
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

k-Graph: A Graph Embedding for Interpretable
Time Series Clustering

Paul Boniol, Donato Tiano, Angela Bonifati, Themis Palpanas

Abstract—Time series clustering poses a significant challenge
with diverse applications across domains. A prominent drawback
of existing solutions lies in their limited interpretability, often
confined to presenting users with centroids. In addressing this
gap, our work presents k-Graph, an unsupervised method explic-
itly crafted to augment interpretability in time series clustering.
Leveraging a graph representation of time series subsequences,
k-Graph constructs multiple graph representations based on dif-
ferent subsequence lengths. This feature accommodates variable-
length time series without requiring users to predetermine
subsequence lengths. Our experimental results reveal that k-
Graph outperforms current state-of-the-art time series clustering
algorithms in accuracy, while providing users with meaningful
explanations and interpretations of the clustering outcomes.

Index Terms—Time Series, Clustering, Interpretability

I. INTRODUCTION

Massive collections of time series are becoming a reality
in virtually every scientific and social domain [1], [2]. Thus,
there is a significant need for multiple relevant applications
for proposing methods that can efficiently analyze them [3].
Examples of fields that involve data series are finance, envi-
ronmental sciences, astrophysics, neuroscience, engineering,
multimedia, etc. [3]–[5]. Once collected, the major analysis
tasks on time series include pattern matching (or similarity
search) [6]–[8], classification [9]–[12], clustering [13]–[15],
anomaly detection [16]–[20] and motif discovery [21].

Time series clustering poses a pivotal and complex chal-
lenge in data science, garnering substantial attention with
many proposed algorithms in recent years. Traditional ap-
proaches hinge on distance measures, exemplified by k-Means
clustering utilizing Euclidean or Dynamic Time Warping
(DTW) distances, and the widely adopted k-Shape algo-
rithm [14] serves as a prominent baseline method. How-
ever, recent studies underscore the efficacy of feature-based
methods, where clustering operates on extracted time series
features, showcasing robust performance in accuracy and
execution time [22]. Despite their success, these methods
grapple with noteworthy limitations: (i) susceptibility to noisy
time series, which can compromise clustering performance,
and (ii) a need for more interpretability in most solutions,
hindering a comprehensive understanding of the outcomes.
The last limitation is a challenging problem, especially when
the important features to discover are typical subsequences that
could be a grouping criterion for a given cluster. Therefore,
identifying such subsequences and providing an interpretable
representation of the clustering partitions to the user is es-
sential to enhance the usage and maximize the understanding
and trust of unsupervised clustering in time series applications.
Unfortunately, none of the existing methods allow a straight-
forward solution for this problem.

2750 1402750 140

(c) !-Graph " (Graphoid "!!
"#$.&) (d) !-Graph " (Graphoid "!"

"#$.&)

(a) Trace dataset (Class 2) (b)Trace dataset (Class 1)

Fig. 1: k-Graph resulting graph G when applied on the Trace
dataset [23]

This paper introduces k-Graph, a novel graph-based uni-
variate time series clustering method that aims to overcome
the shortcomings of existing approaches and the problems
mentioned above. To the best of our knowledge, k-Graph is
the first approach proposing a graph-based representation of
the time series for the purpose of clustering. Overall, k-Graph
is based on a four-step process: The first step involves Graph
Embedding where several graphs are computed leveraging an
adapted Series2Graph algorithm [17]. Each graph encapsulates
groups of similar subsequences within a dataset, with nodes
representing these groups and edges carrying weights based
on sequence occurrences. Moving forward, in the Graph
Clustering phase, features are extracted for time series using
the graph nodes and edges. The k-Means algorithm is then
applied for clustering based on these features. Next, spectral
clustering is deployed in Consensus Clustering to establish
consensus across the multiple partitions obtained in the previ-
ous step. This step yields the final labels assigned by k-Graph.
Lastly, the most relevant graph is selected in Interpretability
Computation, and graphoids are computed to enhance inter-
pretability (examples of graphoids for the Trace dataset [23]
are depicted in Figure 1). This step contributes to a more
profound understanding of the clustering outcomes.

Our contributions are as follows:

1) We provide a new problem formulation for graph em-
bedding for time series clustering (Section II-D). We
formalize the concept of interpretability regarding clus-
tering with graph representation of time series and how
to measure it.

2) We propose a novel graph embedding method for uni-
variate time series clustering. The latter can be used on

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

time series of variable length and provides through the
graph an interpretable interface for the user to dive into
the time series datasets and extract meaningful patterns
that compose the different clusters (Section III).

3) We demonstrate that our proposed approach is at least
equalling and outperforming under certain scenarios, the
current state-of-the-art clustering methods for time series,
and being of the same order of magnitude regarding
execution time (Section IV).

4) In addition to being as accurate and as expensive to
compute, we demonstrate through multiple examples on
real world datasets the interpretability power of k-Graph,
and the usefulness of the graph for knowledge discovery
tasks (Section IV).

5) We provide an open-source implementation of our ap-
proach (https://github.com/boniolp/kGraph).

We conclude by discussing the implications of our work and
exploring future directions to enhance the accuracy, execution
time, and interpretability of our proposed method (Section V).

II. BACKGROUND AND RELATED WORK

We first introduce notations useful for the rest of the
paper (Section II-A). Then, we review existing time-series
clustering methods and discuss their limitations related to
interpretability and user interaction (Section II-B). We then
motivate and introduce the usage of Graph embedding for time
series clustering (Section II-C). We finally properly define the
problem tackled in this paper (Section II-D).

A. Time Series and Graph Notation
Time Series: A univariate time series T ∈ Rn is a sequence

of real-valued numbers Ti ∈ R [T1, T2, ..., Tn], where n = |T |
is the length of T , and Ti is the ith point of T . In the rest of
this paper , we refer to univariate time series as time series.
We are typically interested in local regions of the time series,
known as subsequences. A subsequence Ti,ℓ ∈ Rℓ of a time
series T is a continuous subset of the values of T of length ℓ
starting at position i. Formally, Ti,ℓ = [Ti, Ti+1, ..., Ti+ℓ−1]. A
dataset D is a set of time series (possibly of different lengths).
We define the size of D as |D|.
Graph: We introduce some basic definitions for graphs,
which we will use in this paper. We define a Node Set N
as a set of unique integers. Given a Node Set N , an Edge Set
E is then a set composed of tuples (xi, xj), where xi, xj ∈ N .
Given a Node Set N , an Edge Set E (pairs of nodes in N), a
Graph G is an ordered pair G = (N , E). A directed graph G
is an ordered pair G = (N , E) where N is a Node Set, and E
is an ordered Edge Set. In the rest of this paper, we will only
use directed graphs, denoted as G.

B. Time Series Clustering
Time series clustering plays a pivotal role in uncovering

meaningful patterns within temporal datasets, where the pri-
mary goal is to group similar time series for insightful analysis.
The specific challenge addressed by partitional time series
clustering involves partitioning a dataset of n time series,
denoted as D, into k clusters (C = {C1, C2, ..., Ck}), where
the number of clusters, k, is predetermined. Although the
choice of k can be determined using wrapper methods, it is
assumed to be fixed in advance in many experiments.

1) Raw-Based Approaches: Clustering algorithms for time
series can either operate directly on raw data or use trans-
formations to derive features before clustering. Algorithms
specifically designed for time series often prefer using raw
data [24] for several reasons. First, Preservation of Infor-
mation: raw time series preserve intricate details of tempo-
ral patterns, ensuring information fidelity. Second, Temporal
Dependencies: they capture dynamic patterns and temporal
interdependencies that might be lost during feature extraction.
Finally, Data Exploration: direct analysis of raw time series
fosters the discovery of unexpected patterns and trends, sup-
porting an exploratory, discovery-driven approach.

In the raw-based approach, the k-Means algorithm is com-
monly used to identify patterns and similarities within tem-
poral data. Each time series is treated as a multidimensional
vector, with data points representing observations over time.
The goal is to partition the time series into k clusters,
optimizing the assignment of series to cluster centers.
k-Shape [25] is a well-known algorithm for time series

clustering in this approach. It starts by randomly selecting
initial cluster centers and uses a specialized distance metric
to measure dissimilarity based on shapes, addressing temporal
dynamics. The algorithm iteratively assigns each time series
to the cluster with the smallest shape-based distance and
updates cluster centers based on the mean shape. This process
continues until convergence, resulting in clusters that highlight
shape similarities and provide insights into temporal dynamics.

A recent study [26] has compared k-Shape with a large
amount of clustering baselines and has demonstrated that
none of the recent baselines outperform significantly k-Shape.
Finally, several raw-basd appraoch are using the Dynamic

Time Warping (DTW), a well-known algorithm for mea-
suring the similarity between two time series by aligning
them through time axis warping [27]. This process minimizes
the distance between sequences, accommodating shifts and
stretches in the time dimension. Although DTW is highly
accurate, it is computationally intensive, often necessitating
optimizations for improved efficiency. SOMTimeS [28] is an
algorithm that addresses this challenge. It is a self-organizing
map (SOM) designed for clustering time series data, utilizing
DTW as a distance measure to effectively align and compare
time series. SOMTimeS enhances computational efficiency by
implementing a pruning strategy that significantly reduces the
number of DTW calculations required during the training.

However, it is important to note that raw-based approaches
may face challenges when dealing with noise in raw time
series, potentially obscuring meaningful patterns. Additionally,
the direct clustering of raw time series might result in clus-
ters lacking clear distinctions or meaningful insights, making
extracting valuable information from the data challenging.

2) Feature-Based Approaches: Adopting a feature-based
[29] approach offers several advantages that address the chal-
lenges associated with raw-based methods: Dimensionality
Reduction, feature extraction often reduces dimensionality.
Indeed, lower-dimensional feature representations enhance
computational efficiency and reduce the risk of the curse of
dimensionality; Enhanced Discrimination, feature selection
can be tailored to emphasize specific characteristics crucial for
discrimination, enhancing the ability of clustering algorithms
to distinguish subtle differences between time series, leading

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

to more accurate clustering; and Interpretability, clusters
derived from features often yield more interpretable results
than those directly from raw time series. Interpretability is
crucial for extracting insights, and features-based approaches
provide clearer explanations for grouping.

