Comparing Similarity Perception in Time Series Visualizations
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Fig. 1. Three time series visualizations compared in order to understand if we perceive similarity differently with each one (Line Chart
left, Horizon Graph middle, Colorfield right). This example shows a query and one of the four possible answers participants had to
choose from using each of the three visualizations. The answer here comes from an automatic similarity search algorithm (DTW).

Abstract— A common challenge faced by many domain experts working with time series data is how to identify and compare similar
patterns. This operation is fundamental in high-level tasks, such as detecting recurring phenomena or creating clusters of similar
temporal sequences. While automatic measures exist to compute time series similarity, human intervention is often required to
visually inspect these automatically generated results. The visualization literature has examined similarity perception and its relation to
automatic similarity measures for line charts, but has not yet considered if alternative visual representations, such as horizon graphs
and colorfields, alter this perception. Motivated by how neuroscientists evaluate epileptiform patterns, we conducted two experiments
that study how these three visualization techniques affect similarity perception in EEG signals. We seek to understand if the time
series results returned from automatic similarity measures are perceived in a similar manner, irrespective of the visualization technique;
and if what people perceive as similar with each visualization aligns with different automatic measures and their similarity constraints.
Our findings indicate that horizon graphs align with similarity measures that allow local variations in temporal position or speed (i.e.,
dynamic time warping) more than the two other techniques. On the other hand, horizon graphs do not align with measures that are
insensitive to amplitude and y-offset scaling (i.e., measures based on z-normalization), but the inverse seems to be the case for line
charts and colorfields. Overall, our work indicates that the choice of visualization affects what temporal patterns we consider as similar,
i.e., the notion of similarity in time series is not visualization independent.

Index Terms—Time series, similarity perception, automatic similarity search, line charts, horizon graphs, colorfields, evaluation.
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1 INTRODUCTION

Time series are temporal sequences of data points that derive from  peed o visually scan a large number of temporal signals recorded from

measurements and recordings of a range of natural processes or hu-  mytiple EEG sensors, find, and compare these patterns.
man activities. A city’s temperature per hour, a person’s blood oxygen

saturation per day, and an electroencephalography (EEG) signal are
all examples of time series data. Large time series collections are be-

coming increasingly commonplace [46], and their analysis involves . . . . .

nng gy P [ ]4 Y line charts, but a considerable amount of work in Information Visu-

a diverse range of tasks, such as searching for pattern templates or . . . . . .
alization has examined alternative visual encodings, such as horizon

anomalies, identifying reoccurring waveforms, or classifying time se- -
ries subsequences into clusters of similar patterns, all of which involve graphs [E9P4ITPOL3) and colorfields [Z]ISAS,53)bI. This liter-

the notion of similarity between time series. Data-mining research has
developed a wide range of techniques to automate such tasks [23]]. In
many situations however, automated techniques fail to produce satis-
factory results, thus experts rely on visual analytic tools to perform
their tasks. For example, in EEG data, comparing time series to iden-
tify epileptiform discharges is difficult [35]]. These temporal patterns
take a variety of different forms that are very specific to individual
patients, while very similar patterns appear in normal background ac-
tivity. Although several techniques claim to automatically detect such
patterns [32], medical experts still visually inspect the EEG data of
their patients. This process is especially time consuming, as experts

In such scenarios, the use of visualization techniques that accu-
rately and effectively communicate similar patterns between time se-
ries becomes important. Times series are commonly represented as

ature has focused on elementary visual tasks that require estimation,
e.g., estimation of averages, or point comparison and discrimination
tasks. Visual pattern matching is a more complex task that requires
the simultaneous comparison of a large number of features and likely
incorporates many of these previously mentioned tasks. Thus, previous
results say very little about how people access the similarity of two or
more time series when using different time-series visualizations.

In this paper, we examine how line- and color-encoding techniques
affect what time series we perceive as similar. Specifically, we present
the results of two laboratory experiments that compare three representa-
tive techniques: (1) line charts, (2) horizon graphs, and (3) color fields.
In addition to task performance, we assess the reliability (or subjectiv-
ity) of participants’ answers and examine whether the above techniques
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In contrast to previous studies, that used human sketched [211/41] or
artificially generated [|16] query patterns, the queries in our experiments
are extracted from annotated EEG data and express real patterns of
interest. A major challenge is how to derive patterns that are representa-
tive of real data and tasks, but that also highlight the differences of the
tested similarity measures. We address this challenge by selecting query
patterns for which the different distance similarity measures produce
clearly distinct answers. This enables us to assess whether similarity
perception with each visual encoding technique is invariant to warping
as well as to amplitude and offset deformations in the signals.

To summarize, this work is the first to investigate how humans per-
ceive similarity between time series with both line- and color-encoding
visualization techniques. Our results answer two major questions: (1)
how easy or difficult it is to visually identify similar patterns with dif-
ferent visualization techniques; and (2) whether similarity perception
with these techniques is invariant to representative signal deformations.

2 RELATED WORK

We now discuss previous work on time series visualization, search, and
perception, in particular with respect to their similarity.

2.1 Time Series Visualization

Since the first line charts were used by Lambert and by Playfair in the
18th century [63]], several visualizations were introduced for time series
(see [11/43] for an overview of time oriented visualizations). The goal
of these techniques vary, for example some communicate the periodical
nature of data (e.g., [8,/66]), others aggregate multiple time series
trough clustering (e.g., [[64]), and yet others focus on examining how to
interactively explore and compare a set of time series (e.g., [67}/68]).
One aspect that has received considerable attention is the scalability
of time series visualizations. One of the oldest visualization approaches
is to present line charts in small multiples [|63|] or sparklines [42].
More recent approaches extend the line chart representation itself. For
example, the two-tone pseudo coloring and horizon graphs |SOLS3]
split the vertical range of values in a line chart into a few vertical
bands, that are then colored and superimposed. This representation
saves vertical space, while maintaining the overall line shape. Others
address scalability using color-based representations, often referred to
as heatmap or colorfields. Instead of using position to encode the range
of values over time (as is done in line charts), these visualizations use
vertical color strips, whose color saturation or brightness encodes value.
This approach is seen in many systems [24|15,45}|53] and scales well as
multiple such sequences of small height can be stacked together [37,59].
As remarked by Javed et al. [[34]], in order to represent multiple time
series, the above representations split the space (mainly vertically) and
attempt to optimize the vertical footprint of each individual time series.
Alternatively, multiple visualizations can occupy the same space [34].
Multiple line charts, often of different colors, can be superimposed or
can be replaced by variations of area charts that attempt to optimize
space (e.g., stacked [11]] or braided [34]] graphs). The majority of these
space sharing techniques do not scale well for a large number of time
series due to clutter. Moreover, the stacked variations, which do not
have a common baseline, could complicate comparison tasks such as
determining similarity. We focused on techniques that split space, as
our motivating scenario for similarity search (see[Sec. ) revealed that
it is important to be able to see a large number of time series together.

