
Blocking Techniques for
Web-scale Entity Resolution

George Papadakis – Themis Palpanas
IMIS, Athena RC Paris Descartes University

 gpapadis@imis.athena.innovation.gr themis@mi.parisdescartes.fr

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

mailto:gpapadis@imis.athena.innovation.gr
mailto:themis@mi.parisdescartes.fr

Outline

1. Introduction to Entity Resolution

2. Introduction to Blocking

3. Blocking Methods for Databases

4. Blocking Methods for Web Data

5. Meta-blocking

6. Block Processing Techniques

7. ER framework

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

 Part 1:

 Introduction to Entity Resolution

Entities: an invaluable asset
“Entities” is what a large part of our knowledge is about:

Persons

Organizations

Projects

Locations

Products
Events

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

However …

How many names, descriptions or IDs (URIs) are

used for the same real-world “entity”?

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

However …

How many names, descriptions or IDs (URIs) are

used for the same real-world “entity”?

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain

Londain Londe Londen Londen Londen Londinium
London Londona Londonas Londoni Londono Londra
Londres Londrez Londyn Lontoo Loundres Luân Đôn
Lunden Lundúnir Lunnainn Lunnon لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 …

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

However …

How many names, descriptions or IDs (URIs) are

used for the same real-world “entity”?

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain

Londain Londe Londen Londen Londen Londinium
London Londona Londonas Londoni Londono Londra
Londres Londrez Londyn Lontoo Loundres Luân Đôn
Lunden Lundúnir Lunnainn Lunnon لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 …

capital of UK, host city of the IV Olympic Games, host city
of the XIV Olympic Games, future host of the XXX
Olympic Games, city of the Westminster Abbey, city of
the London Eye, the city described by Charles Dickens in
his novels, …

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

However …

How many names, descriptions or IDs (URIs) are

used for the same real-world “entity”?

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain

Londain Londe Londen Londen Londen Londinium
London Londona Londonas Londoni Londono Londra
Londres Londrez Londyn Lontoo Loundres Luân Đôn
Lunden Lundúnir Lunnainn Lunnon لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 …

capital of UK, host city of the IV Olympic Games, host city
of the XIV Olympic Games, future host of the XXX
Olympic Games, city of the Westminster Abbey, city of
the London Eye, the city described by Charles Dickens in
his novels, …

http://sws.geonames.org/2643743/
http://en.wikipedia.org/wiki/London
http://dbpedia.org/resource/Category:London
…

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

◦ London, KY

◦ London, Laurel, KY

◦ London, OH

◦ London, Madison, OH

◦ London, AR

◦ London, Pope, AR

◦ London, TX

◦ London, Kimble, TX

◦ London, MO

◦ London, MO

◦ London, London, MI

◦ London, London, Monroe, MI

◦ London, Uninc Conecuh County, AL

◦ London, Uninc Conecuh County, Conecuh, AL

◦ London, Uninc Shelby County, IN

◦ London, Uninc Shelby County, Shelby, IN

◦ London, Deerfield, WI

◦ London, Deerfield, Dane, WI

◦ London, Uninc Freeborn County, MN

◦ ...

How many “entities” have the same name?

… or …

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

◦ London, KY

◦ London, Laurel, KY

◦ London, OH

◦ London, Madison, OH

◦ London, AR

◦ London, Pope, AR

◦ London, TX

◦ London, Kimble, TX

◦ London, MO

◦ London, MO

◦ London, London, MI

◦ London, London, Monroe, MI

◦ London, Uninc Conecuh County, AL

◦ London, Uninc Conecuh County, Conecuh, AL

◦ London, Uninc Shelby County, IN

◦ London, Uninc Shelby County, Shelby, IN

◦ London, Deerfield, WI

◦ London, Deerfield, Dane, WI

◦ London, Uninc Freeborn County, MN

◦ ...

◦ London, Jack
2612 Almes Dr
Montgomery, AL
(334) 272-7005

◦ London, Jack R
2511 Winchester Rd
Montgomery, AL 36106-3327
(334) 272-7005

◦ London, Jack
1222 Whitetail Trl
Van Buren, AR 72956-7368
(479) 474-4136

◦ London, Jack
7400 Vista Del Mar Ave
La Jolla, CA 92037-4954
(858) 456-1850

◦ ...