TS3C [30] is an example of feature-based clustering ap-
proach. The latter segments the time series and extracts a
set of statistical features to represent them. The features are
then used to cluster time series. FeatTS [31] emerges as a
feature-based algorithm tailored for univariate time series clus-
tering. It leverages the TSFresh library and employs Principal
Features Analysis to extract salient features from time series
data. Building upon this foundation, the authors introduce
Time2Feat (T2F) [22], an algorithm designed explicitly for
multivariate time series clustering. T2F distinguishes itself by
adopting two distinct feature extraction approaches named in-
tra and inter-signal feature extraction. Furthermore, the authors
enhance the feature selection process by introducing a grid
search method for selecting optimal features for clustering
multivariate time series. FeatTS and Time2Feat are two ap-
proaches that accommodate unsupervised and semi-supervised
clustering scenarios. Notably, Time2Feat stands out as the
current state-of-the-art solution for multivariate time series
clustering, showcasing the advancements in feature extraction
and selection methodologies.

Nevertheless, feature-based approaches may suffer from the
information loss induced by the transformation of the original
time series (i.e., sequential patterns) into features. Handling
high-dimensional feature spaces poses a challenge, especially
when dealing with numerous derived features. This complexity
can compromise the interpretability of the algorithm, making
it difficult for users to examine all the extracted features.
Additionally, the sensitivity of feature engineering poses a
challenge, where selecting inappropriate features or applying
unsuitable transformations may affect clustering quality.

3) Deep Learning Approaches: In recent years, deep learn-
ing strategies [32] have emerged to address the challenges
of time series clustering, demonstrating strong performance.
These approaches leverage deep learning’s ability to directly
interface with time series data, marking a significant shift from
traditional methods. A key advantage is the Hierarchy of Ab-
straction, where deep learning architectures capture complex
relationships within temporal data, revealing intricate patterns
essential for effective clustering. Additionally, these methods
exhibit High Efficacy, surpassing traditional techniques with
superior accuracy and efficiency.

The Deep Auto-Encoder (DAE) [33] is a popular solution,
serving as an unsupervised model for representation learning.
It transforms raw input data into new space representations,
extracting valuable features through encoding. The DAE ar-
chitecture, characterized by seven fully connected layers, ef-
fectively harnesses learned features through an internal layer.
These features are subsequently input into a clustering loss
function, minimizing the distance between data points and
their respective assigned cluster centers.

Another approach is Deep Temporal Clustering (DTC) [34],
which uses the DAE for feature representation and clustering.
The DTC’s clustering layer optimizes the Kullback-Leibler
(KL) divergence objective, aligning with a self-training target
distribution. The encoding process influences clustering per-

formance, with learned representations fed into the k-Means
algorithm for final clustering.

In conclusion, despite the high efficacy and the ability
to uncover complex patterns, deep learning approaches en-
counter fundamental challenges related to the interpretability
of their decision-making processes. The inherent complexity
of these machine learning models often results in a lack of
transparency in understanding obtained results. Furthermore,
these approaches may struggle to integrate domain-specific
knowledge seamlessly, presenting obstacles to guiding the
clustering process based on expert insights.

C. Graph Embedding of Time Series
We argue that to address the challenges of maintaining

information preservation while maximizing interpretability,
a viable solution is to represent time series as a (suitably
constructed) graph. Constructing such a graph involves pro-
cessing subsequences of the time series dataset. These subse-
quences represent various types of patterns and their temporal
succession. This approach furnishes clustering methods with
substantial information, contributing to the sustenance of high
accuracy. Additionally, this approach facilitates user-friendly
navigation through the time series.

Various methods have been proposed to convert time series
into graphs for specific analytical tasks to overcome the
challenges mentioned earlier. Series2Graph embeds univari-
ate time series into a directed graph [17], [35], primarily
employed for anomaly detection. Similarly, approaches like
Time2Graph [36] utilize graph representations of time series to
address time series classification. The advantages of such time
series graph representations are threefold. First, these graph
representations are easily interpretable by any user. Second,
constructed directly from subsequences of the time series, they
preserve essential information. Lastly, a unified embedding can
significantly reduce execution time, as evidenced in anomaly
detection scenarios [35].

However, prior works on graph embedding for time series
were often proposed either under supervised settings [36],
simplifying the graph construction task, or in an unsupervised
manner but for continuous time series [17]. For the specific
task of time series clustering, a graph embedding of time series
necessitates the unsupervised construction of a single, com-
prehensive graph for an entire dataset, encompassing multiple
continuous time series. While a straightforward solution would
be building one graph per time series, this approach diminishes
the interpretability advantage of having a single, concise graph.

D. Problem Formulation
We propose a novel approach to time series clustering by

employing a graph embedding. The essence of this methodol-
ogy lies in transforming a time series dataset into a sequence of
abstract states corresponding to different subsequences within
the dataset. These states are represented as nodes, denoted by
N , in a directed graph, G = (N , E). The edges, E , encode the
frequency with which one state occurs after another [17]. We
define this graph as follows:

Definition 1 (Graph Embedding): Let a time series dataset
be defined as D = {T1, T2, ..., Tn}. Let G = (N , E) be
a directed graph. G is the graph embedding of D if there

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

𝑁(")
𝑁($)

𝑁(%)𝑁(&)

𝑁(')

𝑁(()

𝑁())

𝑁(*)
𝑁(+)

𝒢,!
-./.'

𝒢,!
-./.*

𝒢,!
-.$

𝒢,"
-./.'

𝒢,"
-./.*

𝒢,"
-.$

𝑁(")
𝑁($)

𝑁(%)𝑁(&)

𝑁(')

𝑁(()

𝑁())

𝑁(*)
𝑁(+)

𝒢,!
1./.'

𝒢,!
1./.*

𝒢,!
1.$

𝒢,"
1./.'𝒢,"

1./.*𝒢,"
1.$

(a) 𝜆-𝐺𝑟𝑎𝑝ℎ𝑜𝑖𝑑 (b) 𝛾-𝐺𝑟𝑎𝑝ℎ𝑜𝑖𝑑

𝑁($) = (1,0)
𝑁(&) = (1,0)
𝑁(') = (1,0)

𝑁(() = (0.8,0.2)
𝑁()) = (0.6,0.4)
𝑁(*) = (0.5,0.5)

𝑁(+) = (0.2,0.8)
𝑁(,) = (0,1)
𝑁(-) = (0,1)

𝐸𝑥 𝑁 . = 𝑃𝑟/! 𝑁 . , 𝑃𝑟/" 𝑁 .

𝑁($) = (0.5,0)
𝑁(&) = (0.5,0)
𝑁(') = (0.5,0)

𝑁(() = (0.8,0.2)
𝑁()) = (0.8,0.4)
𝑁(*) = (1,1)

𝑁(+) = (0.2,0.8)
𝑁(,) = (0,0.5)
𝑁(-) = (0,0.5)

𝑅𝑒 𝑁 . = 𝑁 .
/!
, 𝑁 .

/"

Fig. 2: λ-Graphoids and γ-Graphoids for different λ and γ.

exists a function M such that for any T ∈ D, M(T) =
⟨N (1), N (2), ..., N (m)⟩, and ∀i ∈ [1,m], N (i) ∈ N , and
∀i ∈ [1,m− 1], (N (i), N (i+1)) ∈ E .

The rest of the section considers M(T) as a subgraph.
For the sake of interpretability, it is imperative that different
sections of the graph distinctly capture the similarity between
time series. Nodes, representing similar patterns from various
time series, and edges, denoting possible transitions between
these patterns, play a pivotal role in this context. Consequently,
a comparable time series is found to be placed within the
same region of the graph. As a result, in a given dataset
D = {T0, T1, ..., Tn}, a designated cluster of time series,
denoted as Ci ⊂ D, corresponds to a discernible subgraph
GCi

⊂ G. This subgraph is formally called a “Graphoid.”
Definition 2 (Graphoid): Let D be a time series dataset and

Ci ⊂ D a given cluster such as Ci = {T1, T2, ..., Tk′}. Let G
be the graph embedding of D resulting from a function M.
We define the Graphoid of Ci as:

GCi =
⋃

T∈Ci

M(T)

In Definition 2, the Graphoid of a given cluster contains
all the nodes and edges that at least one time series of that
cluster crossed. Therefore, a node of G may belong to multiple
graphoids. As a consequence, no distinction is made between
nodes that contain subsequences of all time series of one
cluster (i.e., representativity) or time series subsequences of
one cluster only (i.e., exclusivity) and nodes that are contained
in all clusters. We thus introduce the two following definitions:

Definition 3 (Node representativity): Let D a time series
dataset and C = {C1, C2, ..., Ck} a clustering partition. Let
G = (N , E) be the graph embedding of D resulting from a
function M. We define the Representativity of node N ∈ N
as Re(N) = (|N |C1

, ..., |N |Ck
with |N |Ci

defined as:

|N |Ci =
1

|Ci|
∑
T∈Ci

1[N∈M(T)]

Definition 4 (Node Exclusivity): Let D a time series dataset
and C = {C1, C2, ..., Ck} a clustering partition. Let G =
(N , E) be the graph embedding of D resulting from a function
M. We define the Exclusivity of node N ∈ N as Ex(N) =
(PrC1

(N), ..., P rCk
(N)) with PrCi

(N) defined as:

PrCi(N) =
|Ci||N |Ci∑

T∈D 1[N∈M(T)]

In other words, the representativity of a node is the number
of time series of a given cluster that crossed the node divided
by the total number of time series within that cluster. The
exclusivity of a node is the number of time series of a given
cluster that crossed the node divided by the total number of
time series that crossed that same node. The same definitions
can be used for edges. Based on the above definitions, we
can restrict the definition of a Graphoid based on exclusivity
and representativity. We thus introduce λ-Graphoid and γ-
Graphoid defined as follows:

Definition 5 (λ-Graphoid): For a given dataset D, G the
graph embedding of D, and a given cluster Ci. The λ-
Graphoid of Ci is defined as Gλ

Ci
= (N λ

Ci
, Eλ

Ci
) such as

∀N ∈ N λ
Ci
,∀E ∈ Eλ

Ci
, P rCi

(N) ≥ λ and PrCi
(E) ≥ λ.

Definition 6 (γ-Graphoid): For a given dataset D, G the
graph embedding of D, and a given cluster Ci. The γ-
Graphoid of Ci is defined as Gγ

Ci
= (N γ

Ci
, Eγ

Ci
) such as

∀N ∈ N γ
Ci
,∀E ∈ Eγ

Ci
, |N |Ci

≥ γ and |E|Ci
≥ γ.

The concepts introduced above can be better illustrated us-
ing Figure 2. The λ-Graphoid and γ-Graphoid are influenced
by the chosen values of λ and γ. As demonstrated in Figure 2,
higher values of λ and γ lead to more restrictive graphoids.
In the illustration, nodes N (5), N (6), N (7) are exclusively
crossed by time series from cluster C1, highlighting unique
patterns specific to this cluster. On the other hand, node N (3)

is traversed by all time series of C1 and is considered the
most representative pattern for this cluster. However, it also
represents a common pattern for C0.

