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Fig. 1: Pipeline for extracting the time series patterns (g1,g2,g3,g4) from (a). (b) The series are discretized into sets of time
segments with equal length. (c) The segments in each time interval are labeled with the cluster to which they belong. (d) The
groupings of time segments are optimized based on the frequent patterns from the sequences in (c). e.g., if minsup = 2 (i.e., each
output group has to contain at least 2 time series), the results (e) will be subsequences from C11 + C21 , C12 + C21 , C31 + C41 and C32 + C42 .

Abstract—Visualizing multiple time series presents fundamental tradeoffs between scalability and visual clarity. Time series capture
the behavior of many large-scale real-world processes, from stock market trends to urban activities. Users often gain insights by
visualizing them as line charts, juxtaposing or superposing multiple time series to compare them and identify trends and patterns.
However, existing representations struggle with scalability: when covering long time spans, leading to visual clutter from too many
small multiples or overlapping lines. We propose TiVy, a new algorithm that summarizes time series using sequential patterns. It
transforms the series into a set of symbolic sequences based on subsequence visual similarity using Dynamic Time Warping (DTW),
then constructs a disjoint grouping of similar subsequences based on the frequent sequential patterns. The grouping result, a visual
summary of time series, provides uncluttered superposition with fewer small multiples. Unlike common clustering techniques, TiVy
extracts similar subsequences (of varying lengths) aligned in time. We also present an interactive time series visualization that renders
large-scale time series in real-time. Our experimental evaluation shows that our algorithm (1) extracts clear and accurate patterns
when visualizing time series data, (2) achieves a significant speed-up (1000×) compared to a straightforward DTW clustering. We also
demonstrate the efficiency of our approach to explore hidden structures in massive time series data in two usage scenarios.

1 INTRODUCTION

Time series data analysis is prevalent in many applications. Analysts
explore time series to discover patterns in urban activities (e.g., noise,
traffic, and weather) [6, 23, 47], identify trends in highly volatile finan-
cial markets [64], and group human mobility patterns from wireless
telecommunication traffic data series [48, 54–56]. Visual exploration is
often used as the first step to obtain insights and formulate hypotheses.
Many visualization primitives have been proposed [45, 50, 62, 71]
to support temporal data analysis. When exploring large collections
of time series data, analysts face a challenging decision [38]. They
can either plot each series in separate small multiples, which provides
clarity but becomes unwieldy with many series, or superpose all series
in a single chart, which scales better but quickly deteriorates into visual
clutter when lines overlap and obscure patterns (Figure 2(a) and (b)).
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TiVy: Combining Juxtaposition and Superposition. Instead of
choosing between these extremes, we selectively superpose time se-
ries with similar visual shapes while juxtaposing those with different
patterns. This creates an effective visual summary that maintains clar-
ity while scaling to large datasets – showing similar trends together
in clean, readable charts while separating distinct patterns into dif-
ferent views. To achieve this, we introduce TiVy, an algorithm that
automatically identifies which time series should be grouped together.
The key insight is that time series with similar visual shapes can be
safely superposed without losing readability, while those with different
shapes should be separated. TiVy transforms time series into symbolic
sequences based on visual similarity using Dynamic Time Warping
(DTW), then uses sequential pattern mining to extract groups of similar
subsequences that align in time.

TiVy addresses two key challenges. First, the duration and time
intervals of similar trends may vary: while some trends are long, others
are short. Second, time series with similar trends need not be perfectly
synchronized to have their visual properties highlighted in the chart. As
some time shifts within a small time interval are acceptable for users
to identify the trends, for clustering, it means that we need a distance
measure that takes temporal alignment into account. A popular and
well-studied distance measure for this purpose is Dynamic Time Warp-
ing (DTW) [44], which aligns well with human perception on visual
similarity among time series in a line chart. However, as we discuss in
Section 4, applying DTW in our scenario is computationally expensive:
not only is the search space of possible subsequence clusters with ar-
bitrary sizes and durations is prohibitively large, but also the distance
measure to compare visually aligned time series takes quadratic time to



Fig. 2: Illustration of the challenges of visualizing multiple time series. Juxtaposing time series (a) and superposing them (b) have scalability
issues with different reasons. Our goal is to (c) perform subsequence clustering that juxtapose similar series and superpose different ones.

compute. For interactive exploration of large datasets, these computa-
tional constraints become critical bottlenecks, requiring optimizations
that maintain accuracy while achieving real-time performance.

We propose a heuristic technique for extracting time series patterns
as subsequence clusters that transforms real-valued series into discrete
sequences and extracts the clusters from the sequential patterns. The
key components of our approach are: (1) a new symbolic representation
for time series that encodes the visual structure of each time series in a
discrete format, focusing on the visual shape; and (2) a sequential pat-
tern mining algorithm that interactively groups the discrete sequences
to extract time series subsequence clusters for line chart visualizations.
Together, they make it possible to display the time series subsequences
from each sequential pattern in one small multiple of a line chart with
low visual complexity, without the need to change the displayed values
(e.g., using signal processing) or visual encoding (e.g., projections).

We propose an interactive system that renders the resulting time
series summaries in real-time, enabling exploration of massive datasets
that would otherwise be impossible to visualize effectively. We evaluate
the performance in terms of speed-ups, qualitative results and limita-
tions. Our main contributions can be summarized as follows: (1) A
time series subsequence clustering approach that groups visually and
temporally similar time series subsequences from line charts visualiza-
tion; (2) Efficient algorithms to compute the symbolic representations
and extract visual patterns; (3) A usable and scalable visualization
interface that leverages the proposed clustering algorithm to explore
large volumes of time series data; (4) Usage scenarios with real-world
datasets that demonstrate the usefulness of our approach.

2 RELATED WORK

Time Series Visualization. Aigner et al. [2] summarize time series
visualization techniques based on the data type (i.e., visualizing single
or multiple time series) and dimension (i.e., whether it is linear, cyclic,
or branching and whether it is a point or an interval). Bach et al. [5] see
it as operations on a space-time cube including extraction, flattening,
filling, and geometric and content transformation.

The first use of time series can be traced back to the 18th century,
with the introduction of line charts [71]. Time series data can be
encoded in small multiples and sparklines [45] that use (x,y)-positions
to encode time. Techniques have also been proposed that include
channels such as area or color to provide better scalability and density
in the presentation. For example, the horizon chart [8, 62] splits
and superimposes a line chart vertically with a few bands of ranges
distinguished by color and color fields and uses hues to encode the
values. Recently, these techniques have been shown to result in
different perceptions of data similarities [30].