2.2 Studies on Time Series Perception

A number of perception studies have compared different time series
visualizations under a variety of tasks, in particular visualizations that
use positional or color encodings.

Correll et al. [15] investigated the efficiency of representations us-
ing either position (line charts) or color (colorfields) when estimating
averages. They found that people are better at estimating high-level
statistical overview tasks, such as averages, when using colorfields.
Albers et al. [2] compared eight different time series visualisations
that used both positional and color encodings (among other variations).
They found that positional visualizations were more efficient for tasks

requiring point comparisons (e.g., maxima), whereas color once again
performed better for summary comparisons (e.g., ranges, averages).

Fuchs et al. [24] studied glyphs, presented in small multiples. Posi-
tion/length and color were among the variations used for the different
glyph designs. They did not test averaging tasks, but they found that
for peak and trend detection tasks, line glyphs worked best.

For positional encodings, Heer et al. [29] compared line charts with
variations of horizon graphs for a value comparison and estimation
task. They focused mainly on the effects of chart size and layering and
found that horizon graphs performed better than line charts for small
chart sizes. Later, Perin et al. [47]] improved the efficiency of horizon
graphs by allowing an interactive adjustment of the band baseline. As
discussed, Javed et al. [34] compared visualizations which split or share
the same space, under peak, trend, and discrimination tasks. They
found that while shared-space (superimposed) techniques worked well
for small numbers of time series, split-space ones worked better for
large numbers, and that horizon graphs were faster than line charts for
discrimination tasks but slower for peak and trend detection.

Similarity search likely involves both point comparisons, such as
finding maxima, and overview comparisons, such as comparing the
overall shape of time lines. It is thus unclear if position or color-based
visualizations are best suited for similarity tasks. In this work, we focus
on three visualization techniques that rely on position (line charts),
color (colorfields), or both (horizon graphs). These techniques can also
scale well to multiple time series when presented as small multiples.

2.3 Time Series Similarity

Analysts often define a subsequence of interest as query and use au-
tomated tools to search for similar patterns. We discuss data-mining
research on similarity search algorithms and then visualization research
on how to specify similarly queries and evaluate results.

Similarity Algorithms. Data-mining research has proposed a plethora
of algorithms (distance measures) that assess the distance between
two time series. Ding et al. [18] group them in four categories. The
simplest type are Lock-step measures, such as the Euclidean Distance
(ED) [22], that perform point-by-point value comparison between two
time series. ED can be combined with data normalization, often called
z-normalization [26]], which considers as similar patterns that may vary
in amplitude and y-offset. Another commonly used group are Elastic
measures, that allow horizontal “’stretching” and/or "compression” of
a time series when searching for similar ones. For example, Dynamic
Time Warping (DTW) [7]] accounts for similar sequences that vary
in speed or are shifted temporally (temporal warping). Other cate-
gories are less common and include more specialized measures that are
threshold-based, e.g., TQUEST [4], or pattern-based, e.g., SpADe [[14].

To evaluate similarity measures, Ding et al. [[18]] performed a nearest
neighbor classification (INN) by using distances of nine different simi-
larity algorithms and then compared their classification accuracy with
respect to pre-labeled classes [[13]]. Based on their analysis, they con-
cluded that there is no superior measure, as their classification accuracy
depends on the dataset and its domain. Among their findings is that, on
small datasets, DTW can be significantly more accurate than ED, but,
as the size of the dataset increases their accuracies converge. In our
work, we focus on DTW, ED and its variations because: (i) they are the
most commonly used measures in the visualization and data-mining
literature; (ii) they are efficient [[16}|18]; and (iii) they are appropriate
for our motivating domain (see[Sec. 3).

Interactive Querying. There has been a growing interest in interac-
tive exploration and querying of time series. Early examples express
queries through visual filtering. For example, TimeSearcher [30]] allows
users to specify their queries through “time box” selections (rectan-
gle regions). In Querylines [52], users create line segments to define
the filters for their queries. Later approaches focus on algorithmic
similarity, for example through the automatic detection of specific "mo-
tifs”, simple shapes such as spikes or sinks that users can combine to
form queries [27]). Others [44] examine how to automatically extract a
grammar to express time series approximately and simplify the search
of matches to a sketched query, or they have focused on algorithmic



performance and scalability of similarity search [69}[70]. Recently,
Qetch [41] presented a sketch-based querying system and a similarity
algorithm that is scale independent. With few exceptions [41]], these
approaches have not been evaluated through user studies.

Another approach is to use similarity algorithms developed by the
data-mining community. Buono et al. [[10] enable users to interactively
select part of an existing time series to form a query, that is then
matched to possible results using ED. Others define query patterns
through sketching [[16,31,41},/54./65]. Most sketch-based systems use
ED [10431]], but more recent work [16}/41,/54] has considered additional
measures. All these approaches rely on line chart visual representations.
While we do not study querying in this paper, this line of work motivates
our research, as we want to understand how people assess similarity in
the results of their queries.

Studies on Similarity Perception. Few studies have investigate subjec-
tive user evaluation of similarity results. TimeSketch [21]] proposed a
crowdsource procedure where crowdworkers ranked time series w.r.t.
to their similarity to a small set of sketched queries. The goal was to
produce a human-generated ranking and then compare it to the ranking
of similarity algorithms. They found DTW to be the closest to human
ranking, with ED performing worse or similarly, and SpADe perform-
ing badly for small queries. This procedure helps derive human-driven
similarity measures and provides insights about how close they are to
algorithmic measures, but it is unclear how it can apply to non-sketched
queries. Mannino and Abouzied [41]] compared their own matching
algorithm with ED and DTW by using again simplified query patterns
sketched by hand. Their studies showed that the results of their match-
ing algorithm were ranked higher that those of DTW (and ED), but
focused on a small set of sketched queries rather than a large set of
real time series patterns as is our case. Correll and Gleicher [[16]] in
turn examined whether similarity perception is invariant [6] to signal
deformations. In particular, they examined how humans rated the simi-
larity between a simplified pattern (the query) and a target that was the
original query transformed in different ways. Their results indicated
that most transformations did not decrease similarity and that no single
algorithm could match human judgements. This work again used line
chart visualizations, while we consider similarity across different visual
representations. We explain finer differences to this study in[Sec. 4

3 MOTIVATION

Our motivation stems from a real problem presented to us by a team
of neuroscientists, experts in the analysis of EEG recordings for the
diagnosis of epileptic events. Our experimental task is inspired by the
user interfaces that such experts use to visually analyze EEG data. The
pool of our experimental data was also provided directly by them.