This scenario emphasizes the trade-off between representa-
tivity and exclusivity. While N (3) provides a comprehensive
representation of C1, it lacks exclusivity to this cluster. In
contrast, N (5), N (6), N (7) offer exclusive patterns for C1 but
might not be present in all time series of this cluster, limiting
the interpretability. Thus, finding an optimal balance between
higher values of λ and γ is crucial for maximizing the inter-
pretability of a clustering partition through graph embedding.
Based on the above definitions, we can state the following:

Lemma 1: For a given clustering partition C =
{C1, C2, ..., Ck}, if λ ≤ k, then

⋃
Ci∈C Gλ

Ci
= G. if λ > 0.5,

then
⋂

Ci∈C Gλ
Ci

= ∅.
Lemma 2: For a given clustering partition C =

{C1, C2, ..., Ck}, if ∀Ci ∈ C,Gλ=1
Ci

= G
γ= 1

|Ci|
Ci

, then⋂
Ci∈C GCi = ∅
Lemma 2 corresponds to the perfect partition, in which each

graph region exclusively represents one cluster. However, we
do not need to have all the nodes of a Graphoid exclusively
representing only one cluster. It is sufficient to have one node
for each cluster with |N |Ci = PrCi(N) = 1. Therefore, the
problem we want to solve is the following.

Problem 1 (Time Series Graph Clustering): Given a dataset
D, automatically construct the graph G(N , E), and compute a
clustering partition C = {C1, ..., Ck} of D, such that:

∀Ci ∈ C, |Gλ=1
Ci
∩ Gγ=1

Ci
| > 0

As this problem is impossible to solve in some use cases,
the objective is to find the largest possible values of λ and γ,
such that the condition in Problem 1 holds and the values of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

!"#$ℎ(ℓ = ℓ!) Feature Matrix !!,ℓ$ *-Means

ℒℓ%

!"#$ℎ(ℓ = ℓ#) Feature Matrix !!,ℓ& *-Means

ℒℓ'

Co
nc

at
en

at
e

Spectral Clustering

*-Graph
labels

…

… … …

Consensus Matrix ,$!", !#, !$, !%, … , !&
!"
!#
!$
…
!&

For T%, T& ∈ 0	
2
ℓ∈(

3 ℒℓ,(*ℒℓ,)
4

Jo
b

0
Jo

b
M

(a) Dataset $ (b) Graph embedding (c) Graph clustering (c) Consensus clustering

5ℓ' ℰℓ' 7ℓ'

5ℓ% ℰℓ% 7ℓ%

!#

!$

!&

!"

Fig. 3: k-Graph pipeline.

Symbol Description
T a time series (of length |T |)
ℓ subsequence length
D a dataset of time series
Ci a cluster of a clustering partition C
L labels generated by clustering
k number of clusters

N , E set of nodes and edges
d degrees of a set of nodes
G directed graph
M function that transform T into G
Gℓ graph embedding built with length ℓ
FG,ℓ feature matrix for graph Gℓ
MC consensus matrix

GCi
,Gλ

Ci
,Gγ

Ci
graphoid, λ-graphoid and γ-graphoid of Ci

|N |Ci
, PrCi

(N) representativity, exclusivity of node N for Ci

TABLE I: Table of symbols

λ and γ indicate the quality of the clustering interpretability.
Table I summarizes the symbols used in this paper.

III. PROPOSED APPROACH

In this section, we describe k-Graph, an approach for time
series clustering, as a solution to tackle the problem described
in the previous section. For a given dataset D, the overall k-
Graph process is divided into three main steps as follows:
1) Graph Embedding (Section III-A): for M different sub-

sequence lengths, we compute M graphs. For a given
subsequence length ℓ, The set of nodes represent groups
of similar subsequences of length ℓ within the dataset D.
The edges have weights corresponding to the number of
times one subsequence of a given node has been followed
by a subsequence of the other node.

2) Graph Clustering (Section III-B): For each graph, we
extract a set of features for all time series of the dataset D.
These features correspond to the nodes and edges that the
time series crossed. Then, we use these features to cluster
the time series using k-Means for scalability reasons.

3) Consensus Clustering (Section III-C): At this point we
have M clustering partitions (i.e., one per graph). We build
a consensus matrix MC . We then cluster this matrix using
spectral clustering in the objective of grouping time series
that are highly connected (i.e., grouped in the same cluster
in most of the M partitions). The output of this clustering
step is the labels provided by k-Graph.

4) Interpretability Computation (Section III-D): after ob-
taining the clustering partition, we select the most relevant
graph (among the M graphs), and we compute the inter-
pretable graphoids.

Algorithm 1: k-Graph
input : Dataset D, Number of clusters k, Number of length

M (default is 30), Maximum length rate rml
(default is 0.4), Sample rate smpl (default is 10)

output: Clustering labels L
1 all-L ← [] ;
2 R ← M random lengths in [5, (minT∈D|T |) ∗ rml] ;
3 foreach ℓ ∈ R do
4 Gℓ ← Graph(D, ℓ, smpl) // Section III-A
5 FG,ℓ ← extractFeature(D,Gℓ) // Section III-B
6 Lℓ ← k-Means(FG,ℓ, k) // Section III-B
7 add Lℓ in all-L;
8 MC ← Consensus(all-L) // Section III-C
9 L ← SpectralClustering(Mc, k) // Section III-C

10 return L

Figure 3 illustrates the different steps of k-Graph, detailed
in Algorithm 1. Below, we describe each step in detail.

A. Graph Embedding
As described in Section II-D, the general objective is to

build one graph representing the time series dataset on which
we can perform clustering. For this step, a solution could
be to use the Series2Graph algorithm [17]. Nevertheless,
Series2Graph presents three limitations. First, it accepts a
continuous time series as input, rather than a dataset, that
may contain several series of different lengths. Second, the
user must specify a subsequence length ℓ. This becomes
problematic in interpretable clustering, as determining an
optimal length in advance is challenging. Third, the embedding
employed by Series2Graph does not scale to large dataset
sizes, which would be a significant drawback in our case. In k-
Graph, we propose the following graph embedding procedure.

For a dataset D, we build M different graphs Gℓ = (Nℓ, Eℓ)
for M different subsequence length ℓ. Algorithm 2 outlines the
procedure for constructing a single graph for a given dataset
and subsequence length. The procedure is the following:
1) Subsequence Embedding: For each time series T ∈ D,

we collect all the subsequences of a given length ℓ into
an array called Proj(T, λ). We then concatenate all the
computed Proj(T, λ) into Proj for all the time series
in the dataset (Line 3). We then sample Proj (user-
defined parameter smpl) and keep only a limited number
of subsequences stored in Projsmpl. We use the latter to
train a Principal Component Analysis (PCA) (Line 5). We
then use the trained PCA and a rotation step to project all
the subsequences into a two-dimensional space that only

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

Algorithm 2: Graph Embedding Graph(D, ℓ)

input : Dataset D, input length ℓ, sample smpl
output: graph Gℓ
// Concatenante subsequences

1 Proj ← [];
2 foreach T ∈ D do
3 add Proj(T, ℓ) in Proj;
// Reduce to a two-dimensional space

4 Projsmpl ← randomly select ⌊ |Proj|
smpl

⌋ elements in Proj;
5 pca ← PCA.fit(Projsmpl);
6 SProj ← Reduce(Proj, pca);
// Extract the nodes and edges

7 Nℓ, Eℓ ← NodeCr(SProjsmpl), EdgeCr(SProj,Nℓ);
8 return Gℓ = (Nℓ, Eℓ)

preserves the shapes of the subsequences. The result is
denoted as SProj. We denote the PCA and rotation steps
Reduce(Proj, pca), where pca is the trained PCA.

2) Node Creation: Create a node for each of the densest parts
of the above two-dimensional space [17]. In practice, we
perform a radial scan of SProjsmpl. For each radius, we
collect the intersection with the trajectories of SProjsmpl,
and we apply kernel density estimation on the intersected
points: each local maximum of the density estimation
curve is assigned to a node. These nodes can be seen as
a summarization of all the major length patterns ℓ that
occurred in D. For this step, we only consider the sampled
collection of subsequences SProjsmpl. We denote this step
NodeCr(SProjsmpl) (Line 7).

3) Edge Creation: Retrieve all transitions between pairs of
subsequences represented by two different nodes: each
transition corresponds to a pair of subsequences, where
one occurs immediately after the other in a time series
T of the dataset D. We represent transitions with an
edge between the corresponding nodes. We note this step
EdgeCr(SProj,Nℓ) (Line 7). Nℓ is the node set extracted
in the above step.

Despite the linear aspect of the PCA (in the subsequence
embedding step), we observed in practice that using the first
three components was sufficient to embed enough shape-based
information [17]. Furthermore, PCA is renowned for its ability
to identify and emphasize principal patterns while diminishing
the impact of noise [37], [38]. The latter guarantees a graph-
based representation less affected by the presence of noise in
the time series subsequences.

As mentioned above, the graph embedding requires a
parameter smpl that controls the number of subsequences
used to train the PCA and to create the nodes. We set by
default the parameter smpl = 10 and evaluate its influence
in Section IV. Moreover, we generate the graph embedding
using Algorithm 2 for M different lengths randomly selected
from a predefined interval. We denote the set of randomly
selected lengths as R, where the user can specify the number
of lengths by setting M = |R|. Our observations show that
accuracy and execution time tend to improve with an increase
in M . However, the accuracy reaches a plateau after M = 30,
as demonstrated in Section IV.

Since the subsequence embedding step necessitates subse-
quences of at least 5 points, the length interval can be con-

strained to [5,minT∈D |T |]. However, empirical observations
indicate that this interval can be further optimized. We define
this interval as [5, (minT∈D |T |) × rml], where rml (rate
maximum length) is a user-defined parameter with a default
value of 0.4 (evaluated in Section IV).

Figure 3, we show the graphs for 3 different lengths (ℓ
equal to 10, 30, and 50) for the TwoLeadECG dataset of
the UCR-Archive [23]. The variation in the graph’s topology
emphasizes the significance of subsequence length. Building
multiple graphs ensures that k-Graph does not rely on a
predetermined subsequence length, thus avoiding situations
where an erroneous or unsuitable choice of the single subse-
quence length leads to a suboptimal graph, potentially failing
to capture critical data patterns.