Attaining scalability is a major challenge for visualizing multiple
time series. Charts can become cluttered even with few time series (i.e.,
eight in Javad et al. [38]). Moritz et al. proposed a heat map approach
to treat the values in time series as independent pixels and to plot the
heat map of lines in one chart [50]. This method reveals the density of
lines but hinders patterns from similar time series with small time shifts.

Interactive exploration systems have also addressed the challenge
of analyzing multiple time series through various filtering and naviga-

tion techniques. TimeSearcher [37] enables users to filter and query
similar series via brushing on time intervals and value ranges, while
LiveRAC [45] supports batch inspection through a spreadsheet layout.
Other approaches use focus+context techniques: ChronoLenses [79]
and CareCruiser [32] provide filtering and highlighting, while systems
like Continuum [4] and EventRiver [43] employ semantic zooming to
navigate different temporal granularities.
Time Series Mining and Visualization. While the techniques de-
scribed above display time series in their original form, to visualize
large-scale data, data abstraction techniques have been proposed to miti-
gate issues with time series occlusion. (see [65] for an in-depth survey).

Approximation techniques have been developed to reduce the com-
plexity of large-scale time series visualization [24]. The most widely
adopted approach is Symbolic Aggregate Approximation (SAX) [42],
which discretizes time series into symbolic sequences through piece-
wise aggregate approximation. SAX-based systems like VizTree [41]
and SAX Navigator [60] visualize these symbolic representations using
hierarchical trees, while Hao et al. [35] focus on motif visualization
with colored rectangles. Alternative approximation methods include
piece-wise linear approaches that preserve gradient information [51]
and hierarchical clustering techniques for interactive exploration [61].

Projection and clustering are used to group similar time series
together to reveal underlying patterns. Steiger et al. visualize the
pairwise distance matrix of multiple time series into 2D projections
and a Voronoi diagram [67]. Ward et al. use N-grams to segment
time series and project the data with PCA [77]. Van Goethem et al.
apply a method that detects trends of time series at the starting time
point and visualize the trends and subtrends with a river metaphor [73].
StreamStory [68] transforms time series into a set of states to visualize
the relationships among the time series in a directed graph. For the
metrics used, many acceleration on DTW are proposed with heuristics
on time series properties [3, 36] or approximate algorithms [63].

Instead of considering all the points in a time series, we can explore
the statistical properties such as variances and correlations. Pinus [66]
is a triangle matrix metaphor that visualizes the variances of time
segments in all combinations of time intervals. Kothur et al. [40]
visualize the time series as color fields that encode the correlations
among other time series. TimeSeer [18] visualizes scagnostics with
scatter plots of data attributes at each time index to identify anomalies.

We propose a novel time series summarization technique that trans-
forms time series into compact symbolic sequences, considers the visual
features of time series, and produces results that can be visualized in
line charts without large visual complexities. Our goal is to compute
a set of disjoint partitions of real-value data series, which distinguishes
our problem setting from overlapping subsequence clusters [15, 19,
21, 31, 39, 53] and clustering discrete event sequences [28, 52]. Our
efficient algorithms that achieve significant speed up (from hours to
seconds for 100,000 series) in constructing sequences compared to a
straightforward clustering with visualization-oriented similarity metrics
and attain interactive speed to extract the time series patterns.
Shape Based Subtrajectory Clustering. Related work has been done
in the area of shape-based subtrajectory clustering. Their objectives are
to find clusters with predefined maximum distance allowed among



Pattern Support Pattern Support Pattern Support

C11 2 C32 2 C12 + C21 2
C21 4 C42 2 C21 + C32 2
C31 2 C11 + C21 2 C32 + C42 2
C41 2 C21 + C31 2
C12 2 C31 + C41 2

Table 1: Patterns in Figure 1(c) having minsup≥ 2.

subtrajectories and a maximum length in a cluster [1, 9, 10], with
greedy algorithms [72] that have more than quadratic complexity. The
commonly used Fréchet distance [72] aligns two lines like DTW but in
a continuous manner. Yet, it only takes distances between one aligned
pair of points between two lines, while time series distances take the
sum of all aligned pair of points. Continuous DTW [11] is proposed to
combine both approaches with a time cost of O(n5), which provides an
interesting avenue for future research to investigate how subtrajectory
clustering research could be used in the context of our application.

3 EXTRACTING SIMILAR TIME SERIES SUBSEQUENCES

Our approach frames the time series subsequence clustering into a
two-step process: (1) transforming time series into discrete symbolic
sequences and (2) mining frequent patterns from these sequences.
Breaking down time series into discrete sequences is a widely-used
approach for subsequence similarity search [29,42], treating the time se-
ries analysis as a sequence pattern mining problem (Background in Ap-
pendix A). For effective visualization, we address two key challenges:
1) constructing discrete subsequences that preserve visual similarity and
2) extracting sets of frequent patterns with visual compactness as the ob-
jective. Note that our method focuses on finding similar subsequences
within fixed time intervals rather than across arbitrary time periods.
While this constrains the search space, it enables the algorithmic effi-
ciency needed for interactive exploration of large datasets, allowing our
implementation to process 100,000 time series in seconds (Section 6).

3.1 Time Series Visual Symbolic Representation
Let T be a set of m real valued time series, where each series T ∈T

T = t1, t2, ..., tn ∀ti ∈ R, i ∈ I = {1, . . . ,n} (1)

has length n. I represents the time intervals in which each T is defined.
The proposed approach begins by decomposing the time series T into
a sequence of contiguous time series segments (Figure 1(b))

T = s1⊕ s2⊕·· ·⊕ sn′ , (2)

where ⊕ is the concatenation operator and each si has size l. The value
of l is defined by users based on the shortest possible intervals of the
patterns they want to extract.