In two 1h sessions we met with two and three neuroscientists respec-
tively from the MEG/EEG Center of the ICM Brain and Spine Institutﬂ
They are looking for tools to improve the detection of “’epileptiform dis-
charges”. These are abnormal patterns that have been linked to various
cognitive disruptions and reoccurrences of epileptic seizures [60]. They
are often not isolated cases but may appear as periodic patterns [36]],
whose periodicity, may vary significantly from one patient to another.

Epileptiform discharges are events which are characterized by a spike
of 20-70 milliseconds (ms) usually followed by a sharp wave lasting 70-
200 ms [[1756}/57]]. As opposed to epileptic seizures that produce large
disturbances in the EEG signal of a patient, epileptiform discharges are
especially hard to detect. Although data-mining research has developed
algorithms to automatically detect their patterns [32], according to
our experts, such algorithms result in many false positives and are not
useful in practice. Main reasons for this problem is that epileptiform
discharges take a range of different forms and often resemble normal
background activity due to regular artifacts such as pulses of the heart,
the eyes, or the muscles [35]]. In addition, their patterns vary greatly
across patients so machine-learning approaches cannot help.

For these reasons, medical experts do not trust automated techniques
and still visually scan the data to identify abnormal events, using tools
such as the one depicted in This can be a very tedious and
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Fig. 2. The Muse toof used by neuroscientists to visualize measure-
ments from 295 electrodes and sensors placed on patients. Here the
neuroscientist has restricted their view to 6 groups of sensors (30 in
total) from one recording trial (trial 10). Purple lines indicate manual
annotations of epileptiform discharges that neuroscientists have detected
on different sensors. The particular discharges are highlighted in a green
oval for illustration purposes only (these highlights are not part of the
tool). The scroll bar in the bottom indicates what time frame of the series
is currently visible, and is augmented with indications of where manual
annotations exist (small colored line segments).

complex task. Experts need to visually inspect around 300 sensors
and several thousand data points per sensor (see[Sec. 4.2). And even
when they find candidate events, they often need to consult additional
resources (e.g., 3D representations of the location of the electrodes
placed on the scalp) to make their decisions and annotate their data.

In an attempt to aid our users, we tried to understand if it would be
possible for them to first manually identify a small number of epilepti-
form discharges and use them as patterns to automatically detect similar
subsequences. The experts could then visually verify whether they are
similar and decide if they are also potential discharges. To this end, we
requested information about what types of variations or deformations
in the patterns could indicate similar signals.

The experts were able to verbally describe roughly the signal they
were looking for. They explained that the duration of spikes and waves
can vary and are not consistent even for a single patient, thus stressed
or compressed signals are of interest (invariant to time-warping). When
asked, they also explained that the height of the pattern can vary across
patients (invariant to amplitude). But they could not say to what extent
the amplitude of the spikes and discharges is important, i.e., to what
extent signals could be considered similar if they differed in amplitude.
In some cases we got the response that a spike can be too small (i.e., in
some cases amplitude may play a role) but this can only be determined
by looking at the background noise - the parts of the signal before
and after the spike. Or that to interpret a spike they needed access
to views from other sensors. The importance of context in detecting
such discharges is well documented [[17,/56,57|]. These are all very
subtle properties that need to be evaluated case by case, and in context,
stressing further the need for human intervention.

As our experts explained, identifying these types of discharges re-
quires a lot of experience, and some of their decisions remain subjective.
Past work has shown that agreement even between different experts can
be particularly low [35]. While this task relies on extensive experience
and involves substantial domain knowledge, it still raises an interesting
question. Do visualizations actually help viewers understand what
temporal patterns are similar, or are there aspects of the invariances of
interest that are not communicated well? We set out to investigate if dif-
ferent types of visualizations communicate or de-emphasize invariances
in a similar way, or if visualizations need to be chosen appropriately.

4 GOALS AND RESEARCH STRATEGY

Given that users like neuroscientists rely on visualization tools to take
decisions, understanding how a visualization may affect what time se-
ries are perceived as similar is important. The similarity criteria used by
experts can be complex and highly uncertain, and the extent to which
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Fig. 3. Overview of how the algorithms we used perform matching for similarity: (a) Euclidean Distance computes the L2 distance between all
corresponding points of two time series of equal length. (b) DTW allows the matching of points between two time series, even if these points are not
aligned on the time axis. (c-d) Z-normalization transforms a time series into a new series of the same length that has zero mean and standard
deviation (szd) one. It enables similarity search independent of y-offset and amplitude scaling. (Images courtesy of E. Keogh)

signal deformations satisfy such criteria often depends on thresholds
that may vary from case to case. Thus, we are especially interested
in knowing which visual encodings are sensitive to deformations of
a time series signal and which of them are "invariant” to those defor-
mations. Such knowledge can help us design tools that better match
the invariances required by different application domains. It can also
help us support users’ tasks by proposing alternative visualizations, as
different visualizations may emphasize (or deemphasize) the perception
of different deformations in the signal.

4.1 Experimental Approach

As discussed in[Sec. 2} previous work has studied deformation invari-
ances from an algorithmic perspective. Batista et al. [|6] enumerate
several types of invariance: temporal warping, uniform scaling, ampli-
tude and offset, phase, trend, complexity, etc. Correll and Gleicher [[16]
consider these types of invariances to design a sketch-based query sys-
tem that is flexible enough to accommodate algorithms with different
invariance characteristics. They then present the results of an experi-
ment that investigates how sensitive or invariant similarity perception
is with respect to different deformations when using line charts.

While inspired by this research, our goal is different. We are inter-
ested in how different visualizations affect similarity perception, thus
we treat the visualization techniques as our primary experimental factor.
Although we also seek to understand how different techniques support
invariances, the way we control for invariances is different. In particu-
lar, our approach is based on the observation that signal deformations
emerge naturally in real data, taking complex forms that cannot be
easily reproduced with artificially created patterns. Thus, as opposed
to Correll and Gleicher [[16], we do not directly control signal defor-
mations as experimental factors. In Correll and Gleicher’s experiment,
the patterns of interest take elementary forms (upward and downward
lines, sine waves, Perlin noise, etc.) and are transformed uniformly
along the time dimension. This approach allows for stricter control and
simplifies the experimental design but does not capture the way people
compare patterns in real data. For example, when determining if two
time series are similar, a user may have to assess temporal stretches or
vertical shifts that occur in small portions of the signal in combination
with other deformations. In such scenarios, the perception of similarity
is likely to rely on a mix of very subtle signal characteristics.

Given these considerations, we decided to use real data to generate
our experimental tasks, based on the application domain and scenario
that we described in the previous section. We also decided to concen-
trate on the invariances that are most relevant to these data.