B. Graph Clustering
At this stage, we have M distinct graphs corresponding

to M different subsequence lengths. To perform a clustering
partition of the dataset D using these graphs, we opt for a
feature-based approach for execution time and interpretability.
Our goal is to maximize information extraction from the
graph. For this purpose, we extract three types of features
for each time series: (i) node-based, (ii) edge-based features,
and (iii) degree-based features. Specifically, for two first types
of features, we quantify how many times a given time series
intersects each node and edge in the graph. For the third
type, we measure the degree for each node in the subgraph
corresponding to each time series. For example, the same node
can have a high degree for one time series (corresponding
to a specific subgraph in Gℓ) and a low degree for another
time series (corresponding to another subgraph). Formally, for
a given dataset D and its graph embedding Gℓ = (Nℓ, Eℓ)
computed using a subsequence length ℓ, we define for a time
series T ∈ D, Mℓ(T) = ⟨N (1), N (2), ..., N (m)⟩ the path of T
in Gℓ, and Gℓ(T) the corresponding subgraph. Thus, we define
the feature matrix FG,ℓ ∈ R(|D|,|Nℓ|+|Eℓ|) as follows:

∀Ti ∈ D, FG,ℓ[i] = [fTi,N1 , ..., fTi,N|Nℓ|
,fTi,E1 , ..., fTi,E|Eℓ|

,

fd
Ti,N1

, ..., fd
Ti,N|Nℓ|

]

With ∀N,E ∈ Nℓ, Eℓ:

fTi,N =
∑

N(j)∈Mℓ(Ti)

1[N=N(j)]

fTi,E =
∑

(N(j),N(j+1))∈Mℓ(Ti)

1[E=(N(j),N(j+1))]

fd
Ti,N = degGℓ(T)(N) ∗ 1[N=(N(j),N(j+1))]

In the equation above, degGℓ(T)(N) denotes the degree of the
node N within the subgraph Gℓ(T). As described above, FG,ℓ
is a sparse matrix with values greater than zero only if a time
series crosses a node or an edge. However, as time series can
be of different lengths, the number of nodes and edges crossed
can vary significantly from one dataset instance to another. As
a consequence, we normalize each row FG,ℓ[i] by subtracting
the its mean µ(FG,ℓ[i]) and dividing by its standard deviation
σ(FG,ℓ). We can then apply any clustering algorithm on FG,ℓ.

We use k-Means with Euclidean distance to produce a
partition Lℓ for a given graph Gℓ. Normalization is applied
only during the clustering step, while the unnormalized feature

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

(a) 𝑊!(ℓ) for different values of ℓ (b) 𝑊"(ℓ) for different values of ℓ

605040302010 908070 605040302010 908070

Co
ns

ist
en

cy
 𝑊
!(
ℓ)

In
te

rp
re

ta
bi

lit
y

Fa
ct

or
 𝑊
!(
ℓ)

1.0

0.9

0.8

0.7

0.6

0.5

0.87

0.85

0.82

0.77

0.75

0.72

0.80

0.70

0.67

Subsequence length ℓ Subsequence length ℓOptimal length ℓ = 36

Fig. 4: Wc and We for k-Graph (with k = 4 and M = 10) applied
on the Trace dataset of the UCR-Archive.

matrix is retained for computing graphoids. The choice of k-
Means is motivated by its scalability for large datasets and
its centroid-based approach, which aids interpretability. The
centroids from graph clustering are crucial for computing
graphoids, which are key to interpreting the clustering results
of k-Graph (see Section III-D).

C. Consensus Clustering
At this point, we have one clustering partition Lℓ per graph

built in the graph embedding step (M in total, for ℓ in the set
of randomly selected lengths R). The objective is to compute a
consensus from all these partitions. The problem of consensus
clustering, or ensemble clustering, is a well-studied problem
with several methods proposed in the literature [39], [40].

Following established practice [39], we build a consensus
matrix, which we employ to measure how many times two
time series have been grouped in the same cluster for two
graphs built with two different lengths. Formally, we define
MC ∈ R(|D|,|D|) a matrix computed as follows:

∀Ti, Tj ∈ D,MC [i, j] =
1

|R|
∑
ℓ∈R

1[Lℓ,i=Lℓ,j] (1)

MC can be seen as a similarity matrix about the clustering
results obtained on each graph. More specifically, for two time
series Ti and Tj , if MC [i, j] is high, they have been associated
in the same cluster for several subsequence lengths and can
be grouped in the same cluster. On the contrary, if MC [i, j]
is low, the two time series were usually grouped in different
clusters regardless of the subsequence length. Therefore, the
MC matrix can be seen as the adjacency matrix of a graph.
In this graph, nodes are the time series of the dataset, and an
edge exists if two time series have been clustered together in
the same cluster (the weights of these edges are the number
of times these two time series have been clustered together).
As the objective is to find communities of highly connected
nodes (i.e., time series that were grouped multiple times in the
same cluster), we use spectral clustering (with MC used as a
pre-computed similarity matrix). The output of the spectral
clustering is the final labels L of k-Graph.

D. Interpretability and Explainability
The previous section elucidated k-Graph’s approach to the

time series clustering problem. Now, we delve into the steps
necessary for solving the interpretable clustering problem. As
outlined in Section II-D, we formalized the interpretability
problem through the computation of graphoids. The challenge
lies in the assumption that there is a unique graph. However,

k-Graph operates with M graphs to produce one dataset
partition. We are presented with two options: (i) compute the
graphoids for each graph, or (ii) select one graph that is most
representative of the final labeling L.

Considering option (i), we assume equal contributions from
each graph to the labels L. However, this assumption falters
due to the consensus clustering step. For instance, among
the M graphs, one-third might generate one type of partition,
while the remaining two-thirds yield another. Consequently,
the partition from the latter two-thirds would be selected as the
final labels L of k-Graph. As a result, one-third of the graphs
might be irrelevant for the final labels, yielding graphoids that
do not correctly interpret the clustering.

Hence, we opt for option (ii), choosing one of the M graphs:
the one that is most relevant to the clustering labels L produced
by k-Graph. To make this selection, we employ two criteria:
the consistency of Lℓ with L, and the interpretability factor of
Gℓ associated with L.
[Consistency] To gauge the consistency between the final
labels L and those generated by each graph Gℓ (for ℓ ∈ R),
we utilize the Adjusted Rand Index (ARI). The latter is
particularly suitable for unbalance datasets as it accounts for
expected similarity due to chance (See Section IV). Formally,
the consistency is expressed as Wc(ℓ) = ARI(L,Lℓ), mea-
suring the agreement between the clustering labels produced
by k-Graph and those corresponding to a specific subsequence
length ℓ. This index provides a quantitative similarity measure,
with higher values indicating greater consistency.

For a practical illustration, Figure 4(a) displays the values
of Wc across different subsequence lengths (ℓ) in the range
R = [10, 28, 27, 36, 45, 54, 63, 72, 81, 90]. In this example, k-
Graph, configured with k = 4 and M = 10, is applied to the
Trace dataset from the UCR-Archive. The graph generated
with subsequence lengths between 27 and 54 demonstrates
high consistency (ARI values above 0.9) with the final labels
L, indicating that these lengths are more suitable for interpre-
tation. Conversely, other lengths result in lower consistency,
suggesting that labels produced under these conditions are less
aligned with the final clustering labels of k-Graph. Therefore,
for optimal interpretability, it is advisable to consider subse-
quence lengths within the range of 27 to 54.
[Interpretability Factor] The second criterion focuses on
selecting the most interpretable graphs in tandem with a
given clustering partition. As elucidated in Section II-D,
interpretability is achieved by ensuring that each cluster has
precisely one node, characterized by |N |Ci = PrCi(N) = 1.
To quantify interpretability, we calculate the interpretability
factor as the maximum PrCi

(N) across all nodes N in the
graph Gℓ. Formally, let D be a dataset, and Gℓ = (Nℓ, Eℓ) be its
graph embedding computed with a subsequence length ℓ. We
denote C = C1, ..., Ck as the clustering partition associated
with labels L obtained using k-Graph. The interpretability
factor We(ℓ) of Gℓ is defined as:

We(ℓ) =
1

k

∑
Ci∈C

max
N∈Nℓ

PrCi(N) (2)

In practical terms, the M function in Definition 4 is
instantiated as follows: for a time series T ∈ D, Mℓ(T) =
⟨N (1), N (2), ..., N (m)⟩, representing the path of T in Gℓ.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Figure 4(b) illustrates We for the Trace dataset of the UCR-
Archive, revealing that graphs computed with shorter lengths
exhibit a higher interpretability factor. To select the optimal
length ℓ̄ and, consequently, the graph Gℓ that maximizes both
Wc and We, we employ the following criterion:

ℓ̄ = argmax
ℓ∈R

[
We(ℓ).Wc(ℓ)

]
(3)

In Figure 4, the sole length that maximizes the product
We(ℓ) ·Wc(ℓ) is ℓ̄ = 36. Subsequently, the graph associated
with this length is utilized to compute the graphoids.

To compute the graphoids, we use the feature matrix FG,ℓ̄

(described in Section III-B). In practice, we compute the
representativity and the exclusivity of a node N in Gℓ. We can
compute the two previous measures for all nodes in Gℓ, and
then select only those that satisfy the property of λ-Graphoid
and γ-Graphoid for a desired value of λ and γ. As one highly
representative and exclusive node per cluster is enough, we
automatically return one node N̄Ci

per cluster such that:

N̄Ci = argmax
N∈Nℓ

[
|N |Ci .P rCi(N)

]
(4)

The node N̄Ci
is considered the most interpretable node for

a given cluster Ci. Finally, for each node, we store the times-
tamps of the subsequences in D associated with it. Therefore,
we compute the centroid of all the subsequences that compose
N̄Ci

. Figure 10 and Figure 12 show the most interpretable
nodes (and the corresponding centroids) identified by k-Graph
for several example datasets.

In our approach, interpretability (i.e., graphoid for each clus-
ter) is integrated during the training phase rather than applied
post-hoc. By embedding interpretability into the clustering
process, we ensure that the selected graph consistently repre-
sents the clustering logic during both training and subsequent
predictions. This ensures reliable interpretability, even when
incoming time series exhibit variability or contain multiple
relevant subsequences.