Given a subinterval of size l, we split the time interval I where
the times series are defined into n′ = n

l subintervals Ii such that I =
I1∪ I2∪·· ·∪ In′ . Our goal is to identify groups of similar time series
segments within each subinterval Ii, so that each group of similar
segments is represented by a symbol. This procedure makes it possible
to represent a time series as a sequence of symbols, one per segment Ii,
leading to a more compact and easily interpretable representation of the
time series (Figure 1(c)). Specifically, let Ti be the set of time series
segments from T in subinterval Ii. We can cluster the segments in Ti
according to their similarity, assigning a symbol to each cluster. If we
denote the clusters in Ii by ci1,ci2, . . . ,ciki , where ki is the number of
clusters in Ii, we can represent time series T as T ′ = c1 j1 ,c2 j2 , . . . ,cn′ jn′
(Figure 1(c)), where ci j is the symbol assigned to the jth cluster of
interval Ii (here, we represent the cluster and the symbol assigned to it
with the same notation). The symbol ci j is chosen such that the segment
si ∈ T defined on Ii is contained in ci j (Figure 1(c)).
Dynamic Time Warping as a Visual Similarity Metric. Choosing
the distance metric that reflects visual similarity is essential to obtain
good clusters. Despite the abundance of similarity measures available
in the literature [22, 49], several studies (including crowdsourcing,
user study, and data mining benchmarks) indicate that Dynamic Time

Fig. 3: Limitation on irregularly sampled time series (left) and mitiga-
tion by interpolating the series with a regular time grid (right).

Warping (DTW) [7] performs better on average than other measures
both in terms of perception [25, 30, 44] and classification accuracy [22].
Unlike Euclidean distance (ED) that only considers the corresponding
points in two time series, DTW allows for small shifts on the time
axis to minimize the overall sum of distances. For example, although
the two time series might have similar patterns (e.g., one peak), ED
computes a much larger distance than DTW because it does not perform
a shape matching alignment of points before computing the distances
(Figure 11 in Appendix). Such an alignment invokes the Gestalt rule
of similarity: humans perceive lines with similar slopes as the same
group [78]. For these reasons, in our work, we use DTW to calculate the
pairwise similarity of each time segment. Other distance measures that
align the series like CDTW [11] could be used for the same purposes.
Several strategies have been proposed to improve the performance of
DTW, including approximation [63], CPU optimization [46] and GPU
acceleration [17]. We evaluate their performance under different data
sizes and hardware set ups in Section 6.
Clustering Symbolic Representations. We use agglomerative hier-
archical clustering with gap statistics [70] to automatically estimate
the number of clusters. To facilitate effective visual analytics, we use
a parameter α as clustering strength with Gap statistics to adjust the
number of clusters in a k̂:

k̂ = smallest k such that Gap(k)≥ 1
α

Gap(k+1)

Compared to other clustering methods, like k-means or DBSCAN [26],
our approach does not need to be given the number of clusters or the
best distance thresholds, which are hard to determine among a set of
time intervals. Also, since users might want to visualize raw time
series without any pre-processing such as normalization, the clustering
strength parameter can provide a more flexible control to determine the
outcome with human interactions, such as whether or not time series
with vertical shifts should be grouped together.

Once the symbolic sequences are established, we can apply
sequential pattern mining techniques to retrieve common time series
subsequences from the dataset. Before explaining the optimization
process and its motivation, we first introduce some nomenclature,
mainly the concept of patterns and minimum support (minsup) and
their implications on the optimization outcome.

3.2 Profiling Sequential Patterns

A pattern (i.e., sequential pattern) is a sequence of contiguous sym-
bols and also a set of intersected time series subsequences represented
by the symbolic sequences in our case. The length of a pattern is the
number of such symbols in the sequence. For instance, in Figure 1,

C31 + C41 is a pattern of length 2. The support of a pattern p, denoted
sup(p), is defined as the number of time segments that are members of
p. For example, support of 3 means that there are three segments that
contain the pattern. The minimum support minsup is number of time
series segments that a pattern must contain to be frequent. The minsup
value can be set by users, based on the requirements of a specific ap-
plication; intuitively, it specifies how frequent a pattern must be to be
significant. The lower the minsup value, the greater the chance of ob-
taining longer frequent patterns, whereas larger minsup values produce
shorter patterns with more similar segments. Using the example in Fig-
ure 1(c), the frequent patterns with minsup= 2 are illustrated in Table 1.



Fig. 4: Clustering time series with DTW distance directly (from (a) to
(c)) is an expensive computation. To speed up, we first (b) coarsely
partition the data with LSH, then we can sample from each partition to
compute DTW clustering with a smaller subset of the data.
3.3 Computing Effective Groups from Sequential Patterns

While these patterns can be treated as subsequence clusters since the
time segments in each pattern are similar to each other, directly using
frequent patterns for visualization presents two main problems. First,
the number of frequent patterns can grow drastically when the minsup
is set to a small number because of the combinatorial explosion [16].
Even if we restrict the results to only include those who are minimal or
closed [34], there might still be many patterns. Second, these patterns
might overlap with each other, resulting in many repeated time segments
displayed. Since our goal is to find subsequence clusters that best
represent the trends in the dataset (Figure 1(d)), we leverage the patterns
to find an effective set of time series partitions. We define g as an unique
subset of time series belonging to p as the cluster to be visualized.
Given a minsup value, our resulting set of clusters G = {g1,g2, · · ·}
obeys the following properties:

gi ⊂ px,gi * py,x 6= y
gi∩g j = /0 and sup(gi)≥ minsup (3)

for any clusters gi,g j ∈ G.
As a result, each possible set of clusters G is a partition of the original

time series data. Since a “concise” visual representation of the time
series should display most data with minimum number of sets (i.e.,
charts), we could define the set Ĝ as the one that has the least number
of clusters from the cluster sets Gmax that contains the most number of
time series data from G:

Ĝ= argmin
G∈Gmax

|G|,Gmax =

{
argmax
G∈G

∑
g∈G
|g|
}

(4)

where | · | accounts for the number of elements in the set.
Intuitively, we use frequent patterns to identify significant and similar

time series subsequences of arbitrary lengths and discard those without
enough support. We further minimize the number of groups needed
to partition the similar contiguous subsequences. Thus, we provide a
concise overview of unique temporal behaviors along the time period,
dramatically reducing the visual complexity and allowing users to
quickly grasp the dominant trends within a large number of time series.
3.4 Method Limitations and Mitigation

While TIVY effectively addresses challenges in time series visualiza-
tion, some limitations must be considered for practical applications.

1. Irregularly sampled time series. DTW clustering requires regularly
sampled time series, making irregularly sampled data incompatible
with our approach (Figure 3(a)). A simple strategy to standardize
the sampling rate is to set up a uniform grid and interpolate the
values of each series at the grid points (Figure 3(b)).

2. Window Size Sensitivity. If l is too small, it discards the shifts
beyond the sub-interval, and if l is too large, subsequence clusters
with short durations are not grouped together. For time series data
with short patterns and long shifts, subsequence clusters without
temporal constraints will serve better outcomes. To mitigate this,
as discussed in Section 4, we could implement adaptive window
sizing, though this increases computational complexity.

