreover, the time complexity of SEAsam
is O(nm), and the space complexity of SEAsam is O(nl),
rendering SEAsam an efficient strategy.

Algorithm 1 provides the pseudo-code of SEAsam sam-
pling. Line 1 generates SAXs for series collection S . Lines 3-8
interleave SAX bits to generate InvSAX. This transformation
could be implemented in place if under memory pressure,
i.e., replacing SAX by its corresponding InvSAX. Lines 9-
10 sort InvSAX, select n′ equal-interval indices and return
the corresponding sampled series. After sampling from the
data series collection, we randomly permute the samples
to make training and validation sets during each epoch of
autoencoder training.
[Extending SEAsam with SEAsamE] The empirical effec-
tiveness of SEAsam sampling (cf. Section 9) and the impor-
tance of the training set quality for our problem motivate
the need to develop better and tailored sampling strategies.
Designing sampling strategies demands a close investiga-
tion into the sampling space. Although SEAsam sampling is
designed to represent well the raw data series space, a key
observation is that there are more spaces to be explored for
DEA learning. We first provide a discussion of the different
sampling spaces in DEA learning. On this basis, a novel
combined sampling strategy, SEAsamE, is proposed in order

Algorithm 1 SEAsam Sampling
Input: data series collection S of size n, sample size n′

Output: sample set S ′

1: Ŝ = SAXTRANSFORM(S)
2: InvŜ = ∅
3: for all Ŝ ∈ Ŝ do
4: InvŜ = 0SAX

5: for all i ∈ RANGE(SAX cardinality) do
6: for all SAX symbol ŝ ∈ Ŝ do
7: InvŜ.append(the i bit of ŝ)
8: InvŜ.add(InvŜ)
9: indices = SORT(InvŜ).indices[: : n/n′]

10: S ′ = S[indices]

to provide a combined use for all these spaces.
Our main observation is that there are three major sam-

pling spaces in DEA learning, which could be organized
into two categories.

The first category regards the dataset-specific sampling
spaces, including the raw data series space targeted by
SEAsam. Another important sampling space falling into this
category is the distance distribution of all possible series
pairs in the collection, which is exactly what we would
like SEAnet to preserve in the lower-dimensional DEA
space. From the perspective of deep model training, these
two spaces correspond to the distributions of raw features
and targeted values. Preserving both distributions has been
deemed beneficial in previous studies for capturing the
ground truth and avoid bias in deep learning [45].

The second category regards the model-specific sam-
pling spaces. Intuitively speaking, these spaces represent
model’s response to the input features, i.e., the difficulty to
embed and reconstruct a series. In DEA learning, the recon-
struction errors serve this purpose. Unlike preserving the
same distributions for the dataset-specific sampling spaces,
different strategies facilitate model training following differ-
ent heuristics [46], e.g., sampling harder series is expected
to offer faster convergence. In this work, we propose to
draw samples evenly in terms of their reconstruction error
values (instead of reconstruction error frequencies). That is,
the sample set has a uniform distribution of reconstruction
errors. This sampling strategy is capable to correct the bias
while controlling the gradient variance [46].

In order to provide a training set that represents all
three major sampling spaces mentioned above, we propose
a novel composite sampling strategy SEAsamE. SEAsamE
incorporates SEAsam to preserve the raw series space, with
extra steps for the other two spaces. An extra preprocess-
ing step is introduced to collect an empirical distribution
of the pairwise distances P̄ (d(Si, Sj)). To draw a set of
training series, SEAsamE first draws a candidate set of
SEAsam samples. Second, reconstruction errors LR(S) of
the candidate series are calculated. The training set is drawn
based on the inverse of the frequencies of reconstruction
errors 1/P̄ (LR(Si)). To draw series pairs for the calculation
and backpropagation of LC(S,S), distances of all series
pairs within each mini-batch are calculated. Then, SEAsamE
selects series pairs according to their estimated distance
probabilities P̄ (d(Si, Sj)).