E. Complexity Analysis
This section analyzes the computational complexity of

different steps in k-Graph. For the Graph Embedding step,
the sequence embedding complexity is bounded by the PCA
(using a randomized SVD solver) with complexity O(|D|2 ·
|T |2). The node creation and edge creation steps are both
O(|D| · |T |) on average. Following the graph embedding
step, the complexity for feature matrix creation and k-Means
clustering is O(|D| · (|N | + |E|)) and O(k.|D| · (|N | + |E|))
respectively. In practice, the number of nodes and edges
is significantly smaller than the number of subsequences in
the dataset, making this step negligible compared to the
graph embedding step. Finally, building the consensus matrix
requires O(M · |D|2). As the consensus matrix is already
built, spectral clustering requires, in the worst case, O(|D|2).
Overall, since the first two steps are executed M times (for
M different subsequence lengths), the k-Graph complexity
is O(M · |D|2 · |T |2). However, as the computations of the
M graphs are independent, they can be executed in parallel,
significantly reducing execution time. Moreover, the smpl
parameter significantly reduces |D|. Section IV evaluates the
influence of M and smpl on execution time.

Dataset Type # Dataset Avg. # TS Avg. Length Avg. Classes
AUDIO 1 2110.00 1024.00 39.00

DEVICE 11 2428.18 809.27 3.55
ECG 7 2313.71 513.29 14.14
EOG 2 724.00 1250.00 12.00
EPG 2 288.50 601.00 3.00

H.DYN. 3 312.00 2000.00 52.00
IMAGE 31 1713.81 338.45 10.61

MOTION 6 343.83 899.00 3.83
OTHER 1 204.00 201.00 18.00

SENSOR 14 2213.64 348.79 3.07
SIMUL. 9 1566.33 255.44 3.89
SOUND 11 1982.27 308.18 6.91

SPECTRO 12 448.17 980.75 3.42
TRAFFIC 1 365.00 24.00 2.00

TABLE II: UCR-Archive Dataset category Statistics

IV. EXPERIMENTAL EVALUATION

[Setup] We implemented our algorithms in Python 3.9. The
evaluation was conducted on a server Intel(R) Xeon(R) Gold
6242R CPU 3.10GHz (80 CPUs), with 512GB RAM. Our
code is publicly available: https://github.com/boniolp/kGraph
[Datasets] We conducted an experimental evaluation utilizing
real datasets from the UCR-Archive [23] to assess the classi-
fication performance of various methods. While our proposed
approach is versatile and can be evaluated on variable-length
time series, the baseline methods do not share this flexibil-
ity. Therefore, out of the initial 128 datasets, we excluded
15 containing variable-length time series. Our comparative
analysis involves assessing our proposed approach against the
baselines on a subset of 113 real-time series datasets. Table II
summarizes the characteristics of the adopted datasets, which
represent several different scenarios.
[Baselines] In our experimental evaluation, we consider the
15 state-of-the-art (SOTA) algorithm from each category:
• Traditional Clustering: We include the k-Means algo-

rithm, which uses the Euclidean distance as a similar-
ity measure. We also include eight additional traditional
clustering approaches for completeness which are Mean-
Shift [41] (M.Sh. in Table III), Gaussian Mixture [42]
(G.M. in Table III), BIRCH [43], MiniBatch-k-Means [42],
OPTICS [44], HDBSCAN [45], DBSCAN [46] and Ag-
glomerative Clustering with a average linkage [42] (Aggl.
in Table III). For all these baselines, we use their corre-
sponding scikit-learn [42] implementation, and we select
their default parameters.

• Raw-based Approaches: We select the k-Shape algo-
rithm [25]. This algorithm identifies the most discrim-
inative sub-shapes of the time series to form the final
cluster. In addition, we adopt SomTimeS, an algorithm
that uses a self-organizing map (SOM) framework to align
and compare time series with Dynamic Time Warping
(DTW) as the distance measure. It enhances computational
efficiency through a pruning strategy that reduces the
number of DTW calculations during training.

• Symbolic Approaches: We select the Symbolic Pattern
Forest algorithm (SPF) [47]. The approach checks if some
randomly selected symbolic patterns exist in the time series
to partition the dataset. This partition process is executed
multiple times, and the ensemble combines the partitions
to generate the final partition.

• Features-based Approaches: We choose Time2Feat [22]
(T2F in Table III). This approach extracts and selects

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

(a) Overall Accuracy (ARI,AMI, NMI and RI) over the UCR archive

Best (!-Graph)

Best (!-Graph) Best (!-Graph) Best (!-Graph)

(b) Critical Diagrams
(b.1) ARI (b.2) AMI (b.3) NMI (b.4) RI

(a.1) ARI (a.2) AMI (a.3) NMI (a.4) RI
!G

ra
ph

!G
ra
ph

!G
ra
ph

!G
ra
ph

!Graph
!Graph !Graph

!Graph

So
m
Ti
m
es

So
m
Ti
m
es

So
m
Ti
m
es

So
m
Ti
m
es

16 8 1 16 8 1 16 8 1 16 8 1

SomTimes
SomTimes SomTimes

SomTimes

Fig. 5: Experimental comparison of k-Graph versus the baselines on the UCR archive. In (a), the mean values are represented as a white
square. The horizontal red dotted line represents the best mean.

the best features from the time series, providing a fully
interpretable and effective solution.

• Deep Learning Approaches: We opt for two baselines.
First, the Deep Temporal Clustering (DTC) algorithm [34].
DTC uses feature representation extracted from the Deep
Auto-Encoder and the Kullback-Leibler (KL) divergence
objective for self-labeling of the dataset. The second base-
line considered is the Reservoir Model Space [48] (called
Reservoir in the rest of the paper and Res. in Table III).
Reservoir Computing (RC) is a family of Recurrent Neural
Network (RNN) models whose recurrent part is generated
randomly and then kept fixed. The representation learned
with Reservoir is then fed into a traditional clustering.

[Metrics] We compare k-Graph against state-of-the-art ap-
proaches using metrics that assess how well clusters align
with predefined or expected data structures by comparing
them with external information like labels.We focus on four
metrics: the Adjusted Rand Index (ARI) [49], Adjusted Mutual
Information (AMI), Normalized Mutual Information (NMI),
and Rand Index (RI).

The Adjusted Rand Index (ARI), derived from the Rand
Index (RI), measures the similarity between two clusterings
by counting pairs of data points in the same or different
clusters. Unlike the RI, the ARI accounts for expected sim-
ilarity due to chance, which is crucial for accurate results,
especially in imbalanced datasets. This correction provides a
more reliable measure of clustering performance, with a scale
from -0.5 to 1. A value of 1 indicates perfect agreement, 0
suggests chance-level agreement and negative values indicate
disagreement. By considering class balance, the ARI offers
a more robust assessment of clustering similarity compared
to the RI. To enhance evaluation robustness, we also use
Adjusted Mutual Information (AMI) and Normalized Mutual
Information (NMI). Mutual Information (MI) measures the
mutual dependence between two clusterings, but cluster sizes
and numbers can influence it. NMI normalizes MI to a scale

𝑘-Shape

1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.60.40.20.0

1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.60.40.20.0

1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.60.40.20.0

1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.60.40.20.0

1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.60.40.20.0

1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.60.40.20.0

𝑘-Shape 𝑘-Shape SPF

SPF

SP
F

BIRCH
BI

RC
H

BI
RC

H
𝑘-

G
ra

ph

𝑘-
G

ra
ph

𝑘-
G

ra
ph

0.1

0.1

0.1

0.1
0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1
12 time
series

23 time
series

12 time
series 23 time

series
12 time
series

7 time
series

18 time
series

15 time
series

22 time
series

14 time
series

21 time
series

16 time
series

Fig. 6: Pairwise comparisons (ARI) of the top performing methods,
namely, k-Graph, k-Shape, SPF, and BIRCH.

from 0 (no mutual information) to 1 (perfect correlation). AMI
further adjusts MI for chance, providing a normalized measure
that is useful for comparing clustering results across datasets
with varying cluster sizes.

A. Accuracy Evaluation

Presentation Table III showcases the performance of k-Graph
compared to state-of-the-art approaches, expressed in terms of
Adjusted Rand Index (ARI). The datasets are categorized as
introduced in Section IV. We also include the average ARI,
NMI, AMI, and RI (for the entire UCR-Archive), as well as the
number of wins and the average rank (for each measure). The
results demonstrate k-Graph’s superior performance across
various dataset types, achieving the best performance in 5 out
of 13 cases and the second-best results in 2 out of 8 cases.
Moreover, we observe that k-Graph outperforms the baselines
on average across the entire UCR-Archive for all measures. We
also note that k-Graph has the best average rank for AMI and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

k-Graph k-Shape SPF BIRCH G.M. MB-k-M. k-Means SomTimes T2F DTC OPTICS Reservoir Aggl. HDBSC. M.Sh. DBSC.
Averaged ARI per category of the UCR-Archive datasets

AUDIO 0.226 0.223 0.262 0.392 0.386 0.329 0.343 0.074 0.118 0.320 0.000 0.000 -0.000 0.012 -0.000 0.000
DEVICE 0.101 0.072 0.080 0.063 0.108 0.094 0.058 0.117 0.083 0.058 0.007 0.016 0.003 0.015 0.000 0.001

ECG 0.315 0.363 0.248 0.285 0.279 0.243 0.251 0.224 0.166 0.190 0.112 0.082 0.051 0.011 0.000 0.000
EOG 0.129 0.152 0.126 0.156 0.188 0.163 0.170 0.146 0.139 0.139 0.000 0.065 0.000 0.021 0.000 0.000
EPG 0.445 0.035 0.416 1.000 1.000 1.000 0.182 1.000 0.538 0.109 0.772 0.759 1.000 1.000 0.000 0.000

H.DYN. 0.373 0.037 0.235 0.109 0.092 0.087 0.043 0.066 0.048 -0.000 0.001 0.000 0.018 0.005 0.000 0.000
IMAGE 0.290 0.297 0.292 0.299 0.283 0.249 0.259 0.238 0.191 0.176 0.157 0.105 0.024 0.064 0.014 -0.000

MOTION 0.170 0.154 0.156 0.155 0.123 0.138 0.141 0.124 0.090 0.139 0.048 0.033 0.034 0.050 0.000 0.000
OTHER 0.945 0.414 0.308 0.713 0.627 0.668 0.708 0.212 0.478 0.295 0.242 0.000 0.705 0.056 0.000 0.000

SENSOR 0.352 0.283 0.337 0.224 0.238 0.215 0.234 0.226 0.191 0.174 0.166 0.074 0.097 0.093 0.001 -0.005
SIM. 0.403 0.353 0.376 0.315 0.351 0.274 0.261 0.292 0.418 0.209 0.110 0.113 0.070 0.034 0.000 0.000