How many “entities” have the same name?

… or …

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Content Providers

How many content types / applications provide

valuable information about each of these “entities”?

News about London
reviews on hotels in London

Pictures and tags about London

Videos and tags for London

Social networks in London

Wiki pages about the London

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Preliminaries on Entity Resolution

Entity Resolution [Christen, TKDE2011]:
 identifies and aggregates the different entity profiles/records
that actually describe the same real-world object.

Application areas:

 Linked Data, Social Networks, census data, price comparison

 portals

Useful because:

• improves data quality and integrity

• fosters re-use of existing data sources.

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Types of Entity Resolution

The input of ER consists of entity collections that can be of two

types [Christen, TKDE2011]:

• clean, which are duplicate-free

 e.g., DBLP, ACM Digital Library, Wikipedia, Freebase

• dirty, which contain duplicate entity profiles in themselves

 e.g., Google Scholar, CiteseerX

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Types of Entity Resolution

The input of ER consists of entity collections that can be of two

types [Christen, TKDE2011]:

• clean, which are duplicate-free

 e.g., DBLP, ACM Digital Library, Wikipedia, Freebase

• dirty, which contain duplicate entity profiles in themselves

 e.g., Google Scholar, CiteseerX

Based on the quality of input, we distinguish ER into 3 sub-tasks:

• Clean-Clean ER (a.k.a. Record Linkage in databases)

• Dirty-Clean ER

• Dirty-Dirty ER

Equivalent to Dirty ER
(a.k.a. Deduplication in databases)

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Computational cost

ER is an inherently quadratic problem (i.e., O(n2)):

every entity has to be compared with all others

ER does not scale to large entity collections (e.g., Web Data).

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Computational cost

ER is an inherently quadratic problem (i.e., O(n2)):

every entity has to be compared with all others

ER does not scale to large entity collections (e.g., Web Data)

Solution: Blocking
• group similar entities into blocks

• execute comparisons only inside blocks

• approximate solution

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Computational cost

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

N entities

N entities

Brute-force
approach

Pairs of
Duplicates

Blocking

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

 Part 2:

 Introduction to Blocking

Fundamental Assumptions

1. Every entity profile consists of a uniquely identified set of
name-value pairs.

2. Every entity profile corresponds to a single real-world
object.

3. Two matching profiles are detected as long as they co-
occur in at least one block.

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

General Principles

1. Represent each entity by one or more blocking keys.

2. Place into blocks all entities having the same or similar
blocking key.

Measures for assessing block quality:

– Pairs Completeness: 𝑃𝐶 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
 (recall)

– Pairs Quality: 𝑃𝑄 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠
 (precision)

Trade-off!

Papadakis & Palpanas, Tutorial@WISE14,

12. October 2014

Problem Definition

Given one dirty (Dirty ER) or two clean (Clean-Clean ER)

entity collections, cluster their profiles into blocks and

process them so that both PC and PQ are maximized.

disclaimer:

Precision of entity matching is dependent on the entity similarity
measures, and is orthogonal to the above problem.

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Categorization of Blocking Methods

1. Definition of blocking keys

– Supervised

– Unsupervised

2. Dependency on schema

– Schema-based

– Schema-agnostic

3. Redundancy

– Disjoint blocks

– Overlapping blocks

 Redundancy-positive

 Redundancy-neutral

 Redundancy-negative

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Unsupervised Blocking Methods

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Disjoint
Blocks

Overlapping Blocks

Redundancy-
negative

Redundancy-
neutral

Redundancy-
positive

Schema-
based

Standard
Blocking

Canopy
Clustering

Sorted
Neighborhood

1.Q-grams Blocking
2.Suffix Array

Schema-
agnostic - - Semantic Indexing

1. Token Blocking
2. Agnostic Clustering
3. URI Semantics
4. TYPiMatch

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

 Part 3:

 Blocking Methods for Databases

General Principles

Mostly schema-based techniques.

Rely on two assumptions:

1. A-priori known schema → no noise in attribute names.

2. For each attribute name we know some metadata:

– level of noise (e.g., spelling mistakes, false or missing
values)

– distinctiveness of values

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Standard Blocking

Earliest, simplest form of blocking.

