
Blocking Techniques for  
Web-scale Entity Resolution 

George Papadakis – Themis Palpanas 
IMIS, Athena RC      Paris Descartes University 

          gpapadis@imis.athena.innovation.gr      themis@mi.parisdescartes.fr  

 

Papadakis & Palpanas, Tutorial@WISE14, 
12. October 2014 

mailto:gpapadis@imis.athena.innovation.gr
mailto:themis@mi.parisdescartes.fr


Outline 

1. Introduction to Entity Resolution 

2. Introduction to Blocking  

3. Blocking Methods for Databases 

4. Blocking Methods for Web Data 

5. Meta-blocking 

6. Block Processing Techniques  

7. ER framework 

Papadakis & Palpanas, Tutorial@WISE14, 
12. October 2014 



Papadakis & Palpanas, Tutorial@WISE14, 
12. October 2014 

 

 

 

 

 Part 1: 

 Introduction to Entity Resolution 



Entities: an invaluable asset 
“Entities” is what a large part of our knowledge is about: 

Persons 

Organizations 

Projects 

Locations 

Products 
Events 
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However … 

How many names, descriptions or IDs (URIs) are  

used for the same real-world “entity”? 
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However … 

How many names, descriptions or IDs (URIs) are  

used for the same real-world “entity”? 

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン 
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain 

Londain Londe Londen Londen Londen Londinium 
London Londona Londonas Londoni Londono Londra 
Londres Londrez Londyn Lontoo Loundres Luân Đôn 
Lunden Lundúnir Lunnainn Lunnon  لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 … 

Papadakis & Palpanas, Tutorial@WISE14, 
12. October 2014 



However … 

How many names, descriptions or IDs (URIs) are  

used for the same real-world “entity”? 

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン 
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain 

Londain Londe Londen Londen Londen Londinium 
London Londona Londonas Londoni Londono Londra 
Londres Londrez Londyn Lontoo Loundres Luân Đôn 
Lunden Lundúnir Lunnainn Lunnon  لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 … 

capital of UK, host city of the IV Olympic Games, host city 
of the XIV Olympic Games, future host of the XXX 
Olympic Games, city of the Westminster Abbey, city of 
the London Eye, the city described by Charles Dickens in 
his novels, … 
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However … 

How many names, descriptions or IDs (URIs) are  

used for the same real-world “entity”? 

London 런던 ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደን ロンドン 
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain 

Londain Londe Londen Londen Londen Londinium 
London Londona Londonas Londoni Londono Londra 
Londres Londrez Londyn Lontoo Loundres Luân Đôn 
Lunden Lundúnir Lunnainn Lunnon  لندن لندن لندن لوندون
 Λονδίνο Лёндан Лондан Лондон Лондон לאנדאן לונדון
Лондон Լոնդոն 伦敦 … 

capital of UK, host city of the IV Olympic Games, host city 
of the XIV Olympic Games, future host of the XXX 
Olympic Games, city of the Westminster Abbey, city of 
the London Eye, the city described by Charles Dickens in 
his novels, … 

http://sws.geonames.org/2643743/ 
http://en.wikipedia.org/wiki/London 
http://dbpedia.org/resource/Category:London 
… 
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◦ London, KY 

◦ London, Laurel, KY 

◦ London, OH 

◦ London, Madison, OH 

◦ London, AR 

◦ London, Pope, AR 

◦ London, TX 

◦ London, Kimble, TX 

◦ London, MO 

◦ London, MO 

◦ London, London, MI 

◦ London, London, Monroe, MI 

◦ London, Uninc Conecuh County, AL 

◦ London, Uninc Conecuh County, Conecuh, AL 

◦ London, Uninc Shelby County, IN 

◦ London, Uninc Shelby County, Shelby, IN 

◦ London, Deerfield, WI 

◦ London, Deerfield, Dane, WI 

◦ London, Uninc Freeborn County, MN 

◦ ... 

How many “entities” have the same name? 