SOUND 0.044 0.035 0.041 0.004 0.011 0.010 0.016 0.031 0.028 0.000 0.000 0.016 0.001 0.000 0.000 0.000
SPECTRO 0.208 0.167 0.234 0.133 0.130 0.172 0.212 0.170 0.171 0.063 0.157 -0.001 0.020 0.054 0.000 0.000
TRAFFIC 0.492 0.676 0.136 0.461 0.749 0.757 0.047 0.260 -0.018 0.054 0.000 0.000 0.008 0.098 0.008 0.000

Averaged Accuracy for each dataset of UCR-Archive
RI 0.729 0.702 0.721 0.697 0.707 0.700 0.695 0.688 0.693 0.630 0.438 0.467 0.411 0.464 0.314 0.317

ARI 0.275 0.237 0.252 0.238 0.239 0.223 0.208 0.209 0.181 0.145 0.124 0.075 0.061 0.069 0.004 -0.001
AMI 0.315 0.291 0.291 0.296 0.293 0.278 0.256 0.264 0.230 0.204 0.161 0.098 0.093 0.119 0.005 0.001
NMI 0.335 0.312 0.312 0.320 0.317 0.302 0.282 0.284 0.259 0.217 0.165 0.102 0.118 0.133 0.006 0.001

Number of win on the UCR-Archive
RI 22 8 26 8 4 4 6 5 8 4 2 1 1 2 0 1

ARI 25 11 17 9 5 7 8 6 8 4 3 1 0 2 0 0
AMI 21 11 12 13 12 1 7 4 7 3 7 4 0 3 1 0
NMI 21 12 12 13 11 1 6 4 7 3 7 4 0 4 1 0

TABLE III: Effectiveness (ARI, RI, AMI, and NMI) per category of the UCR-Archive, the average (of measures) across all UCR-Archive,
and the number of wins (i.e., the number of time methods achieved best accuracy) on the UCR-Archive. In bold, the best value per dataset
type. The underlined represents the second best result.

ARI and is second best for RI and ARI. Finally, k-Graph has
the most significant number of wins (i.e., number of times k-
Graph has the best performance) for ARI, AMI, and NMI, and
the second largest number of wins for RI. Figure 5(a) presents
ARI, AMI, NMI, and RI across all datasets, demonstrating k-
Graph’s overall improvement compared to other approaches.
Figure 5(b) shows the critical difference diagram using a
pairwise Wilcoxon sign rank test, with methods ranked along
the horizontal axis. Figure 6 compares k-Graph’s ARI with
top-performing methods (k-Shape, SPF, and BIRCH). Each
point represents a dataset’s performance between two methods,
with the green area indicating superior performance for y-axis
methods and the white area for x-axis methods. Dotted lines
mark 0.1 performance difference intervals, with points outside
these bands indicating significant performance differences.
The average distance from the identity line indicates the
magnitude of performance differences between methods.

Discussion The results indicate an enhancement in accuracy
with the implementation of k-Graph. This improvement is
evident when evaluating performance across different dataset
types and considering the overall average across all datasets.
Nevertheless, we observe in Figure 5(b) that, across all datasets
of the UCR-Archive taken individually, k-Graph outperforms
the baselines for NMI and AMI, albeit not significantly. For
ARI and RI, SPF is slightly above k-Graph. It is also important
to note that some of the traditional baselines demonstrate
strong performances (across all measures) although these
approaches were specifically proposed for time series. Nev-
ertheless, among the top performing methods (ranked first or
second in Figure 5(a)), 3 approaches on 4 have been proposed
for time series clustering. Moreover, we observe that k-Graph
performance is lower than the baselines for the TRAFFIC
category. The latter is composed of one dataset (Chinatown)
that contains very short time series (24 data points). As k-
Graph relies on extracting meaningful subsequences, such
dataset with very short time series is particularly hard to
handle. Consequently, we can empirically observe a potential
limitation of k-Graph for very short time series.

Furthermore, the comparison illustrated in Figure 6 with k-
Shape provides intriguing insights. It unveils scenarios where

Noise ratio (Avg. consecutive difference / TS amplitude)

Nu
m

be
r o

f w
in

s (
ra

tio
)

!-Graph SPF !-Means !-Shape BIRCH

!-Graph best
for ~68% of TS

!-Graph best
for ~47% of TS

!-Graph best
for ~35% of TS

!-Graph best
for ~37% of TS

High noiseLow noise

Fig. 7: Number of win (ratio) versus Noise (ratio) in the UCR-Archive

k-Graph outperforms k-Shape, SPF, BIRCH, and vice versa,
highlighting each approach’s distinctive strengths and weak-
nesses when applied to diverse datasets. The latter emphasizes
two key points: (i) the importance of an adaptable and robust
approach like k-Graph that meets the objectives outlined in the
initial challenge across various datasets, and (ii) the comple-
mentary nature of k-Graph, k-Shape, and BIRCH, suggesting
potential synergies for improved accuracy.

We investigate the performance differences between k-
Graph and the four best-performing baselines by assessing the
impact of noise on accuracy. The noise level of datasets in the
UCR-Archive is measured by the average noise ratio, defined
as the ratio of the average difference between consecutive
points to the maximum amplitude of the time series. We
calculate the number of wins (i.e., instances where a method
achieves the best ARI score) for datasets within predefined
noise ratio intervals. As shown in Figure 7, the proportion of
k-Graph wins increases with the noise ratio, reaching 68% for
time series with a noise ratio above 0.28. Overall, Figure 7
indicates that k-Graph’s efficiency is unaffected by noise and
is more robust than the baselines.

B. Execution Time Evaluation

Presentation We compare our method’s execution time against
other approaches, all configured for a multi-core CPU setup.
To ensure consistency, we focus on methods with pure Python
implementations, including Time2Feat, k-Shape, and DTC, but
also include k-Means (implemented in C) for a comprehensive
evaluation. Figure 8 shows that k-Graph, k-Shape, and DTC

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

!-Graph !-Shape !-MeansTime2Feat DTC

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)
lo

g
sc

al
e

Fig. 8: Execution time computed on all datasets of the UCR-Archive.

(a.1) Number of lengths (b.1) Number of lengths

(a.2) Downsampling ratio (b.2) Downsampling ratio

(a.3) Maximum length rate (c.3) Maximum length rate

Ad
j.

Ra
nd

 In
de

x (
AR

I)
Ad

j.
Ra

nd
 In

de
x (

AR
I)

Ad
j.

Ra
nd

 In
de

x (
AR

I)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)
Ex

ec
ut

io
n

Ti
m

e
(s

ec
.)

Ex
ec

ut
io

n
Ti

m
e

(s
ec

.)
(a) Influence on accuracy (b) Influence on Execution time

Fig. 9: Influence of k-Graph parameters on (a) accuracy and (b)
execution time (green hover the default values of these parameters).

have similar execution times, differing by about 10 seconds.
Time2Feat is the slowest, taking 50 seconds longer, while
k-Means is the fastest, likely due to its C implementation.
Discussion The observed results indicate that extracting nu-
merous graphs does not compromise the algorithm’s efficiency,
as it maintains competitive performance compared to widely
adopted methods, as required by the first challenge. However,
it is noteworthy that k-Means, employing a straightforward
solution, outperforms other approaches regarding speed.

C. Parameter Influence

Presentation As introduced in Section III, k-Graph has three
main parameters: Number of Lengths (M) for randomly
selected subsequence lengths, Sample (smpl) to reduce sub-
sequences in PCA training, and Rate Maximum Length (rml)
for the upper limit of subsequence length selection. Fig-
ure 9 demonstrates parameter impacts across UCR Datasets,
showing effectiveness (ARI) in column (a) and efficiency
(seconds) in column (b). The rows show variations in M (eight
values), smpl (five values), and rml (five values) parameters
respectively. For consistency, default values of M = 30,
smpl = 10, and rml = 0.4 are maintained when not studied.
Discussion The experimentation with the parameter M reveals
that increasing the number of lengths positively impacts accu-
racy until it reaches a plateau at around M = 30 lengths.

Node 3 for Cluster 3
! !

"! : 0.98

"#"! ! ! : 1.00

Node 2 for Cluster 2
! #

"" : 0.98

"#"" ! # : 0.98

Node 4 for Cluster 4
! $

"# : 1.00

"#"# ! $: 1.00
Node 1 for Cluster 1

! %
"$: 1.00

"#"$! % : 0.33

2750 140

2750 140

2750 140

2750 140

2750 140

2750 140

2750 140

2750 140

(a) Trace dataset: subset of the Transient Classification Benchmark
Class 1 Class 2 Class 3 Class 4

!-
Gr

ap
h

∅

∅

(b) Most interpretable Graph

Fig. 10: k-Graph interpretability for the Trace dataset from the
UCR-Archive. The highlighted nodes are the most representative and
exclusive subsequences identified by k-Graph for each cluster.

Beyond this point, the accuracy shows little improvement.
Correspondingly, as the lengths increase, the time required
by the algorithm also increases, demonstrating a trade-off
between accuracy and computational efficiency. A favorable
balance between execution time and performance is achieved
with approximately 30 different lengths. Examining the smpl
parameter indicates that reducing the number of subsequences
minimally impacts performance until around 10. However, it
significantly affects the algorithm’s execution time. As we
decrease the number of subsequences, the time performance
improves. Achieving a good balance involves reducing the
number of subsequences by 10 times. Finally, the analysis
of the rml parameter shows that adopting 40%(0.4) of the
length of the shortest series in the dataset as the maximum
subsequence length is the optimal solution. This choice pro-
vides similar execution times while demonstrating superior
performance in terms of effectiveness.

D. k-Graph Interpretability

Presentation In this section, we explore how k-Graph enhances
the interpretability of clustering results compared to k-Shape.
While k-Shape and k-Graph differ in interpretability—k-
Graph offers a graph-based, subsequence-based interpretation,
whereas k-Shape provides centroids of the same size as the
dataset’s time series—we still present k-Shape’s centroids to
highlight the interpretability advantage of k-Graph. Figure 10
provides visual insights using the Trace dataset from the UCR-
Archive, which contains simulated time series representing
various instrument failures in nuclear power plants (four

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

• !! "#: 0.96

• "#"# !! : 0.78

1300 65

1300 65

• !$ "%: 0.77

• "#"% !$: 0.95

• !& "': 0.97

• "#"' !& : 0.60

$! : Example of Class 1

$$: Example of Class 2

$& : Example of Class 3

1300 65

(a) CBF dataset (b) !-Graph output (c) Interpretation

!! for cluster 1

!$ for
cluster 2

!& for cluster 3

(b.1) Most “important” Node
for each cluster

(b.2) Representativity and
Exclusivity

If a time series T belongs to cluster 1,
then, a subsequence of T is similar to !!
If a time series contains a subsequence similar to !! ,
then, it belongs to cluster 1

If a time series T belongs to cluster 2,
then, a subsequence of T is similar to !$
If a time series contains a subsequence similar to !$,
then, it belongs to cluster 2

If a time series T belongs to cluster 3,
then, a subsequence of T is similar to !&
If a time series contains a subsequence similar to !& ,
then, it belongs to cluster 3, or cluster 2 or cluster 1

High value

High value

High value

High value

High value

low value

Dataset with 3 classes

!!