ALGORITHM 1: TIVY (Time Series Visual Summary)
Input :T – a set of time series as a m×n matrix

window size – window size
α – clustering strength
minsup – minimum support

Output :Ĝ – A list of subsequence groups

1 P ← construct sequences(T , window size, α) /* Sec. 3.1 */

2 D ← {}; prefix scan(P,minsup,null,D) /* Sec. 3.2 */

3 Ĝ ← extract groups(D,minsup) /* Patterns from Sec. 3.3 */

ALGORITHM 2: construct sequences
Input :T – a set of time series

w – window size
α – clustering strength

Output :P – A set of symbolic sequences

1 m← T.shape[0] /* number of time series */

2 n ← T.shape[1] /* length of each time series */

3 S ← array split(T ,w) /* split T into segments */

4 P ← empty matrix(m,n/w)
5 for i=0; i < n / w; i++ do
6 s ← S[i]
7 cluster labels ← []
8 for j=0; j < m; j++ do
9 cluster labels[j] ← LSH(s[j]) /* coarse clustering */

10 end
11 sample ← [] /* sampling from each LSH cluster */

12 for label in unique(cluster labels) do
13 sample.push(random select(s[cluster labels == label,:]))
14 end
15 sample labels ←

hierarchical clustering(sample,metric = ‘DTW ′,strength = α)

/* assign final labels to the coarse clusters */

16 for label, sample label in unique(cluster labels), sample labels do
17 cluster labels[cluster labels == label] ← sample label
18 end
19 P[:,i] ← cluster labels
20 end

4 THE TIVY ALGORITHM

The TIVY (Time Series Visual Summary) algorithm constructs the
symbolic representations and derives a grouping of time series subse-
quences (see Algorithm 1). The algorithm consists of three key steps:
(1) clustering time series at each sub-interval, (2) profiling the supports
of sequential patterns, and (3) computing the groupings of the sequen-
tial patterns. Since it is heuristics-driven, we will discuss the effects on
the parameters and later demonstrate the effectiveness and parameters’
influences on visualizing synthetic and two real datasets in Section 6.
Clustering Time Series at each Sub-interval (Section 3.1). As illus-
trated in Figure 1(c), to transform a real-valued time series to a discrete
symbolic representation, we need to cluster segments using the DTW
metric. However, a straightforward clustering with DTW is infeasible
even for moderately-sized data, since the distance computation has
a time and space complexity of O(m2), where m is the length of the
time series. While m could be small if the window size l is small, the
bottleneck comes from the hierarchical clustering that automatically
choose the optimal number of clusters, since it requires a pairwise dis-
tance matrix resulting in O(n2) time complexity, where n is the number
of time series. Thus, the total time complexity to construct symbolic
sequences from time series is O(m2n2). Even though this approach
leads to an effective perceptual result, the lack of scalability hinders its
usage for interactive exploration.

Therefore, we propose a more efficient clustering methods. The
method splits the clustering process into two stages. Like other large
scale clustering methods [13, 14], it first coarsely groups the time
series using Locality-Sensitive Hashing (LSH) [20].Basically, we hash
each time series t ∈ T into an integer bucket using the following hash
function:

h(t) =
⌊

t · x+b
w

⌋
(5)



ALGORITHM 3: prefix scan
Input :P̄ – an m̄× n̄ submatrix containing m̄ symbolic sequences with length n̄

minsup – minimum support
prefix – prefix sequence of the submatrix
D – A reference of dictionary P→ { Time Segments }

1 if P̄ is empty then
2 return
3 end
4 f irst col ← P̄[1 : m,1] /* clusters on the current level */

5 for symbol, idx in unique( f irst col) do
6 if Size(idx)<minsup then

/* skip all support calculations on patterns

with prefix idx */

7 continue
8 end
9 D[pre f ix+ symbol] ← D[pre f ix][idx,2 : n̄]

10 prefix scan(P̄[idx,2 :], minsup, pre f ix+ symbol,D)
11 end

where x is a random vector with each element sampled from Normal
distribution xi ∼ N(0,1), w is a width representing the quantization
bucket, and b is a random variable sampled from the Uniform Distribu-
tion b∼ uni f [0,w]. The hashing function ensures that if two time series
are similar in terms of Euclidean distance, which is the upper bound
of DTW distance, the probability of being assigned to the same bucket
(i.e. P(h(ti) = h(t j))) will be high. Such grouping only requires a
linear scan on the series and each scan only contains a hashing on the
values of the series (i.e. O(mn) time complexity). Then, instead of
running the DTW clustering on the whole dataset, we can run it with
one or more samples from each hash bucket, substantially reducing
the number of DTW computations, while still leveraging the benefits
of DTW to group visually similar series. The outline of the algorithm
construct sequences (Algorithm 2 and Figure 4) is as follows:
1. The clustering starts on segments in each time interval (line 5-6).
2. We first run LSH (line 8-10) to coarsely cluster the time series.
3. To further combine these coarse clusters, we run hierarchical clus-

tering with DTW distances (line 15) with only one random sample
from each coarse cluster (line 12-14). α is used to determine the
optimal number of clusters from Gap statistics.

4. We propagate the cluster labels obtained from each sample to the
rest of its coarse cluster members (line 18-20) to return the final
result (Figure 4(c)).

Profiling the supports of sequential patterns (Section 3.2). Unlike
traditional sequence mining algorithms like PrefixSpan and others [27,
57, 75] that require expensive pattern projections as the bottleneck, our
symbolic sequence T ′ is a special case that contains ordered cluster
labels that never appear in more than one time interval. For example,
the time series represented in C12 + C21 + C31 are subsets from the ones
represented in C12 + C21 Thus, we could efficiently extract patterns by
grouping the time series symbol-by-symbol from the beginning of the
symbolic sequences to the end (Algorithm 3). It handles one time
interval in each recursion (line 4). The time series indices (as rows
in the input) are grouped together to the next recursion if they have
the same symbol at the current interval (as column), or be split into
different recursions if not (line 5). These indices will also be stored in
the dictionary if their patterns’ supports are not smaller than minsup;
else, the recursion will stop (line 6-9). Such an approach allows the
pattern mining procedure to be completed within seconds, as opposed
to minutes in other pattern mining approaches (Section 6.2).
Extracting Effective Groupings via Greedy Search (Section 3.3).
Since the number of frequent patterns is exponential to the number of
symbols [33], and the number of possible sets of groupings G is the
binomial sums (i.e., O(2n)), finding the set of effective groupings is
hard. Thus, the proposed algorithm follows a greedy approach that
evaluates the frequent patterns one by one, with heuristics that prioritize
long frequent patterns. The intuition is that if long subsequence groups
are chosen, it is likely to reduce shorter patterns, which requires more
groupings to cover the same number of time intervals. The outline of
the algorithm extract groups (Algorithm 4) is as follows:

ALGORITHM 4: extract groups
Input :D: A dictionary of P→ {Time Segments}

minsup: Minimum support
Output : Ĝ – A list of subsequence groups

1 Ĝ ← []
2 while D 6= /0 do
3 delete D[p] ∀p in D if Support(D[p]) < minsup

/* Prioritize longest frequent patterns */

4 Candidate← {p | p in D} , where length(p) = maximum length of patterns
in D

5 while Candidates 6= /0 do
6 pcandidate ← random select(Candidates)
7 overlap patterns ← []

8 for p in Candidates\ pcandidate do
9 if Support(D[p]−D[pcandidate]) < minsup then

10 overlap patterns.push(p)
11 end
12 end

/* Maximize retrieval on longest patterns */

13 if Size(overlap patterns)> 1 then
14 delete D[pcandidate]

15 Candidates.remove(pcandidate)
16 continue
17 end
18 Ĝ.push(pcandidate)
19 for p in D do
20 D[pattern] ← D[pattern]−D[pcandidate]

21 end
22 for p in Candidates do
23 if Support(D[p]) < minsup then
24 Candidates.remove(p)
25 end
26 end
27 end
28 end

1. We initialize the grouping candidates and the contained series
as the pattern profile obtained from extract groups as D. We
iteratively extract (line 19) and prune (line 3) the candidates until
the candidate list becomes empty (line 2).

2. In each iteration, the algorithm first shortlists the candidates with
the longest patterns (Candidates) (lines 4-5) and tries to extract as
many candidates from this set as possible (lines 6-31).

3. Each shortlisted candidate is evaluated one by one in a random
order (line 7). During the evaluation, we calculate the reduction
of item in Candidates if the candidate is selected (line 10). A
reduction happens only when (1) there are series removed due
to the overlapping of both series and time interval between the
comparisons, and; (2) the removal leads to the support of the item
being below minsup.

4. If the reduction is greater than 1, it means taking this candidate
will not maximize the retrieval of the set and we should remove
it (line 14-18). Otherwise, we export it to the final result (line 19)
and remove the overlapped series in D (line 20-22) and update the
shortlisted candidates correspondingly (line 23-27).

Adaptive Sub-Interval Sizes and Grid Search. Fixing the sub-
interval size l (Equation 2) makes the computation efficient, but it can
affect the outcome (Section 3.4). Therefore, instead of decomposing
each segment si with size l, we enable each segment’s size to be a mul-
tiple of l, and then generate all the valid contiguous partitions. Among
these partitions, we run a grid search approach to identify the parti-
tion that provides the best subsequence clusters from Algorithm 1. To
evaluate cluster quality, we propose a metric inspired by the Silhouette
index [59] that balances cluster separation and cohesion: Q = Qinter

Qintra
.

Qinter is the inter-cluster distance (i.e. sum of distances among the
medoids in each cluster) and Qintra is the intra-cluster distance (i.e.
sum of distances between the medoids and the series in each’s clus-
ters). The distances takes DTW distances and also the overlap of time
intervals for inter-cluster and the length of series for intra-cluster into
account. Intuitively, higher values indicate better clustering with well-
separated, cohesive groups. This allows us to capture subsequence



Fig. 5: Time series summary for 100,000 ECG signals in a WebGL based widget in Jupyter notebook. Summaries of different shapes are
visualized in different small multiples for categorizing different waveforms to help proper diagnosis and treatment (i, ii). 1© Visual Design: Each
chart is shown with a bold line encoding the representation and size of the summary. The time series inside can be encoded as a band graph or
density line chart. 2© Layout: Colors and positions encode the labels of the summary, and the charts are sorted based on their pairwise similarity.

clusters with varying sub-interval sizes more easily, as demonstrated
in Figure 7. However, the drawback is that there will be 2

n
l −1 times of

running the whole algorithm. For example, a l = n
10 in Figure 7 results

in 512 combinations that makes the computation finished in around
8 minutes, provided that we use dynamic programming to save the
clustering results on the same time intervals among the partitions.
Tradeoff between Speed and Quality. While our pipeline provides
various speed ups, exploiting the parameters for maximal speed might
affect the quality, leading to original problems of time series visualiza-
tion like visual clutter in a chart or too many charts. We now describe
settings that will incur such a tradeoff.
1. Increase bucket size in LSH. Increasing the width w in Equation 5

will make series more prone to fall into the same bucket that reduces
the number of series undergoing the DTW clustering routine (i.e.,
faster clustering), but also increases the variances of series inside
the buckets, resulting in more visual clutters. Conversely, a smaller
w will align the results to DTW clustering with slower computation.
More samples might improve cluster assignment but could not
separate similar series inside the same bucket.

2. Increase minsup. As it increases minimum number of series needed
to be defined as a pattern in the final output, the cluster candidates
and the search space for the groupings decrease. However, if there
are many clusters left for the final output, it also implies that the
output misses a lot of original data.

3. Decrease window size l. Small l speeds up the DTW clustering as
it is quadratic to l, but might produce the problems in Section 3.4.

5 VISUALIZING TIME SERIES AT SCALE

We propose an efficient open-source implementation for scalable time
series visualization using our algorithm. Efficiency means both ef-
fective visual encoding and computationally accessible rendering of
thousands of time points at a decent frame rate on a laptop. We outline
the analytical tasks supported by time series summaries and present a
WebGL-based implementation as a reusable Jupyter notebook widget.