4.2 Dataset

We used a real dataset provided to us by our collaborating neurosci-
entists (see [Sec. 3). The dataset contains measurements from 295
electrodes and sensors placed on patients’ scalps: Among them 151 sig-
nals come from Magneto-Encephalo-Graphy (MEG), 33 from Electro-
Encephalo-Graphy (EEG), and 39 from intracranial Electro-Encephalo-
Graphy (iEEG) sensors. Measurements last six seconds and are cap-
tured at a sampling rate of 1250 Hz. All our data comes from 154 such
recordings of the same patient, that each contains 295 long time series
- 1 per sensor, of 7500 data-points each (~ 341 million data points in
total). We used this dataset to generate experimental trials.

To understand similarity, we need to compare time series with in-
teresting temporal patterns. How to determine interesting patterns is

a difficult problem. Synthetic patterns can lead to artificially looking
results, while randomly selecting ones from a real data set may result in
empty or noisy patterns. Eichmann and Zgraggen [21]] addressed this
problem by collecting sketched patterns by non-expert people. How-
ever, this approach is only appropriate for simplified human-created
patterns that may capture the intricacies of real patterns in the data.
Our dataset allows for a better solution. Neuroscientists have man-
ually annotated this dataset by adding markers at time points that
correspond to potential interictal epileptiform discharges. Thus the
dataset already contains real patterns of interest. We used the area
around these annotated events as potential queries for our similarity
search algorithms. The dataset contains a total of 205 annotations.

4.3 Controlling for Invariances

When considering time series to compare against the potential queries,
we focus on ones that contain deformations that are important to our
experts. They indicated (see that patterns that are invariant to -
i.e., allow for variations in (i) time warping and (ii) amplitude and offset
are of interest. Time-warping invariance is important since EEG signals
often vary in transient or rthythmic activity [40], e.g., they may include
slow delta waves with frequencies lower than 4 Hz, as well as fast
beta waves with frequencies greater than 13 Hz. Amplitude and offset
invariance is important because experts are often interested in clustering
spikes based on their shape independently of their vertical height or
shift [51]]. Other invariances, such as noise and trend, are usually
unwanted. Medical experts preprocess their data by applying filters
that remove noise or long additive trends in the signals. Finally, global
invariances such as uniform scaling are less interesting, as they can be
supported by global-scaling tools that are independent of visualization.

As we do not treat invariances as experimental factors, we do not
directly vary their levels. However, we control them by using similarity
algorithms that are well known to support them (see Figure [3). For
time-warping invariance, we use Dynamic Time Warping (DTW) [7].
For amplitude and offset invariance, we use z-normalization [26]]. Both
algorithms are well established and widely used in the data-mining
literature [6]. We do not consider Hough Transform [16], as it com-
bines invariances of both DTW and z-normalization. We contrast the
results of the above algorithms with the results of the simple Euclidean
Distance (ED) by asking participants to choose between them. We note
that in the experiment participants see the original time series and their
values (not the deformed versions used by the similarity algorithms).

This approach shares similarities with that of Eichmann and
Zgraggen [21]], who compared how people rank the results of mul-
tiple algorithms that measure similarity. For many queries, however,
similarity algorithms may return identical or similar results. To deal
with this constraint, we developed an automated mechanism for select-
ing queries for which the algorithms produce distinct results. These
cases are especially interesting because (i) they better capture the differ-
ences of the algorithms, and (ii) they represent the most difficult cases,
for which careful visual inspection might be more critical. This ap-
proach also allows us to observe the effect of the underlying invariance
assumptions more clearly within an experimental setting.

Another differentiation of our approach compared to previous stud-
ies is that we also measure how different participants agree on their
assessments. Measuring agreement is important for assessing similarity
perception as it enables us to evaluate the level of subjectivity and
diversity in participants’ answers in an objective way.



5 EXPERIMENTS

We conducted two experiments to study if using different time series
visualizations, Line Charts (LC"/), Horizon Graphs (HGIlI), and Col-
orfields (CFH), changes whether time series are perceived as similar.
And if invariances in the data effect this perception. Exp-1 investigated
time-warping invariance by asking participants to compare the results
of ED and DTW. Exp-2 investigated amplitude and offset invariance
by asking participants to compare the results of ED with and without
z-normalization. Aspects in the setup and procedure are common in
both experiments, so we present them together unless explicitly stated.

5.1 Participants & Apparatus

A total of 36 volunteers, 23 to 42 years old (M = 29, SD = 5.6),
participated in the two experiments without monetary compensation.
We recruited from a local university mailing list 18 participants (seven
women) for Exp-1 and 18 additional participants (three women) for
Exp-2. Our participants came from different scientific backgrounds,
including students and researchers in Computer Science, Electrical
Engineering, Physics, and Finance. As our study is perceptual in nature,
we opted for a general pool of participants rather than experts.

For both experiments, we used a 24” DELL monitor set to 1920 x
1080 resolution.The user interface was implemented with Javascript
and D3.js and was set to full screen.

5.2 Visualization Techniques

Similarity search likely involves both point comparisons, such as
finding maxima, and overview comparisons. It is thus unclear how
position- or color-based visualizations would affect it (see [Sec. 2.2).
We thus focused on three visualization techniques that rely on position
(LineCharts - LC"/), color (Colorfields - CFI), or both (HorizonGraphs
- HGIl). These visualizations can also scale when arranged in small
multiples [37,[50[53], e.g., in order to support context (see[Sec. 3). We
explain how we represented time series with these visualizations.

Line Charts (LC"/) map time to the horizontal axis, and value to the
vertical. In our implementation, the y-axis was not visible to prevent
participants from trying to read exact values. Nevertheless, all time
series had a common scale to aid participants compare time series. The
zero value was at the middle of the area allocated to each time series.
‘We chose the line variation rather than filled area charts because it is
commonly used by EEG visualization tools [35]] and our own experts. It
has also been used in previous studies on time series similarity [211/41]
and thus acts as a baseline.

Horizon Graphs (HGIl[) Horizon graphs utilize space most efficiently
with baselines that are specific to each time series, e.g., when the
baseline is the average of the time series value range. Nevertheless,
different baselines would make comparisons for similarity challenging,
that is why we used a common baseline in our experiment for all
time series, set to zero. The performance of these graphs seems to
deteriorate when increasing the number of bands [29], thus we used
a variation of two positive bands and two negative ones, similarly
to previous studies [[34]. We also followed the convention of using
variations of red (#f9999/", #b30000M) to indicate negative, and of
blue (#bdd7e7 , #08519cH) to indicate positive values [29}50], with
darker hues assigned to the bands furthest form the baseline (most
negative and positive).