!$

!′$

!&

!! belongs to #!

!$ belongs to #$

!′$ and !& belongs
to #&

!-Graph

Fig. 11: Interpretability of k-Graph clustering applied to the CBF dataset.

classes). In this figure, we observe the graph Gℓ̄ for the
optimal length ℓ̄ = 36, along with the most representative and
exclusive nodes for each cluster (N̄C1

= N (1), N̄C2
= N (2),

N̄C3
= N (3), N̄C4

= N (4)). The colored nodes in Figure 10
represent those with an exclusivity above 0.9 (i.e., the γ-
graphoids with γ = 0.9).
Discussion In Figure 10, most nodes represent subsequences
from all clusters (i.e., grey nodes), but some, like Node
N (2), show high representativity and exclusivity. This figure
highlights k-Graph’s interpretability capabilities, showing that
its clustering partition aligns with the labels of the Trace
dataset. The graphoids effectively identify the discriminant
features of clusters 2, 3, and 4. Notably, Node N (4) has
|N (4)|C4

= 1 and PrC4
(N (4)) = 1, indicating it is crossed

only by time series from cluster 1.
For cluster 1, the distinctive characteristic is the absence

of discriminative patterns, as indicated by Node N (1) with
|N (1)|C1

= 1 and PrC1
(N (1)) = 0.33. While this node is

highly representative, its low exclusivity suggests that cluster 1
lacks specific patterns, which aligns with the unique nature of
class 1 in the Trace dataset. This ability to detect clusters with-
out discriminant subsequences highlights k-Graph’s robustness
in handling diverse data structures. The representativity and
exclusivity measures are crucial for users to evaluate the
validity of identified nodes, providing a mechanism to filter
out potential misinterpretations and ensuring that the clustering
results are both meaningful and actionable.

E. Interpretability in Practice
Even though the graph can be important for the user to

interact and explore the clustering result, the graph is not
necessary for interpreting the clustering partition. In practice,
we only need to return the most “important” nodes (i.e., with
the highest representativity and exclusivity).

Figure 11 depicts the k-Graph output on the CBF datasets
(illustrated in Figure 11(a)). k-Graph can automatically select
the most representative and exclusive node for each cluster
(illustrated in Figure 11(b)). Each node is associated with
its corresponding exclusivity (PrCi(N)) and representativity
(|N |Ci) values. These values give a direct interpretation of the
clustering. For example, the high representativity (|N̄1|C1

=
0.96) and high exclusivity (PrC1

(N̄1) = 0.78) of N̄1 imply

Class 1 example

Class 2 example
2400 120

2400 120

Class 2 example

2900 145

Class 1 example

2900 145

1200 60

Class 2 example

Class 1 example

1200 60

(a) Coffee dataset

Most interpretable
subsequence !!of Cluster 2

Most interpretable
subsequence !" of Cluster 1

"-Shape centroid for
cluster 1

"-Shape centroid for
cluster 2

"-Shape centroid for
cluster 1

"-Shape centroid for
cluster 2

"-Shape centroid for
cluster 1

"-Shape centroid for
cluster 2

Most interpretable
subsequence !"of Cluster 1

Most interpretable
subsequence !! of Cluster 2

(a.2) !-Graph
interpretability

(a.1) !-Shape
interpretability

(b.2) !-Graph
interpretability

(c.2) !-Graph
interpretability

(b) DodgerLoopWeekend
dataset

(c) FreezerRegularTrain
dataset

(b.1) !-Shape
interpretability

(c.1) !-Shape
interpretability

!! #$: 0.99
#$#$!! : 0.91

!" #%: 0.88
#$#% !" : 0.98

Most interpretable
subsequence !"of Cluster 1

!! #$: 0.98
#$#$!! : 0.89

Most interpretable
subsequence !!of Cluster 2

!" #%: 0.98

#$#% !" : 0.72

!" #%: 1.00
#$#% !" : 0.82

!! #$: 0.96
#$#$!! : 0.89

Fig. 12: Comparisons of k-Graph and k-Shape interpretability for
each cluster obtained on three UCR-Archive datasets. (*.1) centroids
(in red) computed using k-Shape. (*.2) most representative and
exclusive node N̄ .

the following interpretation: ”A time series belongs to cluster
1 if and only if a subsequence of this time series is similar to
N̄1”. We can see indeed in Figure 11(a) that a subsequence
of T1 (called S1) is similar to N̄1.

On the contrary, the high representativity (|N̄3|C3
= 0.96)

and medium exclusivity (PrC3
(N̄3) = 0.60) of N̄3 imply the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

following interpretation: ”A time series belongs to cluster 3 if
a subsequence of this time series is similar to N̄3. However,
a time series T containing a subsequence similar to similar
to N̄3 does not necessarily mean that T belongs to cluster
3”. Figure 11(a) confirms that a subsequence of T2 and T3

(called S′
2 and S3 respectively) are similar to N̄3. However,

T2 belongs to cluster 2, and T3 belongs to cluster 3.
In general, k-Graph helps us to understand that the CBF

dataset is composed of (i) time series with a rapid increase
followed by a slow decrease (class 1 matched by cluster 1), (ii)
time series with a slow increase followed by a rapid decrease
(class 2 matched by cluster 2), and (iii) time series that do
not contains rapid increase or decrease, and that contain a flat
subsequence (class 3 matched by cluster 3).

F. Interpretability Examples

Presentation In Figure 12, we provide comparisons between
k-Shape’s and k-Graph’s interpretability on three additional
datasets of the UCR-Archive: (a) Coffee dataset with two
classes, (b) DodgerLoopWeekend datasets with two classes, (c)
FreezerRegularTrain datasets with two classes. For k-Shape,
interpretability is driven by inspecting the centroids of each
cluster. For k-Graph, we provide the most representative and
exclusive nodes (due to lack of space, we omit plotting the
corresponding graphs) for each cluster obtained with k-Graph.
Discussion Figure 12 highlights the most representative nodes
for each cluster in four UCR-Archive datasets. In all cases,
k-Graph provides clustering consistent with the labels. For
DodgerLoopWeekend (Figure 12(b.2)),the nodes clearly cor-
respond to class-specific patterns.

In contrast, the Coffee and FreezerRegularTrain datasets
(Figure 12(a) and (c)) present more subtle patterns. In the
Coffee dataset, the nodes reveal that class differences lie in
the relative heights of two central peaks.

For FreezerRegularTrain, despite similar time series, k-
Graph identifies nodes that highlight subtle differences in the
initial increase, with cluster 2 showing a more abrupt rise
and longer plateau. These nodes are highly representative and
exclusive for their clusters (|N̄1|C1

= 0.88, |N̄2|C2
= 0.98

and PrC1
(N̄1) = 0.98, PrC2

(N̄2) = 0.89), aligning with
discriminative features noted in the UCR-Archive [23]. These
examples demonstrate the effectiveness of k-Graph in identi-
fying relevant patterns for complex tasks.

Unlike k-Graph, the centroids computed with k-Shape often
lack sufficient information to distinguish between classes. In
examples, such as Coffee, DodgerLoopWeekend, and Freez-
erRegularTrain, distinguishing between classes is challenging.
Additional comparisons on UCR-Archive datasets are avail-
able in our GitHub repository. This analysis suggests that k-
Graph offers improved interpretability over previous solutions.

V. CONCLUSIONS

Despite significant interest in time series clustering, many
existing methods lack interpretability. We introduce k-Graph,
a novel graph-based approach that clusters time series datasets
while providing interpretable clustering partitions. Our exper-
iments show that k-Graph effectively addresses the challenges
outlined in Section I. It combines the strengths of existing
methods by preserving temporal dependencies and achieving

performance on par with raw and deep learning approaches.
Additionally, it enhances interpretability without sacrificing
granularity, a common issue with feature-based methods.

In future work, we aim to explore the use of Graph
Neural Networks in our clustering process and extend our
approach to multivariate time series. We note that applying k-
Graph to multivariate time series is not straight-forward. The
main challenge in doing so is due to the inter-dependencies
among dimensions, which should be considered in the graph
embedding step. This would lead to a potential explosion of
the graph size. We consider this problem non-trivial, and a
very interesting future research direction.

VI. ACKNOWLEDGEMENTS

Supported by EU Horizon projects AI4Europe (101070000),
TwinODIS (101160009), ARMADA (101168951), DataGEMS
(101188416), RECITALS (101168490).

REFERENCES

[1] T. Palpanas and V. Beckmann, “Report on the first and second interdis-
ciplinary time series analysis workshop (itisa),” SIGMOD Rec., vol. 48,
no. 3, p. 36–40, Dec. 2019.

[2] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,
and A. P. Sheth, “Machine learning for internet of things data analysis: a
survey,” Digital Communications and Networks, vol. 4, no. 3, pp. 161–
175, 2018.

[3] A. Bagnall, R. L. Cole, T. Palpanas, and K. Zoumpatianos, “Data Series
Management (Dagstuhl Seminar 19282),” Dagstuhl Reports, vol. 9,
no. 7, pp. 24–39, 2019.

[4] T. Palpanas, “Data series management: The road to big sequence
analytics,” SIGMOD Rec., vol. 44, no. 2, p. 47–52, 2015.

[5] K. Zoumpatianos and T. Palpanas, “Data series management: Fulfilling
the need for big sequence analytics,” in 2018 IEEE 34th International
Conference on Data Engineering (ICDE), 2018, pp. 1677–1678.

[6] T. Palpanas, “Evolution of a data series index,” in ISIP, 2019.
[7] B. Peng, P. Fatourou, and T. Palpanas, “Paris+: Data series indexing on

multi-core architectures,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 5,
pp. 2151–2164, 2021.

[8] Q. Wang and T. Palpanas, “Deep Learning Embeddings for Data Series
Similarity Search,” in SIGKDD, 2021.

[9] L. Ye and E. J. Keogh, “Time series shapelets: a novel technique that
allows accurate, interpretable and fast classification,” Data Min. Knowl.
Discov., vol. 22, no. 1-2, pp. 149–182, 2011.