Algorithm:

1. Select the most appropriate attribute name w.r.t. noise and
distinctiveness.

2. Transform every value into a single Blocking Key (BK)

3. For each BK, create one block that contains all entities
having this BK in their transformation.

Works as a hash function!

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Example of Standard Blocking

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Blocks on zip_code:

Q-grams Blocking [Baxter et. al., KDD 2003] [Gravano et. al., VLDB 2001]

Converts every BK into the list of its q-grams.

For q=2, the BKs 91456 and 94520 yield the following blocks:

• Advantage:

 robust to noisy BKVs

• Drawback:

 larger blocks → higher computational cost

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Suffix Array Blocking [Aizawa et. al., WIRI 2005][de Vries et. al., CIKM 2009]

Converts every BKV to the list of its suffixes that are longer than a
predetermined minimum length lmin.

For lmin =3, the keys 91456 and 94520 yield the blocks:

• Advantage:

 robust to noisy BKVs

• Drawback:

 larger blocks → higher computational cost

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list.

3. At each iteration, it compares
the entities that co-occur
within the window.

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list.

3. At each iteration, it compares
the entities that co-occur
within the window.

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list.

3. At each iteration, it compares
the entities that co-occur
within the window.

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Sorted Neighborhood [Hernandez et. al., SIGMOD 1995]

1. Entities are sorted in
alphabetic order of BKs.

2. A window of fixed size
slides over the sorted list.

3. At each iteration, it compares
the entities that co-occur
within the window.

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Canopy Clustering [McCallum et. al., KDD 2000]

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Summary of Blocking for Databases [Christen, TKDE2011]

They typically employ redundancy to ensure robustness in the

context of noise at the cost of lower efficiency.

Drawbacks:

1. Too many parameters to be configured

 Canopy Clustering has the following parameters:

I. String matching method

II. Threshold t1

III. Threshold t2

2. Schema-dependent

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

 Part 4:

 Blocking Methods for Web Data

 Characteristics of Web Data
Voluminous, (semi-)structured datasets.

• DBPedia 3.4: 36.5 million triples and 2.1 million entities

• BTC09: 1.15 billion triples, 182 million entities.

Users are free to insert not only attribute values but also

attribute names  high levels of heterogeneity.

• DBPedia 3.4: 50,000 attribute names

• Google Base:100,000 schemata for 10,000 entity types

• BTC09: 136K attribute names

Large portion of data originating from automatic information

extraction techniques  noise, tag-style values.

Papadakis & Palpanas, Tutorial@WISE14,

12. October 2014

Example of Web Data

Noise

Attribute
Heterogeneity

Loose Schema
Binding

Split
values

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Token Blocking [Papadakis et al., WSDM2011]

Functionality:

1. given an entity profile, it extracts all tokens that are
contained in its attribute values.

2. creates one block for every distinct token → each block
contains all entities with the corresponding token*.

Attribute-agnostic blocking scheme:

• completely ignores attribute names

• considers all attribute values

• redundancy-positive blocks

• parameter-free!

*Each block should contain at least two entities.
Papadakis & Palpanas, Tutorial@WISE14,

12. October 2014

Token Blocking Example

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Attribute-Clustering Blocking [Papadakis et. al., TKDE2013]

Goal:
group attribute names into clusters s.t. we can apply Token
Blocking independently inside each cluster, without affecting
effectiveness → smaller blocks, higher efficiency.

Algorithm:

• Create a graph with a node for every attribute name

• For each attribute name ni

– Find the most similar nj

– If sim(ni,nj) > 0, add an edge <ni,nj>
• Extract connected components
• Put all singleton nodes in a “glue” cluster

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Attribute-Clustering Blocking [Papadakis et. al., TKDE2013]

Parameters:

1. Representation model

– Character n-grams, Character n-gram graphs, Tokens

2. Similarity Metric

– Jaccard, Graph Value Similarity, TF-IDF

Similar to Schema Matching, but fundamentally different:

1. Associated attribute names do not have to be semantically
equivalent. They only have to produce good blocks.

2. All singleton attributes are associated with each other.

3. Unlike Schema Matching, it scales to the extreme levels of
heterogeneity of Web Data.

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

For Semantic Web data, three sources of evidence create blocks of
lower redundancy than Token Blocking:

1.Infix [Papadakis et al., iiWAS 2010]