Colorfields (CFIM) Previous work considers color scales of two
[3,45]] or more colors [|53]]. We opted for a simple two color scale in
our experiment. We again chose red tones (#ffOO00M) for the most
negative and blue (#0000ffll) for the most positive value. Pure tones
were used to maximize the distance between the two extreme colors

2We used a linear RGB interpolation in both experiments. In a follow-up
experiment, we used the exact same tasks to compare linear to CIE L*a*b*
interpolation. As[Sec.8]discusses, CIE L*a*b* interpolation might be a worse
choice. For details, see our technical report [25]] and our supplementary material.

The three visualizations utilize space differently. For our experi-
ments, we allocated the same amount of vertical space per time series
for all techniques, which is consistent with previous studies [34]. It
is important to first understand how humans’ similarity perception is
affected by the actual visual encoding before considering additional
factors, such as the vertical space.

We chose a fairly large vertical size (60 pixels) to ensure that time
series were clearly visible in all visualizations. For LC/, we fixed the
position of the time axis at the middle of its available space since our
data includes both positive and negative values. Due to their encoding,
HGl can utilize the vertical space more efficiently, as they superimpose
negative and positive values in the same space. CFIll do not necessarily
require as much vertical space [37]], nevertheless this size ensures that
colors are large enough to be seen clearly [S8].

We fixed the horizontal size of the time series to 501 pixels, encoding
one time point per pixel. In practice users, e.g., medical experts, explore
their data at different granularities, by keeping the vertical space fixed
and compressing or decompressing the time axis. Nevertheless, we
decided to avoid factors, such as over-plotting and aggregation, that
might also affect similarity perception.

5.3 Algorithms for Measuring Similarity

Participants had to assess the similarity of time series extracted from
the dataset (Sec. 4.2). For each trial, we determine one time series
that serves as the query and four additional ones as possible matches.
These matches were extracted from the data using automatic similarity
algorithms. Both experiments used the simple Euclidean Distance (ED)
as control, but each investigated a different invariance:

Exp-1 (Time Warping): We examined time-warping invariance by con-
trasting ED to DTW. A main parameter of DTW is the warping size, i.e.,
the x-offset window size in which the algorithm searches for the best
matching point. According to Ding et al. [[18]], constraining the warping
size increases the speed of the algorithm by reducing the computation
cost and enabling effective pruning. We set the warping window size to
10% of the time series length as this is the most common size used in
the literature and larger sizes can hurt accuracy results [49].

Exp-2 (Z-Normalization): We examined amplitude and y-offset invari-
ance by contrasting the results of Euclidean Distance without (ED) or in
conjunction with z-normalization (NormED) [26]. For the second case,
time series are z-normalized to acquire similar amplitude and y-offset,
while maintaining the shape of their patterns. Then, ED computes the
distance between the two normalized time series.

Both the query and its resulting matches were visualized without
any deformations, such as the ones the algorithms perform to access
similarity.

5.4 Task

In both experiments participants had to make subjective similarity
judgments using one of the three visualizations. They were shown five
time series, one of which was marked as ”Query”. Their task was to
select which of the other four time series was the most similar to the
query (Figure 4). Those four possible choices were results returned
from the similarity algorithms presented above. In Exp-1, two choices
came from ED, and two choices came from DTW. In Exp-2, two choices
came from ED, and two choices came from NormED. Details on the trial
generation are described in ¢ Participants gave their answer by clicking
on the time series of their choice, which became highlighted, and they
rated their confidence on a 5-point scale ("very low” to ’very high”).
Although there was no time limit for the task, we instructed participants
to be as fast and accurate as possible.

Participants performed the same tasks across all visualizations, but
we randomized the vertical order of the five time sequences, so as to not
favor one measure by presenting its results always closer to the query.
We also ensured that time series were not directly one below the other
to ensure that certain similarity algorithms, in particular DTW, were not
penalized. This way participants could not perform a low-level point-
by-point comparison of horizontally aligned data series. Instead, they
made a more high-level subjective judgement of whether the time series
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Fig. 4. Experimental screen for the Horizon Graph condition. The answer
order and horizontal shift was randomized across visualizations. From
the top the series are: Query, Out-ED, Top-ED, Top-DTW, Out-DTW.

were similar or not. The fact that the sequences were not vertically
nor horizontally aligned is consistent with the practices of our domain
experts, who often compare patterns across sensors or trials that appear
in varying vertical positions, and patterns that appear in different times
and at different frequencies for different patients (horizontal positions).

Notice that the task was a subjective assessment of similarity, so
there was no correct or wrong answer. Our goal was to understand if
some visualizations favor some automatic similarity measures and their
invariances in terms of perceived similarity.

5.5 Trial Generation

All trials were generated from the annotated dataset described in
For each trial, we had to extract a time series that serves
as the query and four additional sequences as possible matches. Two
of these sequences were fop answers of the two different algorithms
that each experiment studied: ED vs. DTW (Exp-1), and ED vs. NormED
(Exp-2). The other two sequences were outsiders that resulted from the
same two algorithms but in a lower rank.

As discussed one challenge was how to differentiate be-
tween the similarity search algorithms, given that they may return
similar results. We thus opted for a query-extraction process that en-
sures that the algorithms return top answers that are distinct.

Step 1: Creating Candidate Queries. We started from the manually
annotated markers to extract possible queries. Epileptiform discharges
last less than 250ms [56], but we extracted a larger window of 401ms
around each marker (200ms left and right). This ensured that the full
pattern of interest was included in the query, and that the sequence
includes background activity (context), which can be important for
assessing similarity. From 205 annotations, we extracted a pool of
202 candidate queries. We excluded three that were very close to the
beginning or the end of a recording (and thus of smaller size).

Step 2: Finding Similar Subsequences. For each candidate query, we
ran similarity searches by using the two search algorithms of interest:
ED vs. DTW in Exp-1, and ED vs. NormED in Exp-2. We collected the first
100 Nearest Neighbor (NN) answers for each algorithm. We focused
our searches on the same iEEG sensors as the query, but answers could
be part of different recordings. We extended an optimization algorithm
for early subsequence pruning [48]] to support k-NN instead of 1-NN
search. Its average time complexity for comparing two series of the
same length (n points) is less than O(n) for all distance measures and
is the fastest algorithm known in the literature.

Step 3: Selecting the Final Queries. We then checked if the best
results returned by each algorithm were unique. We considered the
top five answers of the two measures we compared each time. Those
were generally not common: an average of 62% of the top five answers
of the two measures was different in Exp-1, and this percentage was
55% in Exp-2. We wanted to select answers that clearly highlight the
differences of the two measures. In addition, we had to avoid biases
that may arise when picking top answers for one measure that are also
highly ranked for the other measure (and therefore more probable to be
selected). Thus, we looked at queries where the top five answers of one
measure did not appear within the top ten of the other. This resulted in

a set of 30 queries for Exp-1 and a different set of 31 queries for Exp-2,
from which we randomly picked 30 queries.