Algorithm 2 shows how to train SEAnet with SEAsamE.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Algorithm 2 Training with SEAsamE
Input: deep model with encoder ϕ and decoder ψ parameter-

ized by Θ, data series collection S, training size n′ and
candidate size n′

c, batch size bs for series and bp for pairs,
max epochs maxe

Output: learned parameters Θ
1: estimate P̄ (d)
2: for all i ∈ RANGE(maxe) do
3: if SAMPLECHECK(i,Θ) then
4: S ′ =SAMPLESERIES(S, Θ, n′, n′

c)
5: for all mini-bach S ′

b ∈ S ′ do
6: E ′

b = ϕ(S ′
b), R′

b = ψ(E ′
b)

7: S ′
p =SAMPLEPAIRS(S ′

b, P̄ (d), bp)
8: L = LC(S ′

p,E
′
p) + αLR(S ′

b,R′
b)

9: backpropagate ∇L

Function SAMPLESERIES(S, Θ, n′, n′
c)

10: S ′
c =SEASAM(S, n′

c)
11: R′

c = ψ · ϕ(S ′
c)

12: estimate P̄ (LR) according to LR(S ′
c,R′

c)
13: draw S ′ of n′ series ∼ P̄ (LR)
14: return S ′

Function SAMPLEPAIRS(S ′
b, P̄ (d), bp)

15: calculate d(S ′
b,S ′

b)
16: draw S ′

p = {(S ′
i,S ′

j)} of bp pairs ∼ P̄ (d)
17: return S ′

p

Line 1 is a preprocessing step to estimate P̄ (d). (This step
can be implemented by calculating histograms based on a
sufficient number of random samples.) At the beginning
of each epoch, line 3 checks whether to invoke function
SAMPLESERIES, and then line 4 draws a new series sample
set. SAMPLESERIES draws n′c SEAsam samples S ′

c in line
10, calculates their reconstruction errors in line 11-12, and
returns n′ samples from S ′

c according to P̄ (LR). Lines 5-
6 consider each mini-batch and calculate their DEAs and
reconstructions. To draw bp series pairs, line 7 invokes func-
tion SAMPLEPAIRS, which calculates distances for all series
pairs in line 15, and returns bp sampled pairs according to
P̄ (d). Last, lines 8-9 calculate and backpropagate the loss L.

5 EXPERIMENTAL EVALUATION

We present our experimental evaluation of SEAnet, DEA-
based data series similarity search, SEAsam and SEAsamE
using 7 diverse synthetic and real datasets. In summary, the
results demonstrate that the SEAnet DEA is robust across
various dataset properties and outperforms its competitors
by better preserving original pairwise distances and nearest
neighborhood structure, leading to better approximate sim-
ilarity search results than traditional (PAA-based) and alter-
native deep learning (DEA-based using FDJNet, TimeNet,
and InceptionTime) approaches.
[Setup] All deep models were trained using Nvidia
Tesla V100 SXM2 (16G memory). Sampling, indexing and
query answering were conducted in a server with 2x In-
tel(R) Xeon(R) Gold 6134 CPU @ 3.20GHz and 320GB
RAM. Software environments were python/3.6.10, pytorch-
gpu/py3/1.5.1 and cuda/10.2.
[Datasets] Experiments were conducted on 3 synthetic
datasets of different characteristics and 4 real datasets from
diverse domains. For synthetic datasets, we used RandWalk,