… or … 
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◦ London, KY 

◦ London, Laurel, KY 

◦ London, OH 

◦ London, Madison, OH 

◦ London, AR 

◦ London, Pope, AR 

◦ London, TX 

◦ London, Kimble, TX 

◦ London, MO 

◦ London, MO 

◦ London, London, MI 

◦ London, London, Monroe, MI 

◦ London, Uninc Conecuh County, AL 

◦ London, Uninc Conecuh County, Conecuh, AL 

◦ London, Uninc Shelby County, IN 

◦ London, Uninc Shelby County, Shelby, IN 

◦ London, Deerfield, WI 

◦ London, Deerfield, Dane, WI 

◦ London, Uninc Freeborn County, MN 

◦ ... 

◦ London, Jack 
2612 Almes Dr 
Montgomery, AL 
(334) 272-7005 
 

◦ London, Jack R 
2511 Winchester Rd 
Montgomery, AL 36106-3327 
(334) 272-7005 
 

◦ London, Jack 
1222 Whitetail Trl 
Van Buren, AR 72956-7368 
(479) 474-4136 
 

◦ London, Jack 
7400 Vista Del Mar Ave 
La Jolla, CA 92037-4954 
(858) 456-1850 
 

◦ ... 

How many “entities” have the same name? 

… or … 
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Content Providers 

How many content types / applications provide  

valuable information about each of these “entities”? 

News about London 
reviews on hotels in London 

Pictures and tags about London 

Videos and tags for London 

Social networks in London 

Wiki pages about the London 
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Preliminaries on Entity Resolution 

Entity Resolution [Christen, TKDE2011]: 
 identifies and aggregates the different entity profiles/records 
that actually describe the same real-world object. 

 

Application areas: 

 Linked Data, Social Networks, census data, price comparison  

 portals 

 

Useful because: 

• improves data quality and integrity  

• fosters re-use of existing data sources. 
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Types of Entity Resolution 

The input of ER consists of entity collections that can be of two  

types [Christen, TKDE2011]: 

• clean, which are duplicate-free 

  e.g., DBLP, ACM Digital Library, Wikipedia, Freebase  

• dirty, which contain duplicate entity profiles in themselves 

 e.g., Google Scholar, CiteseerX 
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Types of Entity Resolution 

The input of ER consists of entity collections that can be of two  

types [Christen, TKDE2011]: 

• clean, which are duplicate-free 

  e.g., DBLP, ACM Digital Library, Wikipedia, Freebase  

• dirty, which contain duplicate entity profiles in themselves 

 e.g., Google Scholar, CiteseerX 

 

Based on the quality of input, we distinguish ER into 3 sub-tasks: 

• Clean-Clean ER (a.k.a. Record Linkage in databases) 
 

• Dirty-Clean ER  
 

• Dirty-Dirty ER 

 

 

Equivalent to Dirty ER  
(a.k.a. Deduplication in databases) 
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Computational cost 

ER is an inherently quadratic problem (i.e., O(n2)): 

every entity has to be compared with all others  

  

ER does not scale to large entity collections (e.g., Web Data). 
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Computational cost 

ER is an inherently quadratic problem (i.e., O(n2)): 

every entity has to be compared with all others  

  

ER does not scale to large entity collections (e.g., Web Data) 

 

Solution: Blocking 
• group similar entities into blocks 

• execute comparisons only inside blocks 

• approximate solution 
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Computational cost 
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N entities 

N entities 

Brute-force 
approach 

Pairs of 
Duplicates 

Blocking 
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 Part 2: 

 Introduction to Blocking 



Fundamental Assumptions 

1. Every entity profile consists of a uniquely identified set of 
name-value pairs. 
 

2. Every entity profile corresponds to a single real-world 
object. 
 

3. Two matching profiles are detected as long as they co-
occur in at least one block. 

Papadakis & Palpanas, Tutorial@WISE14, 
12. October 2014 



General Principles 

1. Represent each entity by one or more blocking keys. 

2. Place into blocks all entities having the same or similar 
blocking key. 

 

Measures for assessing block quality: 

– Pairs Completeness:  𝑃𝐶 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
    (recall) 

  

– Pairs Quality:   𝑃𝑄 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠
  (precision) 

 

Trade-off! 
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Problem Definition 

Given one dirty (Dirty ER) or two clean (Clean-Clean ER)   

entity collections, cluster their profiles into blocks and   

process them so that both PC and PQ are maximized. 
 