2. Infix Profile

3.Literal Profile

Evidence for Semantic Web Blocking

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

The above sources of evidence lead to 3 parameter-free blocking
methods:

1. Infix Blocking
every block contains all entities whose URI has a specific Infix

2. Infix Profile Blocking
every block corresponds to a specific Infix (of an attribute value) and contains
all entities having it in their Infix Profile

3. Literal Profile Blocking
every block corresponds to a specific token and contains all entities having it
in their Literal Profile

Individually, these atomic methods have limited coverage and,

thus, low effectiveness (e.g., Infix Blocking does not cover blank

nodes). However, they are complementary and can be combined

into composite blocking methods for higher robustness and

effectiveness.

URI Semantics Blocking [Papadakis et al., WSDM2012]

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Summary of Blocking for Web Data

attribute-agnostic functionality → no schema semantics so as
to handle any level of heterogeneity

redundancy to reduce the likelihood of missed matches → high
recall

redundancy-positive blocks

Drawbacks:

• the blocks are overlapping (i.e., repeated comparisons)

• high number of comparisons between irrelevant entities →
low precision

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

 Part 5:

 Meta-blocking

Meta-blocking [Papadakis et. al., TKDE]

Goal:

restructure a redundancy-positive block collection into a
new one that contains a substantially lower number of
comparisons, while being equally effective (ΔPC≈0, ΔPQ»0).

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Type of pair-wise comparisons

Every comparison between entity profiles pi and pj belongs to
one of the following types:

1. Matching if pi ≡ pj.

2. Redundant if pi and pj co-occur and will be compared in
another block.

3. Superfluous if pi or pj or both of them have been matched
to some other entity (Clean-Clean ER).

4. Non-matching if pi ≠ pj and the comparison is not
redundant (for Dirty ER). For Clean-Clean ER, it should not
be superfluous either.

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Token Blocking Example

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Meta-blocking [Papadakis et. al., TKDE]

Goal:

restructure a redundancy-positive block collection into a new
one that contains substantially lower number of redundant
and non-matching comparisons, while maintaining the
original number of matching ones (ΔPC≈0, ΔPQ»0).

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Meta-blocking [Papadakis et. al., TKDE]

Goal:

restructure a redundancy-positive block collection into a new
one that contains substantially lower number of redundant
and non-matching comparisons, while maintaining the
original number of matching ones (ΔPC≈0, ΔPQ»0).

Main idea:

common blocks provide valuable evidence for the similarity of
entities → the more blocks two entities share, the more
similar and the more likely they are to be matching

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Outline of Meta-blocking

n1 n3

n2 n4

n1 n3

n2 n4

n1 n3

n2 n4

3

3

2 2
2

1

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Graph Building

For every block:

• for every entity → add a node

• for every pair of co-occurring entities → add an undirected
edge

Blocking graph:

• It eliminates all redundant comparisons → no parallel
edges.

• Low materialization cost → implicit materialization through
inverted indices or bit arrays.

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Edge Weighting

Five generic, attribute-agnostic weighting schemes that rely on
the following evidence:

• the number of blocks shared by two entities

• the size of the common blocks

• the number of blocks or comparisons involving each entity.

Computational Cost:

• In theory, equal to executing all pair-wise comparisons in the
given block collection.

• In practice, significantly lower because it does not employ
string similarity metrics.

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Weighting Schemes
1. Aggregate Reciprocal Comparisons Scheme (ARCS)

𝑤𝑖𝑗 =
1

||𝑏𝑘||
𝑏𝑘∈𝐵𝑖𝑗

2. Common Blocks Scheme (CBS)
𝑤𝑖𝑗 = |𝐵𝑖𝑗|

3. Enhanced Common Blocks Scheme (ECBS)

𝑤𝑖𝑗 = |𝐵𝑖𝑗| ∙ log
|𝐵|

|𝐵𝑖|
∙ log
|𝐵|

|𝐵𝑗|

4. Jaccard Scheme (JS)

𝑤𝑖𝑗 =
|𝐵𝑖𝑗|

𝐵𝑖 + 𝐵𝑗 − |𝐵𝑖𝑗|

5. Enhanced Jaccard Scheme (EJS)

𝑤𝑖𝑗 =
|𝐵𝑖𝑗|

𝐵𝑖 + 𝐵𝑗 −|𝐵𝑖𝑗|
∙ log

|𝑉𝐺|

|𝑣𝑖|
 ∙ log

|𝑉𝐺|

|𝑣𝑗|

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Graph Pruning

Pruning algorithms

1. Edge-centric

2. Node-centric

 they produce directed blocking graphs

Pruning criteria

Scope:

1. Global

2. Local

Functionality:

1. Weight thresholds

2. Cardinality thresholds
Papadakis & Palpanas, Tutorial@WISE14,

12. October 2014

Thresholds for Graph Pruning

Experiments show robust behavior of the following
configurations:

1. Weighted Edge Pruning (WEP)
 threshold: average weight across all edges

2. Cardinality Edge Pruning (CEP)
 threshold: K = BPE∙|E|/2

3. Weighted Node Pruning (WNP)
 threshold: for each node, the average weight of the
 adjacent edges

4. Cardinality Node Pruning (CNP)
 threshold: for each node, k=BPE-1

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Block Collecting

Transform the pruned blocking graph into a new

block collection.

For undirected blocking graphs:

 every retained edge creates a block of minimum size

For directed blocking graphs:

 for every node (with retained outgoing edges), we

 create a new block containing the corresponding

 entities

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

 Part 6:

 Block Processing Techniques

General Principles
Goals:

1. eliminate repeated comparisons,

2. discard superfluous comparisons,

3. avoid non-matching comparisons.

without affecting matching comparisons (i.e., effectiveness).

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

General Principles
Goals:

1. eliminate repeated comparisons,

2. discard superfluous comparisons,

3. avoid non-matching comparisons.

without affecting matching comparisons (i.e., effectiveness).

Taxonomy of techniques:

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Block Purging [Papadakis et al., WSDM2011] & [Papadakis et al., WSDM2012]

Oversized blocks: many, unnecessary
comparisons (redundant, non-matching,
superfluous).

Block Purging: discards oversized blocks
by setting an upper limit on:

• the size of each block

 [Papadakis et al., WSDM 2011],

• the cardinality of each block

 [Papadakis et al., WSDM 2012]

Core method:

• Low computational cost.

• Low impact on effectiveness.

• Boosts efficiency to a large extent.
Papadakis & Palpanas, Tutorial@WISE14,

12. October 2014

Comparison Propagation [Papadakis et al., SWIM 2011]

• Eliminates all redundant comparisons at no
cost in recall → naïve approach does not scale

• Enumerates Blocks

• Least Common Block Index condition.

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

 Part 7:

 ER Framework

ER-Framework

• Offers a suite of blocking methods for benchmarking.

• Code in Java (Netbeans project) available at:
http://sourceforge.net/projects/erframework .

• Continuous updates.

• Plan to add GUI, documentation and more methods by the end
of 2015.

• Established real-world and synthetic datasets available.

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

http://sourceforge.net/projects/erframework

Structure of the ER-Framework

• Effectiveness Layer

– Disk-based Methods

– Memory-based Methods

• Efficiency Layer

– Block-refinement

– Comparison-refinement

– Meta-blocking

• Utilities, Data Structures,…

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Effectiveness Layer

• Common interface for all methods imposed by
AbstractBlockingMethod.

– Input: dataset 1, dataset 2 (null for Dirty ER) in the form of
List<EntityProfile> and parameters, depending on the
approach

– Output: block collection of the form List<AbstractBlock>
returned by buildBlocks().

• It contains objects of type UnilateralBlock for Dirty ER
and of type BilateralBlock for Clean-Clean ER.

• Disk-based methods: first store blocks as a Lucene index on a
specified directory.

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Efficiency Layer

Common interface for all methods imposed by
AbstractEfficiencyMethod.

– Input: a block collection of the form
List<AbstractBlock>.

– Output: changes to the elements of the input
block collection.

– Functionality implemented by applyProcessing().

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Measuring Performance

Ground-truth of the form Set<IdDuplicates>, where
IdDuplicates contains a pair of entity ids.

Class BlockStatistics measures the performance of a
block collection wrt:

– PC, PQ, ||B||,|DB|, BC, CC.

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

Thank You!

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

References – Part A

[Aizawa et. al., WIRI 2005] Akiko N. Aizawa, Keizo Oyama, "A Fast Linkage Detection
Scheme for Multi-Source Information Integration" in WIRI, 2005.