F5 and F10. RandWalk [2], [8] was generated as cumulative
sums of steps following a standard Gaussian distribution
N(0, 1). F5 and F10 were recently introduced to evalu-
ate iSAX on datasets of different frequencies [12]. They
were generated through Inverse Discrete Fourier Transform
(IDFT) from a random spectrum with its first 5 or 10 compo-
nents being amplified. The 4 real datasets are Seismic from
seismology, Astro from astronomy, SALD from neuroscience
and Deep1B from image processing [2]. Length of each
series is 128 for SALD, 96 for Deep1B, and 256 for the rest.
Note that these datasets are considered hard for similarity
search [2], [8]. We experimented with dataset sizes between
1M to 100M series (100M series of length 256 ≈100GB).
[Methods] We evaluated the SEAnet-generated DEA and
its applications in data series similarity search against PAA
and DEA generated by SEAnet-nD (a simplified version of
SEAnet), and our adaptations of FDJNet [18], TimeNet [21],
and InceptionTime [3]. We describe these methods below.
SEAsam was compared to uniformly random sampling.

PAA is the baseline method to evaluate DEA’s summa-
rization quality. PAA-based MESSI iSAX index [11] is the
SOTA baseline method to evaluate DEA-based iSAX on
approximate similarity search. When it is clear from the
context, we used the term PAA to denote both the PAA
summarization, and the PAA-based iSAX index in the rest of
Section 5. We used the same convention for other methods,
as well, e.g., SEAnet denotes the DEA generated by SEAnet
and the index built on the DEA generated by SEAnet.

SEAnet-nD is an encoder-only version of SEAnet, intro-
duced to evaluate the contribution of the decoder to the
final performance. The convolution kernel size for SEAnet
and SEAnet-nD is 3. For FDJNet, we adopted the same
network setting as SEAnet-nD. For TimeNet, we used the
output of the last position as DEA, instead of the original
concatenation of latent vectors. This enables TimeNet using
longer latent vectors to generate lower-dimensional DEA.
The dropout probability of TimeNet is 0.4, following the
original setting [21]. For InceptionTime, we used the same
structure as SEAnet, but replaced ResBlock with Inception-
Block [3]. The convolution kernel sizes for InceptionTime
are {3, 5, 9, 17}. Batch size was set to 128 for TimeNet (due
to our memory limit), and to 256 for the other architectures.
For all architectures, we stacked 7, 6, and 5 building blocks
for series of length 256, 128, and 96, respectively. Latent
dimensions and channels were the same to series length.

All models were trained using SGD and the same loss
function (cf. Section 4.1). Training size was 200,000 series,
and validation size was 20,000. TimeNet was trained for
125 epochs, while the others for 100 epochs. Hyperparam-
eters were tuned for each model (of specific DEA length)
on 100M datasets. The best hyperparameters for similarity
search were adopted for all other dataset sizes. α was
searched from {0.1, 0.25, 0.5, 1, 1.25}. Learning rate was
cross searched from {1e-3, 5e-3, 1e-2, 2.5e-2, 5e-2}, and
was either linearly decayed (every epoch), or exponentially
decayed (by 0.9 every 2 epochs) until 1e-5. Totally, 6,090
deep models were trained to provide a thorough profile of
DEA architectures. Other hyperparameters were set to their
default values. For indexing, leaf size hwas 8,000 by default.

SEAnet encoder architecture details are reported in Ta-
ble 2. We use the respective symmetrical architectures as



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 2
SEAnet encoder architecture specifics for different series lengths.
Building blocks ([kernel size, channel number] for the convolutional
layer/block, [dimension] for the linear layer) are shown in brackets,

multiplied by the numbers of blocks stacked.

layer name 13-layer (96) 15-layer (128) 17-layer (256)