 

 

disclaimer:   

Precision of entity matching is dependent on the entity similarity 
measures, and is orthogonal to the above problem. 
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Categorization of Blocking Methods 

1. Definition of blocking keys 

– Supervised 

– Unsupervised 

2. Dependency on schema 

– Schema-based 

– Schema-agnostic 

3. Redundancy 

– Disjoint blocks 

– Overlapping blocks 

 Redundancy-positive 

 Redundancy-neutral 

 Redundancy-negative 
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Unsupervised Blocking Methods 
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Disjoint 
Blocks 

Overlapping Blocks 

Redundancy- 
negative 

Redundancy- 
neutral 

Redundancy- 
positive 

Schema- 
based 

Standard 
Blocking 

Canopy 
Clustering 

Sorted 
Neighborhood 

1.Q-grams Blocking 
2.Suffix Array 

Schema- 
agnostic - - Semantic Indexing 

1. Token Blocking 
2. Agnostic Clustering 
3. URI Semantics 
4. TYPiMatch 
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 Part 3: 

 Blocking Methods for Databases 



General Principles 

Mostly schema-based techniques. 

Rely on two assumptions: 

1. A-priori known schema → no noise in attribute names. 

2. For each attribute name we know some metadata: 

– level of noise (e.g., spelling mistakes, false or missing 
values) 

– distinctiveness of values 
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Standard Blocking 

Earliest, simplest form of blocking.  

Algorithm: 

1. Select the most appropriate attribute name w.r.t. noise and 
distinctiveness. 

2. Transform every value into a single Blocking Key (BK) 

3. For each BK, create one block that contains all entities 
having this BK in their transformation. 

 

 

Works as a hash function! 

 

Papadakis & Palpanas, Tutorial@WISE14, 
12. October 2014 



Example of Standard Blocking 
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Blocks on zip_code: 



Q-grams Blocking [Baxter et. al., KDD 2003] [Gravano et. al., VLDB 2001] 

Converts every BK into the list of its q-grams. 

For q=2, the BKs 91456 and 94520 yield the following blocks: 

 

 

 

 

 

• Advantage: 

 robust to noisy BKVs 

• Drawback: 

 larger blocks → higher computational cost 
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Suffix Array Blocking  [Aizawa et. al., WIRI 2005][de Vries et. al., CIKM 2009] 

Converts every BKV to the list of its suffixes that are longer than a 
predetermined minimum length lmin. 

For lmin =3, the keys 91456 and 94520 yield the blocks: 

 

 

 

• Advantage: 

 robust to noisy BKVs 

 

• Drawback: 

 larger blocks → higher computational cost 
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Sorted Neighborhood [Hernandez et. al., SIGMOD 1995] 

1. Entities are sorted in  
alphabetic order of BKs. 

2. A window of fixed size  
slides over the sorted list. 

3. At each iteration, it compares 
the entities that co-occur  
within the window. 
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Sorted Neighborhood [Hernandez et. al., SIGMOD 1995] 

1. Entities are sorted in  
alphabetic order of BKs. 

2. A window of fixed size  
slides over the sorted list. 

3. At each iteration, it compares 
the entities that co-occur  
within the window. 
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Canopy Clustering [McCallum et. al., KDD 2000] 
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Summary of Blocking for Databases [Christen, TKDE2011] 

They typically employ redundancy to ensure robustness in the  

context of noise at the cost of lower efficiency. 