[Baxter et. al., KDD 2003] R. Baxter, P. Christen, T. Churches, “A comparison of fast
blocking methods for record linkage”, in Workshop on Data Cleaning, Record Linkage
and Object Consolidation at KDD, 2003.

[Bilenko et. al., ICDM 2006] M. Bilenko, B. Kamath, R. Mooney, “Adaptive blocking:
Learning to scale up record linkage”, in ICDM, 2006.

[Christen, TKDE 2011] P. Christen, " A survey of indexing techniques for scalable
record linkage and deduplication.” in TKDE 2011.

[de Vries et. al., CIKM 2009] T. de Vries, H. Ke, S. Chawla, P. Christen, “Robust record
linkage blocking using sux arrays”, in CIKM, 2009.

[Gravano et. al., VLDB 2001] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S.
Muthukrishnan, D. Srivastava, “Approximate string joins in a database (almost) for
free’, in VLDB, 2001.

[Hernandez et. al., SIGMOD 1995] M. Hernandez, S. Stolfo, “The merge/purge
problem for large databases”, in SIGMOD, 1995.

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

References – Part B

[Jin et. al., DASFAA 2003] L. Jin, C. Li, S. Mehrotra, “Efficient record linkage in large
data sets”, in DASFAA, 2003.

[Kim et. al., EDBT 2010] H. Kim, D. Lee, “HARRA: fast iterative hashed record linkage
for large-scale data collections”, in EDBT, 2010.

[Madhavan et. al., CIDR 2007] J. Madhavan, S. Cohen, X. Dong, A. Halevy, S. Jeffery,
D. Ko, C. Yu, “Web-scale data integration: You can afford to pay as you go”, in CIDR,
2007

[McCallum et. al., KDD 2000] A. McCallum, K. Nigam, L. Ungar, “Efficient clustering
of high-dimensional data sets with application to reference matching”, in KDD, 2000.

[Michelson et. al., AAAI 2006] M. Michelson, C. Knoblock, “Learning blocking
schemes for record linkage”, in AAAI, 2006.

[Papadakis et al., iiWAS 2010] G. Papadakis, G. Demartini, P. Fankhauser, P. Karger,
"The missing links: discovering hidden same-as links among a billion of triples”, in
iiWAS 2010.

[Papadakis et al., WSDM 2011] G. Papadakis, E. Ioannou, C. Niederee, P.
Fankhauser, “Efficient entity resolution for large heterogeneous information spaces”,
in WSDM 2011.

Papadakis & Palpanas, Tutorial@WISE14,
12. October 2014

References – Part C

[Papadakis et al., JCDL 2011] G. Papadakis, E. Ioannou, C. Niederee, T. Palpanas, W.
Nejdl, “Eliminating the redundancy in blocking-based entity resolution methods”, in
JCDL 2011.

[Papadakis et al., SWIM 2011] G. Papadakis, E. Ioannou, C. Niederee, T. Palpanas,
W. Nejdl, “To Compare or Not to Compare: making Entity Resolution more
Efficient”, in SWIM workshop (collocated with SIGMOD), 2011.

[Papadakis et al., WSDM 2012] G. Papadakis, E. Ioannou, C. Niederee, T. Palpanas,
W. Nejdl, “Beyond 100 million entities: large-scale blocking-based resolution for
heterogeneous data”, in WSDM 2012.

[Papadakis et. al., TKDE2013] George Papadakis, Ekaterini Ioannou, Themis
Palpanas, Claudia Niederee, Wolfgang Nejdl, "A Blocking Framework for Entity
Resolution in Highly Heterogeneous Information Spaces", in IEEE TKDE (to appear).

[Papadakis et. al., TKDE2014] George Papadakis, Georgia Koutrika, Themis
Palpanas, Wolfgang Nejdl, "Meta-Blocking: Taking Entity Resolution to the Next
Level", in IEEE TKDE (currently under revision).

[Yan et. Al., JCDL 2007] Su Yan, Dongwon Lee, Min-Yen Kan, C. Lee Giles, "Adaptive
sorted neighborhood methods for efficient record linkage", in JCDL 2007.

Papadakis & Palpanas, Tutorial@WISE14,

12. October 2014