Step 4: Choosing the Answers to each Query. The experimental trials
were formed from those 30 queries. Two of the four possible answers
presented to participants were the highest ranked answers of each algo-
rithm from Step-3 (referred to as Top-ED, Top-DTW, and Top-NormED,
respectively for each algorithm). Another two answers were produced
in a way similar to Step-3, but looking at answers between the lower
20-30 of each algorithm (we refer to them as Out-ED, Out-DTW, and
Out-NormkED). Outsiders were expected to be perceived as less similar
than top answers, but were still valid answers to the query. They pro-
vided a control for assessing the accuracy of participants’ answers with
respect to the underlying algorithms. And acted as distractors to make
the task more realistic, given that analysts may search through many
subsequences to find a match.

5.6 Experimental Design

We followed a within-participants design — all participants were ex-
posed to all three visualization techniques. The order of appearance
of the three techniques was fully counterbalanced. For each technique,
participants completed 5 practice and 20 main trials.

For each experiment, we generated a different set of 30 distinct trials
(see[Sec.4.2). To make use of the full set of trials, we divided the trials
in 3 bins of 10, and each participant saw one bin during training and the
other two during the experiment (counterbalanced across participants).
Overall, each trial was tested by exactly 12 participants. Each partici-
pant performed the same 20 trials for all three visualizations, but we
randomized the vertical order of the five time sequences, including the
query. This ensured that participants could not recognize the queries or
their choices between conditions.

In summary, each experiment consisted of:

18 participants
X 3 visualizations (LC//, HGJll, CFIl)
x 20 query-answer trials
= 1080 trials per experiment

5.7 Procedure

Before starting, participants completed a short color blindness test using
the Isihara plates. They then signed a consent form and continued with
a training session on how to read the respective visualization technique.
Before the main experiment, participants had to pass three readability
tests, where they compared values of different points in a time series.

As we were interested in participants’ intuitive perception of similar-
ity across visualizations, we gave no instructions about how to interpret
similarity, did not mention invariances, and did not provide any guide-
lines about how to assess similarity with each technique. A similar
approach was used by Correll and Gleicher [16]. Furthermore, we
did not explain what the data represented or how the queries and their
candidate answers were generated.

After the experiment, participants completed a questionnaire to
provide background information and evaluate the three visualization
techniques. The experiment lasted from 45 to 80 minutes.

5.8 Measures

We use a mix of measures that assess the types of answers given by
participants, their accuracy with respect to the similarity algorithms that
we tested, and their agreement among participants. In addition, we mea-
sure participants’ confidence about their answers, time performance, as
well as their subjective assessment of the three visualizations.

Type of Answers: We count the number of occurrences of each
type of answer. For Exp-1, we count Top-ED, Top-DTW, Out-ED,
and Out-DTW. For Exp-2, we count Top-ED, Top-NormED, Out-ED,
and Out-NormED. Counts provide raw information about participants’
choices and are used to construct our ratio measures (next).

DTW vs.ED and NormED vs.ED: We assess participants’ tendency
to select the top answers of one similarity algorithm over the other
by calculating the ratio of their counts. For Exp-1, we take the ratio
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Fig. 5. Interval estimates comparing the mean ratios of (a) Top-ED to Top-DTW answers (Exp-1) and (b) Top-NormED vs. Top-ED answers (Exp-2) with
the three visualization techniques. Error bars represent 95% Cls. For mean ratio differences, we also show (in red) Cls adjusted for three pairwise
comparisons with Bonferroni correction. The dotted vertical lines show the values of reference.

of the counts of Top-DTW to those of Top-ED. A ratio greater than 1
indicates a preference for the top answers of DTW. For Exp-2, we take
the ratio of the counts of Top-NormED to those of Top-ED. Here a ratio
greater than 1 indicates a preference for the top answers of NormED. We
compare the difference of these ratios between techniques, a difference
greater or smaller that zero provides evidence that the techniques differ.

Outsiders vs.Top Answers: We assess the accuracy of partici-
pants’ answers with respect to the answers of the similarity algorithms
by calculating the ratio of the counts of their outsiders to the counts of
their top answers. A large ratio indicates a relatively large number of
outsiders in participants’ choices.

Agreement: We assess the level of consensus in participants’ choices
with agreement coefficients, which are commonly used in the context
of inter-rater reliability studies [28]]. High agreement demonstrates
low subjectivity in participants’ choices. In contrast, low agreement
indicates high uncertainty when making decisions. It may also imply
that similarity perception is highly subjective.

We choose the x; coefficient of Brennan and Prediger [9)]. The
coefficient assumes that all g categories are selected by chance with
the same probability p, = 1/q. This assumption is valid in our case,
since the g = 4 alternative answers were presented in a random order to
participants, which avoided problems of bias [|62]. In addition to overall
agreement, we assess agreement specific to categories [55]. This allows
us to assess how agreement is divided across different types of answers.

Time Performance: We measured the time it takes participants to
complete a task, from the moment the time series are shown on the
screen to the moment participants select their final answer. Although
assessing time performance was not a primary goal of our experiments,
this measure allows us to compare how easy or difficult it was to
perform similarity tasks with each visualization technique.

Subjective Measures: We recorded participants’ self-reported
level of confidence on their answers to each query. We use this measure
of confidence in conjunction with agreement measures.

5.9 Expected Outcomes

LCv/ is extensively used in practice, so one could expect that it is the
most appropriate technique for determining similarity of time series.
HGIll and CFM have not been studied in the context of perceived similar-
ity tasks before, thus existing evidence about how they would perform
compared to LC/ is limited. Previous studies have shown that HGIk|
were faster than line charts for discrimination tasks, but slower for peak
and trend detection tasks [34]. Whereas CFll has been shown to be
a promising representation for overview tasks [|15]]. Similarity search
likely requires both low-level (i.e., detecting picks) and overview tasks.

In terms of similarity algorithms, Dynamic Time Warping (DTW)
is widely considered to give better results than Euclidean Distance
(ED). For LC//, Eichmann and Zgraggen [21] found that DTW generally
produce rankings that are closer to human-annotated ranking, so we
expected to find similar results. Z-normalization is a recommended
practice for all similarity measures [18], thus one could predict that it
would produce more similar answers. However, we also expected that
color encodings might be sensitive, i.e., non-invariant, to y-offset and
amplitude transformations.

6 RESULTS

We present the results of the two experiments. Our statistical analysis
is largely based on interval estimation [[19], as this approach better
supports future replication efforts. All analyses reported were planned
before data were collected.