ConvLayer
[
3, 96

] [
3, 128

] [
3, 256

]
ConvBlock

[
3, 96
3, 96

]
×5

[
3, 128
3, 128

]
×6

[
3, 256
3, 256

]
×7

Linear
[
96
16

] [
128
16

] [
256
16

]
parameters/M 0.585 1.234 5.712

MACs/B 0.053 0.152 1.412

their decoders. The complexities were measured in num-
ber of (millions of) tunable parameters, and (billions of)
Multiply-and-Accumulate (MAC) operations. All models
converged with the training speed reported in Figure 17.
[Measures] To evaluate summarization quality, we used
three measures: average distance differences (unscaled LC ),
reconstruction RMS, and NN coverage. Series subsets, or
series pairs are SEAsam samples from 100M datasets.
1) Average Distance Differences (LC ). Differences between
original distances and DEA distances of series pairs, i.e.,
|d′(ϕ(Si), ϕ(Sj)) − d(Si, Sj)|. Reported values were aver-
aged from 20,000 pairs. (Differences of 1,000 pairs were
illustrated as scatters in Figure 11.)
2) Reconstruction RMS. Root-Mean-Square errors be-
tween original series and their reconstructions, i.e.,√

1
m

∑
i(pi − p′i)

2, where S′ = [..., p′i, ...] is the reconstruc-
tion of series S = [..., pi, ...]. Reported values were averaged
from 20,000 series.
3) NN Coverage. The coverage of series S’s nearest neigh-
bors in DEA space, i.e., |kNNd(S)∩kNNd′ (E)|

|kNNd(S)| , where kNNd
and kNNd′ return k nearest neighbors in original and DEA
spaces respectively. We consider NN coverage as a direct
measure of whether the structure of original distance spaces
is preserved or not. We report NN coverage for k ∈ {1, 5, 10,
50, 100, 500, 1,000} in Section 5.2. The reported values were
averaged from 1,000 series, whose kNN was searched from
20,000 series.
4) 1st BSF Tightness. To evaluate the DEA performance on
data series similarity search, we used the tightness of the
first Best-So-Far (1st BSF) [2]. In the context of approximate
similarity search, 1st BSF is the best result under the con-
straint of a fixed number of leaf nodes, or series allowed to
be examined by the query answering algorithm. In the case
where only one leaf node is allowed to be examined, the 1st
BSF is also called the approximate answer. In our experiments
(Sections 5.1 and 5.3), we report the 1st BSF tightness as
a function of the number of series examined (this makes
for a fair comparison across indices with leaves containing
different number of series). Similar to previous work [2], [8],
we report the average tightness over 1,000 queries.

5.1 SoS Preservation and SEAsam
In this section, we evaluate the two novel design choices
we propose for DEA methods, i.e., the SoS preservation
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Fig. 8. Improvements of employing SoS preservation in terms of 1st BSF
tightness (positive values mean SoS is better); 100M datasets.
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Fig. 9. Improvements of SEAsam over uniformly random sampling in
terms of 1st BSF rightness (positive values mean SEAsam is better);
100M datasets.

principle and SEAsam.
[SoS Preservation] First, we evaluate the effect of the scaling
steps introduced by the SoS preservation. We trained all
five models using SEAsam samples across seven 100M-size
datasets and reported their 1st BSF tightness improvements.
1st BSFs were reported under the constraint that the query
answering algorithm examines a maximum of 10,000 series
in the index before producing the answer. Improvements are
calculated by subtracting the 1st BSF tightness of the non-
scaled models from that of the scaled models.

The results show that the scaled models provided better
1st BSF in 32 out of the 35 experiments (91%). The only
three exceptions were by small margins. Besides, 14 of 35
(40%) non-scaled models could not effectively converge.
They either converged to bad local optima of large constant
DEAs (cf. Section 4.2), or did not converge and generate
random DEAs (exhibiting similar statistics to Table 1).

These results verify that the proposed SoS preservation
is indeed an effective method for both preserving pairwise
distances and facilitating network convergence. We note
that the SoS preservation idea is applicable to any suitable
architecture, and apart from SEAnet, it also improves the
performance of the non-scaled versions of FDJNet, TimeNet
and InceptionTime. In the rest of this section, we only report
results using the scaled models.
[SEAsam] Second, we compare the proposed SEAsam
against the commonly used uniform random sampling.
Results are reported similarly to the previous experiments.
Improvements were calculated by subtracting the 1st BSF
tightness of models trained using random samples from
those trained using SEAsam samples.