[10] P. Schäfer and U. Leser, “Fast and accurate time series classification
with WEASEL,” in Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, CIKM 2017, Singapore,
November 06 - 10, 2017, 2017, pp. 637–646.

[11] C. W. Tan, F. Petitjean, and G. I. Webb, “Fastee: Fast ensembles
of elastic distances for time series classification,” Data Min. Knowl.
Discov., vol. 34, no. 1, pp. 231–272, 2020.

[12] H. Ismail Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. Schmidt,
J. Weber, G. Webb, L. Idoumghar, P. Muller, and F. Petitjean, “Incep-
tiontime: finding alexnet for time series classification,” Data Mining and
Knowledge Discovery, vol. 34, p. 1936–1962, 2020.

[13] L. Ulanova, N. Begum, and E. J. Keogh, “Scalable clustering of time
series with u-shapelets,” in Proceedings of the 2015 SIAM International
Conference on Data Mining, Vancouver, BC, Canada, April 30 - May
2, 2015, S. Venkatasubramanian and J. Ye, Eds., 2015, pp. 900–908.

[14] J. Paparrizos and L. Gravano, “k-shape: Efficient and accurate clustering
of time series,” SIGMOD Rec., vol. 45, no. 1, pp. 69–76, 2016.

[15] X. Li, J. Lin, and L. Zhao, “Linear time complexity time series clustering
with symbolic pattern forest,” in IJCAI 2019, Macao, China, August 10-
16, 2019, 2019, pp. 2930–2936.

[16] J. Paparrizos, Y. Kang, P. Boniol, R. S. Tsay, T. Palpanas, and M. J.
Franklin, “TSB-UAD: An End-to-End Benchmark Suite for Univariate
Time-Series Anomaly Detection,” PVLDB, 2022.

[17] P. Boniol and T. Palpanas, “Series2graph: Graph-based subsequence
anomaly detection for time series,” Proc. VLDB Endow., vol. 13, no. 12,
p. 1821–1834, 2020.

[18] Y. Gao, J. Lin, and C. Brif, “Ensemble grammar induction for detecting
anomalies in time series,” in Proceedings of the 23rd International Con-
ference on Extending Database Technology, EDBT 2020, Copenhagen,
Denmark, March 30 - April 02, 2020, 2020, pp. 85–96.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

[19] P. Boniol, M. Linardi, F. Roncallo, T. Palpanas, M. Meftah, and E. Remy,
“Unsupervised and Scalable Subsequence Anomaly Detectionin Large
Data Series,” VLDBJ, 2021.

[20] P. Boniol, J. Paparrizos, T. Palpanas, and M. J. Franklin, “SAND:
streaming subsequence anomaly detection,” Proc. VLDB Endow., vol. 14,
no. 10, pp. 1717–1729, 2021.

[21] Y. Zhu, A. Mueen, and E. J. Keogh, “Matrix profile IX: admissible time
series motif discovery with missing data,” IEEE Trans. Knowl. Data
Eng., vol. 33, no. 6, pp. 2616–2626, 2021.

[22] A. Bonifati, F. Del Buono, F. Guerra, and D. Tiano, “Time2feat: learning
interpretable representations for multivariate time series clustering,”
Proceedings of the VLDB Endowment (PVLDB), vol. 16, no. 2, pp.
193–201, 2022.

[23] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, and E. J. Keogh, “The ucr time series archive,”
IEEE/CAA Journal of Automatica Sinica, vol. 6, pp. 1293–1305, 2018.

[24] T. W. Liao, “Clustering of time series data—a survey,” Pattern recogni-
tion, vol. 38, no. 11, pp. 1857–1874, 2005.

[25] J. Paparrizos and L. Gravano, “K-shape: Efficient and accurate clustering
of time series,” SIGMOD Rec., vol. 45, no. 1, p. 69–76, 2016.

[26] J. Paparrizos and S. P. T. Reddy, “Odyssey: An engine enabling
the time-series clustering journey,” Proc. VLDB Endow., vol. 16,
no. 12, p. 4066–4069, Aug. 2023. [Online]. Available: https:
//doi.org/10.14778/3611540.3611622

[27] N. Begum, L. Ulanova, J. Wang, and E. Keogh, “Accelerating dynamic
time warping clustering with a novel admissible pruning strategy,” in
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 49–58.
[Online]. Available: https://doi.org/10.1145/2783258.2783286

[28] A. Javed, D. M. Rizzo, B. S. Lee, and R. Gramling, “Somtimes:
self organizing maps for time series clustering and its application
to serious illness conversations,” Data Min. Knowl. Discov., vol. 38,
no. 3, p. 813–839, Oct. 2023. [Online]. Available: https://doi.org/10.
1007/s10618-023-00979-9

[29] X. Wang, K. Smith, and R. Hyndman, “Characteristic-based clustering
for time series data,” Data mining and knowledge Discovery, vol. 13,
pp. 335–364, 2006.

[30] D. Guijo-Rubio, A. M. Durán-Rosal, P. A. Gutiérrez, A. Troncoso, and
C. Hervás-Martı́nez, “Time-series clustering based on the characteriza-
tion of segment typologies,” IEEE Transactions on Cybernetics, vol. 51,
no. 11, pp. 5409–5422, 2021.

[31] D. Tiano, A. Bonifati, and R. Ng, “Featts: Feature-based time series
clustering,” in Proceedings of the 2021 International Conference on
Management of Data, 2021, pp. 2784–2788.

[32] A. Alqahtani, M. Ali, X. Xie, and M. W. Jones, “Deep time-series
clustering: A review,” Electronics, vol. 10, no. 23, p. 3001, 2021.

[33] F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, “Learning deep repre-
sentations for graph clustering,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 28, no. 1, 2014.

[34] N. S. Madiraju, S. M. Sadat, D. Fisher, and H. Karimabadi, “Deep tem-
poral clustering : Fully unsupervised learning of time-domain features,”
CoRR, vol. abs/1802.01059, 2018.

[35] J. Schneider, P. Wenig, and T. Papenbrock, “Distributed detection of
sequential anomalies in univariate time series,” The VLDB Journal,
vol. 30, no. 4, pp. 579–602, 2021.

[36] Z. Cheng, Y. Yang, S. Jiang, W. Hu, Z. Ying, Z. Chai, and C. Wang,
“Time2graph+: Bridging time series and graph representation learning
via multiple attentions,” IEEE Transactions on Knowledge and Data
Engineering, pp. 1–1, 2021.

[37] D. A. Soltysik, D. M. Thomasson, S. Rajan, and N. M. Biassou, “Im-
proving the use of principal component analysis to reduce physiological
noise and motion artifacts to increase the sensitivity of task-based fmri,”
Journal of Neuroscience Methods, vol. 241, pp. 18–29, 2015.

[38] J. Lei and V. Q. Vu, “Sparsistency and agnostic inference in sparse pca,”
Annals of Statistics, vol. 43, pp. 299–322, 2014.

[39] A. Strehl and J. Ghosh, “Cluster ensembles — a knowledge reuse
framework for combining multiple partitions,” J. Mach. Learn. Res.,
vol. 3, pp. 583–617, 2003.

[40] A. L. N. Fred and A. K. Jain, “Combining multiple clusterings using
evidence accumulation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 27, pp. 835–850, 2005.

[41] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward
feature space analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 603–619, 2002.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res.,
vol. 12, p. 2825–2830, 2011.

[43] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data
clustering method for very large databases,” in Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, 1996,
p. 103–114.

[44] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics:
ordering points to identify the clustering structure,” in Proceedings of
the 1999 ACM SIGMOD International Conference on Management of
Data, 1999, p. 49–60.

[45] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-based
clustering based on hierarchical density estimates,” in Advances in
Knowledge Discovery and Data Mining, 2013, pp. 160–172.

[46] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,” in
KDD’96, 1996, p. 226–231.

[47] X. Li, J. Lin, and L. Zhao, “Linear time complexity time series clustering
with symbolic pattern forest,” in IJCAI-19, 2019, pp. 2930–2936.

[48] F. M. Bianchi, S. Scardapane, S. Løkse, and R. Jenssen, “Reservoir
computing approaches for representation and classification of multivari-
ate time series,” IEEE Transactions on Neural Networks and Learning
Systems, 2020.

[49] D. Steinley, “Properties of the hubert-arable adjusted rand index.”
Psychological methods, vol. 9, no. 3, p. 386, 2004.

Paul Boniol is a Researcher at Inria, in the VALDA
project-team. Previously, he worked at ENS Paris-
Saclay, Université Paris Cité, EDF Research, and
Ecole Polytechnique. His research interests lie be-
tween data management, machine learning, and
time-series analysis. His Ph.D. focused on subse-
quence anomaly detection and time-series classifi-
cation, and won several PhD awards, including the
Paul Caseau Prize, supported by the Academy of
Sciences of France. His work has been published in
the top data management and data mining venues.

Donato Tiano is a Postdoctoral Researcher at the
University of Modena and Reggio Emilia, part of the
SoftLab group. He has worked at the University of
British Columbia and the CNRS LIRIS lab at Lyon
1 University. His research focuses on interpretable
solutions in time series analysis and text mining.
Donato’s work is published in leading data manage-
ment and mining venues, where he also serves on
the program committee.

Angela Bonifati is a Senior member of the French
IUF and a Distinguished Professor in Computer
Science at Lyon 1 University (France), affiliated with
the CNRS Liris research lab. She is the Head of the
Database group in the same lab. Since 2020, she
is also an Adjunct Professor at the University of
Waterloo (Canada) in the Data Systems Group. She
has co-authored more than 200 publications in data
management, including five Best Paper Awards, two
books and an invited ACM Sigmod Record paper.
She is the recipient of the prestigious IEEE TCDE

Impact Award 2023 and a co-recipient of an ACM Research Highlights Award
2023. She is the Program Chair of ICDE 2025, the General Chair of VLDB
2026 and an Associate Editor for the Proceedings of VLDB and for several
other journals (VLDB Journal, IEEE TKDE, ACM TODS, etc.).

Themis Palpanas is an elected Senior Member of
the French University Insitute (IUF), and Distin-
guished Professor of computer science at Universite
Paris Cite (France). He has authored 14 patents,
received 3 best paper awards and the IBM SUR
award, has been Program Chair for VLDB 2025 and
IEEE BigData 2023, General Chair for VLDB 2013,
and has served Editor in Chief for BDR. He has been
working in the fields of Data Series Management and
Analytics for more than 15 years, and has developed
several of the state of the art techniques.