6.1

We first examine how the three visual encoding techniques affected
participants’ choices in favor or against the two invariances of interest.
Our analysis relies on ratios of counts, where counts are not indepen-
dent. The sampling distribution of such measures can be complex and
hard to approximate with analytical methods. We thus use bootstrap-
ping methods to construct 95% confidence intervals (CI) of the mean.
We apply Efron’s [20] bias-corrected and accelerated (BCa) bootstrap
method as implemented by R’s boot package [[12]]. For our analyses,
we construct confidence intervals with 10000 bootstrap iterations.

Exp-1 (DTWvs. ED): presents interval estimates for individual
means (left) and their differences (right). For all three techniques, we
observe that participants considered as similar the Top-DTW answers
more. This trend is however different across visualization techniques.
It is especially pronounced for HGlI, where Top-DTW answers were on
average 2.64 (SD = 1.49) times more frequent than Top-ED answers.
The mean ratio of Top-DTW to Top-ED answers drops to 1.87 (SD
= 0.80) for LC+/, and 1.23 (SD = 0.48) for CF.

Exp-2 (NormED vs. ED): presents interval estimates for both
means (left) and their differences (right). We observe a strong tendency
in HGI for participants to not find as similar Top-NormED answers,
where their mean ratio to Top-ED answers is equal to 0.56 (SD = 0.36).
In contrast, with the other visualizations they lean towards z-normalized
answers, with mean ratios equal to 1.33 (SD = 1.18) for LC//and 1.55
(SD = 2.41) for CFM. However, due to large variance, this trend is
not clearly supported by statistical evidence. We see that HGIl| favor
Top-ED answers more than the other techniques, but we observe no
clear difference between LC"/ and CFIl.

Invariances: Time-Warping and Z-Normalization

6.2 Outsiders vs. Top Query Answers

We further analyze the ratio of outsiders to top query answers by using
a similar analysis procedure.

Exp-1: shows interval estimates for Exp-1. Clearly, the top
answers of the two algorithms dominated participants’ choices. How-
ever, in many cases, participants perceived outsiders as more similar
than top answers. Their ratio was 0.39 (SD = .20) for HGIll, 0.49 (SD
=.22) for LC»/, and 0.63 (SD = .36) for CFIl. The difference is clearer
between HGIll and CFIl. The latter resulted in a relatively large number
of outsiders.

Exp-2: [Figure 7] presents interval estimates for Exp-2. We now observe
the opposite trend, but differences between the techniques are less clear.
The ratio of outsiders to top answers was 0.40 (SD = .27) for HGIl,
0.31 (SD = .21) for LC~/, and 0.27 (SD = .16) for CFIl. CFIll now
resulted in a lower ratio than HGIAI.

Combined with the results of Section [6.1] these results seem to
suggest that CFIll are less appropriate for DTW, while HGIlI are less
appropriate for z-normalized answers.
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6.3 Agreement

To construct confidence intervals for our agreement estimates, we use
the jackknife technique [28}(62]] by assuming that raters, i.e., partici-
pants, are randomly sampled from a larger population, whereas the set
of queries is fixed.

Exp-1: summarizes the results of Exp-1. Overall, agreement is
higher than zero for all three techniques. This verifies that similarity
perception was not fully subjective and that participants’ choices were
not random. However, agreement values are generally low for HGI
and CFH, which implies a higher subjectivity of participants’ choices
with these techniques. Overall, we observe a higher agreement for
the choice of Top-DTW answers. This is especially the case for HGIlI
- this further shows the tendency of the technique towards DTW, as
Top-ED answers were chosen with no consistency among participants.
We observed a positive linear correlation between agreement values
and the average confidence level reported by participants for each task
(Pearson’s moment correlation was r = .45, 95% CI = [.27,.60]). This
result is not surprising — agreement or disagreement is largely due the
confidence or uncertainty with which participants make choices.

Table 1. Experiment 1: Specific and overall agreement values (Brennan-
Prediger x;,). Brackets show 95% jackknife Cls.

Line Charts Horizon Graphs Colorfields

Top-ED: 42[.22,.62] .04 [—.07,.16] .28 [.10,.47]

Top-DTW: .54 [.41,.68] 41 [.28,.55] 35[.22,.49]

Outsider-ED: .14 [-.09,.36)  —.06 [—.20,.07] 21 [.00,.42]
Outsider-DTW: .39 [.26,.52] —.01 [-.19,.17] .07 [-.07,.22]

Overall: 44 [.36,.52] .21 [.13,.29] 26 [.18,.33]

Exp-2: summarizes the results of Exp-2. Again, overall agree-
ment is higher than zero for all techniques. Agreement values are now
more balanced across techniques. We note that HGIl| resulted in low
agreement values for z-normalized answers. This further shows that
the technique may not be invariant to z-normalization. For this experi-
ment, Pearson’s moment correlation between participants’ self-reported
confidence level and agreement was r = .59, 95% CI = [.43,.71].

6.4 Time Performance

Time measures are well-known to follow lognormal distributions [S{39],
thus we log-transform time values and analyze them with standard
parametric methods that assume normal distributions. According to this
approach, comparisons between techniques are based on their mean
time ratios rather than their mean time differences [[19]].

Table 2. Experiment 2: Specific and overall agreement values (Brennan-
Prediger ;). Brackets show 95% jackknife Cls.

Line Charts Horizon Graphs Colorfields

Top-ED: .38 [.19,.57] 48 [.32,.63] 41 [.27,.55]

Top-NormeD: 43 [.29,.57] .14 [.01,.27] 43 [.28,.59]
Outsider-ED: .03[-.23,.29] —.03[-.19,.12]  —.01 [-.27,.24]
Outsider-NormED: .05 [—.09,.20] .06 [—.14,.25] .05 [—.12,.21]

Overall: .33 [.21,.45] .27 [.20,.35] .34 .23, .45

Exp-1: Mean completion time was 20.5 sec (SD = 13.9 sec) for LC/,
23.7 sec (SD = 9.1 sec) for HGIll, and 15.6 sec (SD = 7.5 sec) for CFIl.
shows interval estimates for means (left) and mean time ratios
(right). We observe that CFIll was the fastest technique. And we have
some evidence that HGIl| were on average 33.6% slower than LC

Exp-2: Mean task-completion time was now 21.1 sec (SD = 12.6 sec)
for LC/, 28.8 sec (SD = 15.8 sec) for HGIll, and 21.5 sec (SD = 13.2
sec) for CFHL. shows interval estimates for those means (left)
and the mean time ratios (right). We found no evidence of a difference
between LC// and CFIl. HGIll was again the slowest, on average 40%
slower than the two other techniques.

7 DISCUSSION AND DESIGN IMPLICATIONS

Results from both experiments suggest that humans may perceive sim-
ilarity differently, depending on the visualization, and that different
visual encodings are invariant to specific signal parameters.