 

Drawbacks: 

1. Too many parameters to be configured  

  Canopy Clustering has the following parameters: 

I. String matching method 

II. Threshold t1 

III. Threshold t2 

2. Schema-dependent  
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 Part 4: 

 Blocking Methods for Web Data 



 Characteristics of Web Data 
Voluminous, (semi-)structured datasets.  

• DBPedia 3.4: 36.5 million triples and 2.1 million entities 

• BTC09:  1.15 billion triples, 182 million entities. 

  

Users are free to insert not only attribute values but also 

attribute names  high levels of heterogeneity.  

• DBPedia 3.4: 50,000 attribute names 

• Google Base:100,000 schemata for 10,000 entity types 

• BTC09:  136K attribute names 
 

Large portion of data originating from automatic information  

extraction techniques  noise, tag-style values. 
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Example of Web Data 

Noise 

Attribute 
Heterogeneity 

Loose Schema 
Binding 

Split 
values 

Papadakis & Palpanas, Tutorial@WISE14, 
12. October 2014 



Token Blocking [Papadakis et al., WSDM2011] 

Functionality: 

1. given an entity profile, it extracts all tokens that are 
contained in its attribute values. 

2. creates one block for every distinct token → each block 
contains all entities with the corresponding token*. 

 

Attribute-agnostic blocking scheme: 

• completely ignores attribute names 

• considers all attribute values 

• redundancy-positive blocks 

• parameter-free! 
 

*Each block should contain at least two entities. 
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Token Blocking Example 
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Attribute-Clustering Blocking [Papadakis et. al., TKDE2013] 

Goal: 
group attribute names into clusters s.t. we can apply Token 
Blocking independently inside each cluster, without affecting 
effectiveness → smaller blocks, higher efficiency. 

 

Algorithm: 

• Create a graph with a node for every attribute name 

• For each attribute name ni 

– Find the most similar nj 

– If sim(ni,nj) > 0, add an edge <ni,nj> 
• Extract connected components 
• Put all singleton nodes in a “glue” cluster 
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Attribute-Clustering Blocking [Papadakis et. al., TKDE2013] 

Parameters: 

1. Representation model 

– Character n-grams, Character n-gram graphs, Tokens 

2. Similarity Metric 

– Jaccard, Graph Value Similarity, TF-IDF 

 

Similar to Schema Matching, but fundamentally different: 

1. Associated attribute names do not have to be semantically 
equivalent. They only have to produce good blocks. 

2. All singleton attributes are associated with each other. 

3. Unlike Schema Matching, it scales to the extreme levels of 
heterogeneity of Web Data. 
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For Semantic Web data, three sources of evidence create blocks of 
lower redundancy than Token Blocking: 

1.Infix [Papadakis et al., iiWAS 2010]  

 

 
2. Infix Profile  

 

3.Literal Profile 
 

 

 

 

 

 

 

Evidence for Semantic Web Blocking 
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The above sources of evidence lead to 3 parameter-free blocking 
methods: 

1. Infix Blocking 
every block contains all entities whose URI has a specific Infix 

2. Infix Profile Blocking 
every block corresponds to a specific Infix (of an attribute value) and contains 
all entities having it in their Infix Profile 

3. Literal Profile Blocking 
every block corresponds to a specific token and contains all entities having it 
in their Literal Profile 
 

Individually, these atomic methods have limited coverage and,  

thus, low effectiveness (e.g., Infix Blocking does not cover blank  

nodes). However, they are complementary and can be combined  

into composite blocking methods for higher robustness and  

effectiveness. 