5.1 Tasks and Requirements
A visual summary of time series effectively addresses the removal of
visual clutters and optimization of layout compactness. We reference

the tasks from Aigner et al. [2], which describes a set of tasks involved
in the time series data analysis. The overall tasks include classification,
clustering, search and retrieval, pattern discovery, and prediction. Our
visual summary falls into the category of clustering. The book refer-
ences the classical paper regarding time series clustering by Van Wijk
and Van Selow [74]. Also, a recent paper related to visualizing trends
in time series [73] summarizes a set of clustering tasks from the book.
Therefore, we base our design considerations on the clustering tasks
from these three references. Furthermore, we include the system design
requirements to maximize the real-world impact of our software. The
tasks are summarized below. T.1 and T.2 focus on the tasks gathered
from the surveyed time series clustering analysis and T.3 and T.4 focus
on the interactions involved when visualizing clusters with additional
attributes. Last, T.5 is related to the requirement for building a system
from the algorithm and focuses on the scalability and accessibility of
the system.
T.1 Understand subsequences’ behavior in large time series including:

a. The support of each cluster.
b. The time interval and range of each cluster.

T.2 Understand the distribution of each cluster including:
a. The quality of each cluster.
b. The shape differences among clusters.

T.3 Filter and zoom for specific clusters to:
a. Highlight clusters by their temporal values.
b. Inspect individual time series within a cluster.

T.4 Compare clusters with different attributes.
T.5 Integrate to the real working environment.

a. Implement as an interactive widget inside the computation
notebook with low hardware requirement.

b. Render visualization with low latency and scale to real-
world datasets.

5.2 Visualizing Time Series Summary

Designs to visualize multiple time series have been thoroughly stud-
ied [38]. However, when it comes to high volumes of temporal informa-
tion, the main challenge is the technical scalability to render millions
of data points representing the lines while performing various interac-
tions seamlessly. We need to consider different tradeoffs to balance the



Fig. 6: A time series visual summary is a set of time series subsequence clusters of varying lengths that groups visually similar time segments
together. In a stock market use case, we run TIVY to explore visual summaries of 4,470 stock market time series in 2015-16 for portfolio
construction. A© The algorithm creates subsequence clusters that cover main trends in the dataset. B© After identifying different trends in the
market, a common “v” shape pattern is shown among stocks in the first three months of 2016 and splits the subsequence clusters by sectors to
observe which sectors contain this pattern.

software efficiency and accessibility. Thus, we now propose our time
series visualization system (Figure 5), and discuss the visual encodings
that consider both visual clarity and rendering efficiency.

5.2.1 Visual Encodings

Since TIVY allows a holistic high-level summary of all subsequence
clusters in a time series dataset, each group could be visualized with
a precise shape (T.2) and displayed with the main statistics (T.1) such
that users can quickly acquire an overview of multiple clusters plotted
on the same screen. Moreover, it becomes feasible to use aggregated
visual encodings and superposition visualization in Figure 2(b) and (c)
to present a more significant number of time series inside the cluster.
Overall, our design considerations include the usage of band graph,
line chart, density line chart, and a central line to encode the time series
inside each summary (Figure 5 1©).
Band graph. We provide two bands (i.e., range + 90% quantile) to
visualize both the extrema and tighter bounds of the time series inside
the cluster to balance between the visual clarity and accuracy. The
advantage is that since the time series within each chart is homogenous,
the band can accurately depict the trends and limit the amount of noise
(T.2). Also, in terms of rendering, we can use two polygons to render
two bands, which are much simpler than rendering millions of points
(T.5). We acknowledge the fact that further user study is needed to
evaluate the tradeoffs between clarity and uncertainty when choosing
the number of quantiles in uncertainty visualization.
Density line chart. To reveal original data points in the chart, we can
use line charts to visualize the time series. However, direct input of data
points to the rendering pipeline will easily hinder the system’s interac-
tive performance. When users pan and zoom the whole graph, each data
point in the time series has to undergo several linear transformations to
define its new location in the screen. For example, 100,000 time series
with a cardinality of 180 will require 18 million transformation opera-
tions. Some platforms might not support rendering lines with widths
that we need to triangulate the lines as polygons that results in more
vertices. For a common laptop and latency in milliseconds allowed
only, users will easily experience lagging during the interactions (T.5).

To address the increasing data points on rendering the line charts, we
need to avoid having the rendering complexity be linearly proportional
to the number of data points. One way to do so is to aggregate the input
time series to 2-D density maps, which are bounded to a fixed number
of bins. By having a slight overhead to compute the density map,
we can instead input much smaller meshes for real-time interactions.
The color opacity encodes the density such that we can inspect the
distribution of temporal values inside the cluster (T.2).
Center line. To improve the reflection of the main statistics in the aggre-
gated plot (i.e., band graph), we use the medoid [69] in the cluster as the
main shape, which is an sample tm inside the cluster g = {t1, t2, · · · , tn}

that has the minimum sum of pairwise distances with other lines:

tm = argmin
t∈g

n

∑
i=1

d(t, ti) (6)

Choosing a line instead of using time-invariant averaging methods
such as soft-DTW [17] or DTW Barycenter Averaging [58] avoids
computationally expensive algorithms (O(N ·T 3 +N2 ·T 2)) for useful
interactive analysis. We also encode the line width with the number of
time series inside the summary to better estimate cluster size (T.1).

5.2.2 Layout Strategies

To allocate the time series in a compact layout, we position each time
series chart as small multiples that fills the entire canvas from left
to right and top to down (Figure 5 2©). Besides, when users supply
an attribute to each summary (e.g., class labels), we can encode the
summaries with colors and group the same ones by vertical positions
(Figure 5(i)) to present clearer comparisons (T.4). Also, summaries
might share similar shapes among each other as well. Thus, we can
sort the summaries by their similarity. It can be done by first sampling
one series from each summary, then build a hierarchical cluster (i.e.,
linkage) with the samples and obtain the order from the leaves in the
hierarchy (Figure 5(ii)).

5.2.3 Interactions

Our widget provides the interactions to facilitate the exploration of time
series summaries (Figure 5A).
Pan and zoom. Since our rendering pipeline provides great computa-
tion efficiency on the linear transformation on the graphics, users can
easily pan and zoom the whole canvas to focus on a subset of time
summaries in real-time (T.2).
Filtering. Since each summary contains statistics such as the number
of time series and time intervals, our system provides two sliders that
filter the summaries based on that. These allow the users to explore the
important trends effectively within a specific time interval (T.1).
Toggles for different visual encodings and layouts. Our system pro-
vides different toggles to reveal different visual encodings on demand.
Users can either display the summaries as band graphs or density lines
and select whether they want the central line or not. Furthermore, users
can select whether they want the summaries to be separated by the
attributes or not (T.4).