For 27 out of the 35 experiments (77%), SEAsam pro-
vided tighter 1st BSFs than random sampling. SEAsam was
only surpassed by random sampling on 8 experiments (23%)
with a very small margin. We observe that for SEAnet,
SEAsam was always better.
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In order to evaluate the effectiveness of SEAsam, we
also measured the number of distinct leaves (of an index
constructed on the entire dataset) containing a series that is
part of the SEAsam sample in Figure 10. Intuitively, the leaf
nodes of the index represent an effective split of the series
space, which corresponds to the underlying distribution of
the collection. The more leaf nodes a sample set covers, the
better it represents the entire collection. In our experiments,
for all samples with sizes between 10K-500K series across
our 7 datasets, SEAsam samples covered more leaf nodes
than uniformly random samples with an average improve-
ment of 8%, and up to 28% for the challenging F10 dataset.

These results verify that SEAsam provides more repre-
sentative samples than uniformly random sampling. In the
following, we report results with SEAsam.

5.2 DEA Quality
[Average Distance Differences] The averaged distance dif-
ferences reported in Table 3a, show that SEAnet and SEAnet-
nD outperformed PAA in all 7 datasets. SEAnet and SEAnet-
nD also outperformed all other architectures in 6 out of the
7 datasets. The averaged distance differences for SEAnet
were better than SEAnet-nD for the 3 synthetic datasets,
but worse for the 4 real datasets. This is because of the
regularization effect of the decoder. Synthetic datasets are
less noisy, making models prone to overfitting to the train-
ing sets. In this case, the decoder’s regularization improves
the averaged distance differences. On the other hand, real
datasets are more noisy, where loss LR dominates LC ,
making SEAnet worse than SEAnet-nD in terms of aver-
aged distance differences. However, as we will explain later
on, SEAnet still outperformed SEAnet-nD in terms of NN
coverages and 1st BSF tightness.

Regarding the other models, TimeNet worked better
than FDJNet and InceptionTime only for the F5 dataset,
which is of moderate periodicity, and lagged behind for
Deep1B, whose adjacent values are less correlated. Incep-
tionTime’s high performance on Astro is an interesting
result. However, after examining the embedding and recon-
structed series of InceptionTime on Astro, we infer this is
due to overfitting (reconstruction RMS, NN coverage, 1st
BSF tightness and other results concur to this explanation).
[Distance Scatter] Distance differences are depicted in scat-
ter plots in Figure 11. Points close to the y = x diagonal
correspond to series for which the original distances are
well preserved in the DEA space. We observe that scatters
of DEAs generated by SEAnet assembled tighter than PAA
around the diagonal for all 7 datasets. Moreover, scatters of
DEAs exhibited stronger linearity; thus, SEAnet preserved
the true nearest neighborhoods better than PAA.
[Reconstruction RMS] The reconstruction RMS results are
reported in Table 3b. SEAnet surpassed competitors on 5
out of 7 datasets; it lost to PAA for Seismic and Astro. Upon
close examination, we observe that this happened because
of some hard to summarize series, for which neither SEAnet,
nor PAA succeeded to produce a good summarization.

Given that the data series are z-normalized, an RMS
≈1 might imply useless local optima reached by setting
all reconstruction values to zeroes. This is exactly the case
for TimeNet on Deep1B/Astro. Such decoders cannot con-
tribute at all to better summarizations. This is even worse

than getting higher RMS, where the network might still
learn from data. Such observations prove that SEAnet is
more robust than PAA, FDJNet, TimeNet and InceptionTime
for datasets of different characteristics.
[NN Coverages] The NN coverages are reported in Fig-
ure 12. SEAnet outperformed PAA and other architectures
on all 63 experiments. This observation confirms SEAnet’s
capabilities on well-preserving original distance space struc-
tures in the DEA space. The advantage of deep models over
PAA is not as obvious as in Table 3a, except for SEAnet, indi-
cating that the target of preserving original distances in DEA
distances alone cannot guarantee to provide high-quality
DEAs for similarity search. This observation, together with
the fact that SEAnet outperformed SEAnet-nD, confirms the
need for the decoder.