URI Semantics Blocking [Papadakis et al., WSDM2012]  
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Summary of Blocking for Web Data 

attribute-agnostic functionality → no schema semantics so as 
to handle any level of heterogeneity 

redundancy to reduce the likelihood of missed matches → high 
recall 

redundancy-positive blocks 

 

Drawbacks: 

• the blocks are overlapping (i.e., repeated comparisons)  

• high number of comparisons between irrelevant entities → 
low precision 
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 Part 5: 

 Meta-blocking 



Meta-blocking [Papadakis et. al., TKDE] 

Goal: 

restructure a redundancy-positive block collection into a 
new one that contains a substantially lower number of 
comparisons, while being equally effective (ΔPC≈0, ΔPQ»0). 
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Type of pair-wise comparisons 

Every comparison between entity profiles pi and pj belongs to 
one of the following types: 

 

1. Matching if pi ≡ pj. 

2. Redundant if pi and pj co-occur and will be compared in 
another block. 

3. Superfluous if pi or pj or both of them have been matched 
to some other entity (Clean-Clean ER). 

4. Non-matching if pi ≠ pj and the comparison is not 
redundant (for Dirty ER). For Clean-Clean ER, it should not 
be superfluous either. 
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Token Blocking Example 
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Meta-blocking [Papadakis et. al., TKDE] 

Goal: 

restructure a redundancy-positive block collection into a new 
one that contains substantially lower number of redundant 
and non-matching comparisons, while maintaining the 
original number of matching ones (ΔPC≈0, ΔPQ»0). 
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Meta-blocking [Papadakis et. al., TKDE] 

Goal: 

restructure a redundancy-positive block collection into a new 
one that contains substantially lower number of redundant 
and non-matching comparisons, while maintaining the 
original number of matching ones (ΔPC≈0, ΔPQ»0). 

 

Main idea: 

common blocks provide valuable evidence for the similarity of 
entities → the more blocks two entities share, the more 
similar and the more likely they are to be matching 
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Outline of Meta-blocking 

n1 n3 

n2 n4 

n1 n3 

n2 n4 

n1 n3 

n2 n4 

3 

3 

2 2 
2 

1 
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Graph Building 

For every block: 

• for every entity → add a node 

• for every pair of co-occurring entities → add an undirected 
edge 

 

Blocking graph: 

• It eliminates all redundant comparisons → no parallel 
edges. 

• Low materialization cost → implicit materialization through 
inverted indices or bit arrays. 

 

Papadakis & Palpanas, Tutorial@WISE14, 
12. October 2014 



Edge Weighting 

Five generic, attribute-agnostic weighting schemes that rely on 
the following evidence: 

• the number of blocks shared by two entities 

• the size of the common blocks 

• the number of blocks or comparisons involving each entity. 

 

Computational Cost: 

• In theory, equal to executing all pair-wise comparisons in the 
given block collection. 

• In practice, significantly lower because it does not employ 
string similarity metrics.  
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Weighting Schemes 
1. Aggregate Reciprocal Comparisons Scheme (ARCS) 

𝑤𝑖𝑗 =  
1

||𝑏𝑘||
𝑏𝑘∈𝐵𝑖𝑗

 

2. Common Blocks Scheme (CBS) 
𝑤𝑖𝑗 = |𝐵𝑖𝑗| 

3. Enhanced Common Blocks Scheme (ECBS)  

𝑤𝑖𝑗 = |𝐵𝑖𝑗| ∙ log
|𝐵|

|𝐵𝑖|
∙ log
|𝐵|

|𝐵𝑗|
 

4. Jaccard Scheme (JS) 

𝑤𝑖𝑗 =
|𝐵𝑖𝑗|

𝐵𝑖 + 𝐵𝑗 − |𝐵𝑖𝑗|
 

5. Enhanced Jaccard Scheme (EJS ) 

𝑤𝑖𝑗 =
|𝐵𝑖𝑗|

𝐵𝑖 + 𝐵𝑗 −|𝐵𝑖𝑗|
∙ log

|𝑉𝐺|

|𝑣𝑖|
 ∙ log

|𝑉𝐺|

|𝑣𝑗|
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Graph Pruning 

Pruning algorithms 

1. Edge-centric 

2. Node-centric 

       they produce directed blocking graphs 

 

Pruning criteria 

Scope: 

1. Global 

2. Local 

Functionality: 

1. Weight thresholds 

2. Cardinality thresholds 
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Thresholds for Graph Pruning 

Experiments show robust behavior of the following 
configurations: 

1. Weighted Edge Pruning (WEP)  
 threshold: average weight across all edges 

2. Cardinality Edge Pruning (CEP)  
 threshold: K = BPE∙|E|/2 

3. Weighted Node Pruning (WNP)  
 threshold: for each node, the average weight of the 
 adjacent edges 

4. Cardinality Node Pruning (CNP)  
 threshold: for each node, k=BPE-1 
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Block Collecting 

Transform the pruned blocking graph into a new  

block collection. 