5.2.4 Implementation

Our algorithm and system are implemented with Python and can be
used in Jupyter notebook and Jupyter Lab. WebGL is required to
render the time series visualization. We use NumPy for most of our



Fig. 7: Evaluation of TIVY’s visual quality using synthetic dataset composing of size main trends with different durations. Our algorithm
successfully extracts complex patterns hidden in different parts of the dataset into accurate subsequence clusters, and supports adaptive sub-interval
sizes (dashed lines on irregular intervals on the top right chart) when needed.

computations in TIVY and VisPy for rendering the meshes representing
different visuals in the time series views.

To reduce the latencies during visualization interactions, such as
filtering or switching the charts, we first compute the vertices of all
possible visuals (i.e., polygons of band graphs, centerlines, and density
lines) and store them in a buffer object. Then, when each visualization
is selected and shown, we can directly import the locations to the render-
ing pipeline without creating the vertexes on the fly. Our visualization
interface is available at https://github.com/GromitC/TiVy.

6 EVALUATION

6.1 Datasets and Apparatus
All of our experiments are conducted in a MacBook Pro with 2.4 GHz
8-Core Intel Core i9 CPUs and 32GB RAM, except the one requiring
GPUs (we use 8 A100-40GB). We use the following datasets for our
experiments:
Synthetic Data. We design a synthetic dataset with different shapes
in multiple time intervals. The whole dataset contains six classes
of shapes: cyclic ; normal ; increasing ; decreasing ;
upward shift ; and downward shift . In each class, the time
series have some deviations in temporal alignment and amplitudes
but plotting all of them within one plot would not cause too much
perception differences. We also generate these data with different
durations and combine them together to form the datasets shown in
Figure 7. The main purpose of using synthetic data is to evaluate the
expected behavior of our algorithm with known data characteristics.
Stock Time Series. The dataset contains 4,470 company daily adjusted
stock prices in NASDAQ between the year of 2015-16. The industry
sector for each stock price are also provided.
ECG dataset. We use the MIT-BIH Arrhythmia ECG dataset 1 that
records 100,000 patients’ heart beat signals. Each signal has a cardinal-
ity of around 200 and we trim the trailing zeros for each signal. The
heartbeats are annotated by five groups of heart conditions.

6.2 Quantitative Evaluation
In this section, we report the effects of visual outcomes by different
design choices in the algorithm, and the performances with different
scalability and alternatives.
Visual Quality. To verify that our algorithm can extract the time series
patterns with different sizes. We present the visual summarization
results of the synthetic data under different settings in Figure 7(A), as
well as the patterns extracted from the real-world datasets in Figure 5
and Figure 6 A©. First, for the synthetic data, we run our algorithm on
three datasets with different combinations of durations of time series

1https://www.physionet.org/content/mitdb/1.0.0/

Fig. 8: Run time (> 1 hr omitted) improvement with LSH and indexing.
patterns. For each unique pattern and combination, there exists 100
time series. We fix the clustering strength to 1, minimum support
to 50, 30 LSH with w = 1, and select the result with recall greater
than 0.95 among time window sizes of {25, 50, 100, 200} for three
datasets. We also create a dataset that contains shapes with different
lengths at different time intervals to evaluate the adaptive window sizing
capability (Figure 7(B)). Figure 7 shows that TIVY is able to separate
the patterns regardless of different shapes and durations existed in the
dataset. We noticed that adding series with different shapes makes
grouping similar shapes more easily. We hypothesize that increasing
shape distinctiveness is beneficial for the gap statistics approach, as
suggested by related evidence [76]. For the patterns extracted for the
real-world datasets, we will present them later in Section 6.4.

Computation Scalability. We report the run time using the 100,000
ECG data series in Figure 8. To highlight the effect of LSH in reducing
the quadratic time complexity of DTW distance metric and hierarchical
clustering (Section 3.1), we sample the ECG data and compare the run
time between the algorithms with and without the optimization [46],
and other variants on DTW (i.e. SoftDTW on GPUs [17] and
FastDTW [63]). We fix our parameters on time windows and clustering
strengths. In Figure 8(a), it shows that our LSH optimization is able to
speed up the process from hours to within a couple of seconds, and cpu
optimization for DTW plays the most important role on the efficiency.
For the discrete pattern mining process (Section 4), we compare
with general purpose pattern mining approach [75]. In Figure 8(a), it
shows that given our unique pattern structures, we can speed up the
computations from long time to seconds. For the rendering pipeline,
we report the preparation time of the buffers input to the system and
the interaction latencies during the filter, pan, and zoom operations
(Figure 9). We can see that by addressing the linear overhead of prepar-
ing the visual buffers to the system which is an one-off computation
only (Figure 9(a)), we can achieve a seamless exploration of time
series data in the interactive interface with good FPS (Figure 9(b)).

https://github.com/GromitC/TiVy
https://www.physionet.org/content/mitdb/1.0.0/


Fig. 9: Rendering preparation time and FPS.
6.3 Qualitative Evaluation
Our goals in this section are to visually illustrate the qualitative impacts
of various optimizations in the pipeline to the final results to help
readers understand how to spot unsatisfactory results on a dataset.
Over Clustering with long w. Our LSH buckets series with similar
distances, where the range is defined by w (Equation 5). Thus, if w is
too large (e.g. 10× in Section 4), then different shapes will be shown
in one chart visibly. (Figure 10(a)). More variations of w and number
of samples are shown in Figure 13 in the Appendix. Overall, w plays a
more critical role than sampling as discussed in Section 4.
Redundant Plots with small window size l. If l is small, there would
be a lot of charts with similar shapes (Figure 10(b)) since it limits the
alignment capability for DTW clustering (Section 3.4).
Under Plotting with high minsup. If the minsup is too high, lots of
data points will be abandoned in the final output due to the high number
of series required to be in the plot, resulting in a display with many
missing shapes (Figure 10(c)).

6.4 Use Cases
We present two usage scenarios to demonstrate the effectiveness of
TIVY. First, we show our approach can summarize meaningful patterns
for correct categorization of the ECG data. Second, we apply our tech-
nique to help understand important trends in the financial stock market.
We fix the time window size to one-tenth of the total durations, cluster-
ing strength to 1, and minimum support to 50. They are chosen since the
summarization outcomes for both visualization capture more than 95%
data points in the datasets and produce visible trends with few clutters.