SEAnet-nD outperformed FDJNet on 56 out of the 63
experiments (89%). This confirms the overall SEAnet design
choices over FDJNet, even after FDJNet was improved by
using SoS preservation. There were clear gaps on Deep1B
in Figure 12e between convolutional models and PAA, and
between PAA and TimeNet. This is because Deep1B is from
image processing, where adjacent values are not necessarily
correlated. This once again attests to SEAnet’s versatility in
handling datasets with different properties.

5.3 DEA for Approximate Search

[Approximate Answers Tightness] Figure 13 reports the
results for the evaluation of the quality of the approximate
similarity search answers. That is, we evaluate the quality
of the 1st BSF answers when the search algorithm examines
a single leaf node of the index. We note that although this
kind of evaluation is used in the literature [2], [10], it is not
a fair comparison, as the visited leaf sizes may vary across
different experiments, datasets, and indexes, depending on
the distribution properties of the DEA values. If the DEA
distribution is very skewed (e.g., with many DEAs having
the same or similar values), then they tend to gather into a
small subset of the leaf nodes, resulting to a few large leaf
nodes. This has two consequences:
1) Visiting a single large leaf involves examining a large
number of series, which implies an increased probability
for finding a tighter 1st BSF. Nevertheless, this problem
is alleviated as the dataset size increases (e.g., when we
move from the 1M to the 100M RandWalk dataset, the
additional number of series visited by PAA-based iSAX,
when compared to SEAnet DEA-based iSAX, drops from
205% to 7%).
2) If the produced DEAs are very similar to one another for
a large dataset, then the index cannot even be built. This
happens when a leaf node has exhaustively used all iSAX
bits and cannot be split any further in order to accommodate
the incoming series. This situation generally occurred for
DEAs originating from the non-scaled models, and for PAA
on the 100M SALD dataset. SEAnet avoids this problem
across all our experiments.

Benefiting from leaf nodes of larger sizes, PAA or other
models outperform SEAnet in some of the 1M and 10M
dataset experiments, even though their summarization qual-
ities are not better (refer to Table 3a and Figure 12). SEAnet
and SEAnet-nD show their superiority in the large (≥25M)
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Fig. 10. Leaf node coverage across different sampling sizes for uniformly random sampling (light gray) and SEAsam (dark red).

TABLE 3
(a) Averaged distance differences between pairs of series in the original and the embedded (PAA, DEA) spaces. (b) Root-Mean-Square error
between original and reconstructed series. In both cases, best result (lower is better) is marked in bold, second best is underlined. (Results

calculated using 10,000 series SEAsam sampled from datasets of 10-million series.)

(a) Averaged Distance Differences (b) Reconstruction RMS Error

Dataset PAA FDJNet TimeNet Incept SEAnet-nD SEAnet PAA TimeNet Incept SEAnet

RandWalk 1.3701 0.2794 0.4098 0.6285 0.2976 0.2194 0.3061 0.3354 0.3587 0.2604
F5 2.1152 0.1737 0.2103 0.2836 0.1692 0.1629 0.4214 0.2527 0.2708 0.2433
F10 5.0395 1.1943 1.9063 1.3958 1.1859 1.1672 0.6238 0.6799 0.5041 0.2635

SALD 3.2927 0.6247 0.6928 0.858 0.5748 0.6182 0.5586 0.5883 0.6831 0.5023
Deep1B 8.1095 0.9511 7.8478 0.9511 0.9083 0.9484 0.9207 1.0 0.6368 0.5418
Seismic 9.9629 1.3798 1.6577 1.4555 1.306 1.4514 0.7385 0.8211 0.9669 0.7771
Astro 14.622 1.9239 2.4981 1.7983 1.8991 1.9737 0.9267 1.0 1.4096 1.1196

Y axis: DEA Distances      X axis: Original Distances PAA DEA
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Fig. 11. Distance scatters of 1,000 SEAsam sampled series pairs across different datasets for PAA (light gray) and SEAnet (dark red).