In Exp-1 participants preferred results returned by Dynamic Time
Warping (DTW), i.e., subsequences that can be shifted in the x-axis and
locally stretched or compressed. This finding corroborates previous
evidence [18,[21] that DTW is superior to Euclidean Distance (ED).
Nevertheless, this effect differs across visualization techniques. It
is stronger for horizon graphs, likely due to this technique’s double
encoding. Color variations often communicate high-level patterns
(spikes/valleys, positive/negative ranges), while shape and position
reveal details. Participants may have focused on the high-level patterns
in color to determine similarity, considering shape and position (which
encode warping and x-axis shifting) as secondary factors. Line charts
favored DTW but to a lesser degree, and the trend was even weaker for
colorfields. Colorfields aid the detection of ranges of similar color [2]]
so it is probable that participants considered both the color of the spikes
and the width of the color ranges formed around them. Thus, they were
likely to avoid candidates that were too stretched or compressed. The
example in [Figure 9tLeft demonstrates this issue.

In Exp-2 we observed a clear difference between horizon graphs
and the two other visualizations. Horizon graphs strongly favored
the answers of ED without z-normalization. The opposite trend was
observed for line charts and colorfields. In horizon graphs, small
amplitude and y-offset changes can fall on different sides of a band and
have different colors. Thus, if participants tried to match colors rather
than shape, they likely disregarded subsequences whose prominent
characteristics fell on different bands (see [Figure 9}Right). For line
charts and colorfields, the exact amplitude and offset values can be less
critical, as people seem to focus on relative values and overall shapes.

Overall, agreement scores were lower in horizon graphs and time
performance was slower, which indicates this encoding can be difficult
to visually identify patterns and make decisions when using it.

In both experiments, participants tended to select the top answers
of the algorithms rather than their outsiders, irrespective of the visual-
ization technique. This confirms that the rankings of these algorithms
capture real differences in perceptual similarity.

Design Implications:  Overall, our work indicates that the choice
of visualization affects what temporal patterns people consider as sim-
ilar, i.e., the notion of similarity in time series is not visualization
independent. Visualization designers need to consider what invariances
are important in the data domain [[18] and suggest visualizations ap-
propriately. Similarly, if designers use algorithmic distance measures,
they should consider visualizations that match the invariances of those
measures, or viewers could lose confidence in their results.
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Our results suggest that colorfields are less appropriate for domains
that require invariance to temporal warping, as they are sensitive to
temporal warping and shifting. Here, horizon graphs are a viable alter-
native to line charts, as they are less sensitive to warping. Nevertheless,
designers should consider the visual complexity of time series visualiza-
tions. Agreement was lower for horizon graphs and time performance
was slower, while participants reported they found it more difficult to
visually identify patterns and make decisions when using it.

In turn, horizon graphs are less appropriate when amplitude and
y-offset invariance is important, as they are sensitive to value trans-
formations along the y-axis due to the explicit limits of their bands.
Finally, as in previous work using line charts [[18}]21]], our results sup-
port that DTW, an algorithm that is invariant to temporal warping, is
likely closer to what we perceive as similar in temporal patterns, and
thus DTW could be considered as a good default unless otherwise
indicated by the data domain [[18]].

8 LIMITATIONS AND FUTURE WORK

There are several limitations to our work. First, we focused on a small
number of similarity measures. The data-mining literature has studied
measures for other types of invariance [6]]. Future work needs to deter-
mine what visualizations best match such measures. Furthermore, our
dataset consists of EEG data that have specific pattern characteristics,
such as spikes followed by rapid discharges. Although we believe that
our high-level results will hold for other types of signals, the sensitivity
of visual perception to certain signal deformations may be less or more
pronounced. Further studies are needed to validate our findings in a
wider range of patterns and datasets from other domains.

Our implementation of colorfields used a naive, linear RGB inter-
polation. This approach leads to a color space that is not perceptually
uniform, i.e., differentiating variations may be harder for one of the two
color extremes. On the other hand, it may extend the differences near
the central range of the color space, in magenta tones which humans
are more sensitive to [38]]. This central range is where low-amplitude
variations and spikes (which might be important for EEG signals) are
located. We conducted a follow-up experiment (N = 18 participants)
that compared linear RGB interpolation to a perceptually uniform CIE
L*a*b color space [25]]. Accuracy and agreement scores were very sim-
ilar for the two techniques, while most participants (10 vs. 6) found that
is was easier to identify patterns with linear RGB interpolation. CIE
L*a*b resulted in less pronounced differences between similarity mea-
sures, but we found no statistically significantly differences between
the two interpolation techniques. We report the detailed results of this
experiment as supplementary material. Nevertheless, it is possible that

differences in these color mappings exist in other types of temporal
patterns. Moreover, in domains where similarity comparison is the only
task of interest, one could also consider dynamic mapping variations
(e.g., difference color maps, or ones based on equi-depth or equi-width
binning of time series values to provide wider color ranges for the most
frequent values), that nonetheless distort the original signals. The effect
of color in time series similarity is an exiting future research direction.

We focused on a small number of time series to compare, with a
generous vertical drawing area. While we hypothesize that our results
will hold for larger number of time series, their size might affect these
results. For example, we expect that colorfields will scale well, but it is
known that the choice of the aspect ratio affects readability in line charts
[61]. Thus, for line charts and to a lesser degree for horizon graphs,
a reduced vertical space could lead to a loss of small patterns and
reinforce large structures (peaks, valleys) altering similarity perception.

Finally, we plan to compare additional visual encodings or variations
of the ones studied in this paper, such as composite visualizations that
go beyond horizon graphs [33]], and area charts with alternative designs,
e.g., designs based on single or dual fill color, and mirroring.

9 CONCLUSION

We presented two laboratory experiments that compare how three vi-
sualizations (line charts, colorfields, and horizon graphs) affect how
we perceive similarity in time series. Specifically, we studied if some
deformations in the data, detected by automatic similarity measures,
are perceived in a different manner depending on the visualization. Our
findings indicate that all three visualizations, favor similarity results
from algorithmic measures that allow flexibility in local deformations
in temporal position or speed (i.e., dynamic time warping). This is the
case most notably for horizon graphs. On the other hand, this visual-
ization does not promote results from algorithms that are invariant to
y-offset shifts and amplitude rescaling (i.e., z-normalization).

Our work provides evidence that the notion of time series similarity is
visualization dependent, and that when choosing visual representations,
we should consider what deformations the underlying data domain
considers as similar. This should be consistent with the similarity
measures used in each domain. In the future, we plan to investigate
how choosing appropriate visualizations to communicate similarity can
affect agreement of what is similar among domain experts, and if this
increases trust on the results of similarity search algorithms.
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