 

For undirected blocking graphs: 

 every retained edge creates a block of minimum size 

 

For directed blocking graphs: 

 for every node (with retained outgoing edges), we  

 create a new block containing the corresponding  

 entities 
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 Part 6: 

 Block Processing Techniques 



General Principles 
Goals: 

1. eliminate repeated comparisons,  

2. discard superfluous comparisons,  

3. avoid non-matching comparisons. 

without affecting matching comparisons (i.e., effectiveness). 
 

Papadakis & Palpanas, Tutorial@WISE14, 
12. October 2014 



General Principles 
Goals: 

1. eliminate repeated comparisons,  

2. discard superfluous comparisons,  

3. avoid non-matching comparisons. 

without affecting matching comparisons (i.e., effectiveness). 
 

Taxonomy of techniques: 

 

Papadakis & Palpanas, Tutorial@WISE14, 
12. October 2014 



Block Purging [Papadakis et al., WSDM2011] & [Papadakis et al., WSDM2012] 

Oversized blocks: many, unnecessary 
comparisons (redundant, non-matching, 
superfluous). 

Block Purging: discards oversized blocks 
by setting an upper limit on: 

•   the size of each block  

      [Papadakis et al., WSDM 2011],  

•  the cardinality of each block  

      [Papadakis et al., WSDM 2012] 

Core method: 

• Low computational cost. 

• Low impact on effectiveness. 

• Boosts efficiency to a large extent. 
Papadakis & Palpanas, Tutorial@WISE14, 

12. October 2014 



Comparison Propagation [Papadakis et al., SWIM 2011]  

• Eliminates all redundant comparisons at no 
cost in recall → naïve approach does not scale 

• Enumerates Blocks 

• Least Common Block Index condition. 
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 Part 7: 

 ER Framework 



ER-Framework 

• Offers a suite of blocking methods for benchmarking. 

• Code in Java (Netbeans project) available at: 
http://sourceforge.net/projects/erframework . 

• Continuous updates. 

• Plan to add GUI, documentation and more methods by the end 
of 2015. 

• Established real-world and synthetic datasets available. 
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Structure of the ER-Framework 

• Effectiveness Layer 

– Disk-based Methods 

– Memory-based Methods 

• Efficiency Layer 

– Block-refinement 

– Comparison-refinement 

– Meta-blocking 

• Utilities, Data Structures,… 
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Effectiveness Layer 

• Common interface for all methods imposed by 
AbstractBlockingMethod. 

– Input: dataset 1, dataset 2 (null for Dirty ER) in the form of 
List<EntityProfile> and parameters, depending on the 
approach 

– Output: block collection of the form List<AbstractBlock> 
returned by buildBlocks(). 

• It contains objects of type UnilateralBlock for Dirty ER 
and of type BilateralBlock for Clean-Clean ER. 

• Disk-based methods: first store blocks as a Lucene index on a 
specified directory. 
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Efficiency Layer 

Common interface for all methods imposed by 
AbstractEfficiencyMethod. 

– Input: a block collection of the form 
List<AbstractBlock>. 

– Output: changes to the elements of the input 
block collection. 

– Functionality implemented by applyProcessing(). 
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Measuring Performance 

Ground-truth of the form Set<IdDuplicates>, where 
IdDuplicates contains a pair of entity ids. 

 

Class  BlockStatistics measures the performance of a 
block collection wrt: 

– PC, PQ, ||B||,|DB|, BC, CC. 
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Thank You! 
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