Y axis: NN Coverages      X axis: Number of Nearest Neighbors PAA SEAnet SEAnet-nD FDJNet TimeNet Incept
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Fig. 12. Nearest neighbors’ coverage vs neighborhood size (higher is better).

and hard (real) datasets. TimeNet generally lags behind
the other solutions, indicating that a direct application of
recurrent models is less competitive than convolutional
models. This could come from the fact that RNN models
are designed to capture temporal correlations while being
relatively less powerful at extracting local patterns [16].

[Leaf Node Compactness] To better understand the quality
of DEA-based iSAX, we examine the compactness, i.e., the
average distances among series of the visited leaf nodes
in Figure 14. Smaller average distance indicates the index
is better in terms of mapping similar series into the same
leaf nodes. In RandWalk and F5, the advantages of SEAnet
are not obvious as all methods perform well. However,
when considering the harder datasets, SEAnet achieves
better results in 22 out of the 25 experiments. These results
demonstrate that SEAnet produces more compact indexes

than the competitors, especially on datasets considered hard
for similarity search.
[1st BSF Tightness Limited by Number of Series to Ex-
amine] We evaluate the benefit of using DEA for similarity
search, by reporting the 1st BSF tightness as a function of
the number of series that the similarity search algorithm
examines. The results on 100M datasets, are shown in Fig-
ure 15. SEAnet improved the 1st BSF tightness, and thus the
similarity search results, in 61 out of the 63 experiments. Its
advantage was particularly obvious on the Deep1B, Seismic,
and Astro (hard) datasets.

Besides the 1st BSF tightness, the index’s leaf node
compactness (i.e., the average distances among the series
in a leaf node) also profiles the quality of the index built
on DEA or PAA. Smaller average distance indicates the
index is more successful in grouping similar series into the
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Y axis: 1st BSF Tightness      X axis: Dataset Sizes (million series) PAA SEAnet SEAnet-nD FDJNet TimeNet Incept
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Fig. 13. Approximate query answers quality: 1st BSF tightness vs dataset size (higher is better)

Y axis: Average Leaf Inner-distances      X axis: Dataset Sizes (million series) PAA SEAnet SEAnet-nD FDJNet TimeNet Incept
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Fig. 14. Average distances among series of the visited leaf nodes vs dataset size (lower is better)
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Fig. 15. Approximate query answers quality: 1st BSF tightness vs number of series visited; 100M series datasets (higher is better)

same leaf node. SEAnet leaded to an average improvement
over PAA in leaf node compactness of 4%, and up to 14%
for the challenging real dataset Deep1B, demonstrating its
effectiveness in producing more compact indexes than the
SOTA competitors.

To conclude this section, our comprehensive experiments
verify the effectiveness of SEAnet’s ability to provide better
DEAs to facilitate data series similarity search.

5.4 DEA for Downstream applications
[SEAnet for Classification] We now evaluate the utility of
SEAnet DEA in other (than similarity search) downstream
applications. Figure 16 reports the DEA/PAA-based k-NN
classification accuracy on the UCR time series classification
archive [47] (we used the 75 datasets with ≥100 equal-length
series and no missing values). With k=1, 2, 3, SEAnet DEAs
outperformed PAA on 65%, 68% and 69% of the datasets
respectively, demonstrating the superiority of SEAnet DEA
over PAA for classification tasks, as well.

5.5 Time and Convergence
[Training Time] We report training times and convergence
for all architectures in Figure 17. (We omit query answer-
ing times because they are proportional to the number of
visited series and hence similar among different methods.)
Benefiting from the encoder-only architecture, FDJNet and
SEAnet-nD the fastest models to converge in Figure 17b.
For architectures with both encoder and decoder, SEAnet
is 2.9X and 3.35X faster than InceptionTime and TimeNet
under similar parameters. SEAnet converges more steadily
to the lowest training loss (Figure 17a).