6.4.1 ECG Signal Classification

We demonstrate whether TIVY is able to visualize large amounts of
time series effectively. We use the MIT-BIH Arrhythmia ECG dataset 2.
ECG is widely used in medical practices to monitor cardiac health.
Understanding the waveforms and attributing them to the correct cate-
gorization is important for proper diagnosis and treatment. Each row
in the data consists of heartbeat signals annotated by at least two car-
diologists. The annotations are mapped to five groups suggested by
Association for the Advancement of Medical Instrumentation (AAMI):
Normal (N), Supraventricular Ectopic Beat (SVEB), Ventricular Ec-
topic Beat (VEB), Fusion Beat (F) and Unknown Beat (Q). We removed
the trailing zeros since they represent the end of the beat.
Exploring patterns among 100,000 time series. The overall sum-
marization result is shown in Figure 5. There are some interesting
patterns shown. For example, the patterns in Figure 5(i) are long flat
lines of dropped beats, which are clear characteristics of junctional
escape beat belonging to the SVEB group. Also, Figure 5(ii) shows
strong contraction beats with a long pauses afterwards, which are symp-
toms related to premature ventricular contractions. These illustrate
that TIVY successfully extracts visually meaningful patterns among
100,000 ECG signals, which corroborates the verification from two
independent cardiologists.

6.4.2 Financial Time Series Analysis

The second use case involved the use of TIVY on stock market data
to construct a portfolio. The dataset contains 4,470 company daily
stock price series between the year of 2015-16. The goal is to study
the trends occurred in the financial market to construct a portfolio that

2https://www.physionet.org/content/mitdb/1.0.0/

Fig. 10: Illustrations of visual artifacts under three scenarios on the
synthetic data (orange): (a) long w; (b) high minsup; (c) small l.
balances the risks in different situations. The time series are normalized
with zero mean and unit variance to calibrate the trends with different
numerical prices. We use TIVY to explore and select stocks through
understanding different visual behavior of the stock time series.
Observing overall trends. To begin with, the algorithm computes
a visual summary that shows 23 trends that, in total, cover most of
the time series data (Figure 6 A©). By inspecting the shapes of the
trends, most companies prices’ were decreasing throughout the period.
However, some increasing trends were involved as well as the ones
with zig-zag shapes. As the zig-zagging stocks are the ones that are
being actively bought and sold (i.e., a price war). For risk-averse (i.e.,
afraid of risks) situations, they were not recommended for purchases.
Focusing on selected trends. Next, users might want to know if there
are any more risky trends, so the time series subsequence clusters are
filtered with the “v” shapes (Figure 6(b)). The visualization reveals
that this pattern happens in early 2016. Since the trend exists in many
such companies, there must be a global economy issue that affects the
whole market. For portfolio managers, they could be aware that actively
trading the stocks impose a higher risk in this situation.
Exploring industry sectors. The portfolio manager may try to know if
there are any relationships between the trend and the sectors, so he may
further split the clusters by the sector. The result shows that the trends
mainly happen in four sectors represented by four thick lines: Industrial,
Technology, Healthcare, and mutual funds (non-sector) (Figure 6(b)).
As a result, he or she can research passive trading strategies for these
four categories of companies. Overall, the algorithm provides a visual
evidence to explore the stock trends freely and leverage the system to
perform multi-model data analysis.

7 CONCLUSION AND FUTURE WORK

We presented TiVy, a novel approach to time series visualization that
addresses the trade-off between scalability and visual clarity through
selective superposition based on visual similarity. By combining LSH-
accelerated DTW clustering with specialized sequential pattern mining,
we achieve 1000× performance improvement over straightforward
DTW clustering while maintaining visual quality, enabling interactive
exploration of datasets with 100,000+ time series. Our experimental
evaluation demonstrates both the technical performance and practical
utility of the approach. There are promising directions we would like
to pursue in future work: 1) Extend TiVy to multivariate time series to
enable analysis of complex phenomena with multiple interdependent
variables; 2) Support interactive refinement like sketching, allowing
domain experts to guide pattern discovery; 3) Explore modern vision
models as replacements for the DTW clustering pipeline, learning
visual similarity directly from time series projections and potentially
attaining greater scalability; 4) Apply our techniques to other domains.
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APPENDIX A BACKGROUND ON TIME SERIES SUBSEQUENCE
MINING

We give an overview of time series subsequence clustering to provide
the intuition behind our approach to the problem. To identify common
time series subsequences, techniques have been proposed that trans-
form the real-valued time series into discrete sequences. Figure 12
illustrates a popular technique called Symbolic Aggregate approXima-
tion (SAX) [42]. Although SAX is not designed for visualizing the
real-valued data series since it aggregates the series as a sequence of
flat lines (Figure 12), we are inspired by it for discretizing the time
series for subsequence clusterings. First, the time series is split into
w segments with equal durations. Then, for each segment, an alpha-
bet representing a range with equal probable distribution is assigned
based on the average of the values within the segment (i.e., piece-wise
aggregate approximation (PAA)). Since the time series becomes a dis-
crete sequence, pattern mining techniques can be applied to obtain the
repetitive substrings among all sequences in the dataset. Subsequence
clusters are then created from these substrings.

Our method is similar to SAX in terms of discretizing the real-valued
series to symbols, but we focus on creating symbols that represent series
with similar shapes instead of similar average values in a time window.
Also, we propose a pattern mining approach that derives clusters to
attain scalability in time series visualization by reducing the number of
small multiples.

Fig. 11: (a) Euclidean Distance (ED) sums up the L2 distance between
the points of two time series at the same temporal positions. (b) Dy-
namic Time Warping (DTW) matches the points (i.e., the grey lines)
first even though they are not aligned on the time axis.

Fig. 12: Illustration of Symbolic Aggregated Approximation (SAX).
Some time segments with different shapes may belong to the same
symbol due to averaging from Piecewise Aggregated Approximation
(PAA).



Fig. 13: Qualitative results of LSH accelerated clustering with increasing widths and number of samples. Overall, increasing w plays a more
critical role than increasing the number of samples.


	Introduction
	Related Work
	Extracting Similar Time Series Subsequences
	Time Series Visual Symbolic Representation
	Profiling Sequential Patterns
	Computing Effective Groups from Sequential Patterns
	Method Limitations and Mitigation

	The TiVy Algorithm
	Visualizing Time Series At Scale
	Tasks and Requirements
	Visualizing Time Series Summary
	Visual Encodings
	Layout Strategies
	Interactions
	Implementation


	Evaluation
	Datasets and Apparatus
	Quantitative Evaluation
	Qualitative Evaluation
	Use Cases
	ECG Signal Classification
	Financial Time Series Analysis


	Conclusion and Future Work
	Background on Time Series Subsequence Mining