Y axis: SEAnet kNN accuracy      X axis: PAA kNN accuracy
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Fig. 16. SEAnet DEA vs. PAA on kNN classification accuracies of
UCR18 dataset. Number of datasets where SEAnet wins-ties-losses
compared with PAA are reported.

5.6 SEAsamE
[SEAsamE for Similarity Search] We evaluate the effective-
ness of training SEAnet with SEAsamE for similarity search,
by reporting the 1st BSF tightness improvements when
compared to SEAsam. The 1st BSFs are reported under the
constraint that the query answering algorithm examines a
maximum of 10,000 series in the index before producing
the answer. The results on 100M datasets, are shown in
Figure 18. For 16 out of the 31 experiments, SEAsamE
provided tighter 1st BSFs than SEAsam. Its advantage was
especially obvious for TimeNet, demonstrating that RNN
models can also be promising solutions when combined
with specialized sampling and training strategies.

5.7 SEAtrans
[SEAtrans for Tightness Upper Bounds] To further analyze
the improvement space of DEA-based data series similarity
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Fig. 18. Improvements of SEAsamE over SEAsam in terms of 1st BSF
rightness (positive values mean SEAsamE is better); 100M datasets.

search, we reported the 1st BSF tightness upper bounds of
deploying different summarizations in Figure 19. The 1st
BSF tightness upper bounds were extracted by examining
series according to their distances to the query series in the
summarization space. These ideal results reveal the impor-
tance of considering the optimization opportunities deriving
from both the index structure and the summarizations.

Figure 19 demonstrates that SEAnet significantly im-
proves the 1st BSF tightness upper bounds achieved by
PAA. Moreover, SEAtrans further improves these bounds
for four hard real-world datasets, where this is more needed.
Compared with Figure 15, these results lead to the following
three main observations. (1) For RandWalk, F5 and F10,
all summarizations provided almost perfect upper bounds
(≈1). Hence, the index structure should be better tuned to
approach the capabilities of summarizations. (2) For SALD
and Deep1B, DEA learned by SEAtrans provided better
upper bounds (≈1) than PAA (<1). In such cases, tuning
the index structure is more promising for improving the
1st BSF tightness than tuning the DEA qualities. (3) For
Seismic and Astro, DEA learned by SEAtrans provided
better upper bounds (≈96-98%) than the competitors, but
with room for improvement. This implies that improving
the DEA quality on these datasets is crucial in order to
further improve similarity search. These observations are
important guidelines for future studies in this direction.

6 DISCUSSION AND CONCLUSIONS

In this paper, we introduce the use of deep learning embed-
dings, DEA, for data series similarity search. We propose

novel autoencoders, SEAnet and SEAtrans, designed un-
der the SoS preservation principle, for effectively learning
DEA. New sampling strategies, SEAsam and SEAsamE, are
introduced in order to facilitate training on massive col-
lections. We demonstrate that the DEA learned by SEAnet
and SEAtrans more closely approximates the original data
series distances, better preserves the true nearest neighbors
in the summarized space, better reconstructs the original
series, and leads to better similarity search results than the
SOTA PAA-based iSAX. These preliminary results are very
promising, they set the ground for further advancements
in this area, and have the potential to also improve the
performance of kNN classification, anomaly detection and
other similarity search based applications.

In our future work, we will study the development of
lower bounding properties for DEA that will enable exact
similarity search, the adaptation of transfer learning or
incremental learning techniques for quickly fitting new or
dynamic datasets, the development of more powerful sam-
pling strategies, and the careful study of query answering
strategies on top of DEA, including product quantization [48],
locality sensitive hashing [49], and modern series indexes [30].
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