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ABSTRACT
Vector data is prevalent in various fields and is expected to grow
further with the increasing popularity of embeddings. This data
often grows to billions of vectors with thousands of dimensions,
making analysis a complex task. A key component of this analysis
is vector search, which aims to find similar vectors to a given input.
Over the last decade, graph-based techniques have become the pre-
ferred method for vector search in many analytical tasks that do
not require theoretical guarantees, thanks to their excellent query
efficiency. However, these methods face scalability issues due to
high memory consumption and long indexing times. In contrast,
tree-based techniques provide theoretical guarantees on search
and better indexing scalability, but their search efficiency falls be-
hind graph-based approaches. We conduct an extensive evaluation
of in-memory graph-based vector search approaches, highlight-
ing the key design choices. We propose ELPIS, a new in-memory
𝑛𝑔-approximate vector search technique, which combines the ad-
vantages of graph and tree-based index structures while mitigating
the limitations inherent in each class. ELPIS outperforms the state-
of-the-art in latency-optimized settings, reaching a recall of 0.99 by
up to 2x faster for dataset sizes containing up to 1 billion vectors.
We also pinpoint our future research directions, including extend-
ing the experimental study to out-of-core datasets and enhancing
ELPIS to outperform the state-of-the-art in throughput-optimized
settings.
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1 INTRODUCTION
Vector data is widely used in scientific and business fields, and its
use is expected to increase with the rise of embeddings [10]. The
large size and high-dimensionality of this data, often reaching ter-
abytes and thousands of dimensions, make its analysis challenging.

A vector search algorithm identifies, in a dataset S consisting of
𝑛 𝑑-dimensional vectors, elements similar to a given input vector
𝑉𝑄 . In this work, we abstract vector search as a k-nearest neighbor
problem. The brute-force approach compares 𝑉𝑄 to each element
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in S, with a time complexity of 𝑂 (𝑛𝑑), which is impractical for
large datasets with high dimensionality. State-of-the-art methods
typically reduce this time complexity by (i) limiting the number
of processed vectors 𝑛 using efficient indexing data structures and
search algorithms that eliminate unnecessary comparisons to 𝑉𝑄 ,
and/or by (ii) decreasing the dimensionality 𝑑 through concise
and precise summarization techniques. Additionally, vector search
algorithms can return exact or approximate answers. The approx-
imate answers can either be with (𝛿-𝜖-approximate) or without
(ng-approximate) guarantees on query accuracy [11, 12].

The efficiency of exact vector search has markedly improved over
the last decade [11]. However, exact methods still fail to meet the
query latency requirements of many analytical tasks. Consequently,
extensive research has focused on approximate vector search, which
sacrifices accuracy for efficiency [12]. These approaches utilize
scans, trees, graphs, inverted indexes, hashing, or combinations of
these data structures. In the past decade, graph-based techniques
have become the preferred method for many real-world applica-
tions, as they can relax theoretical guarantees to achieve query
latencies of a few milliseconds on terabyte-scale collections [28].
However, these methods face a major indexing scalability chal-
lenge on large datasets due to a very high memory footprint and a
prohibitive indexing time [35].

This work aims to study graph-based ng-approximate vector
search approaches. We provide an overview of state-of-the-art
methods, describing their design principles and highlighting their
strengths and limitations. We conduct an exhaustive experimental
evaluation of existing techniques and share some insights that were
never published before [2]. We also propose ELPIS [5], a new in-
memory ng-approximate vector search approach, which addresses
the indexing scalability challenge of existing graph-based methods
while maintaining efficient query answering. Finally, we summarize
our ongoing work and pinpoint future research directions.

2 RELATEDWORK
The vector search problem has attracted significant research interest
over the past fifty years. Recently, approximate vector search has
garnered more attention due to its appealing trade-offs, providing
very efficient retrieval of answers with high accuracy. The methods
proposed are based on either scans, trees, graphs, hashing, inverted
indexes, or hybrid designs that combine multiple data structures.

In this section, we provide an overview of the main data
structures used by state-of-the-art approaches, then discuss their
strengths and limitations.
Summarization Techniques. Piecewise Aggregate Approxima-
tion (PAA) [20] and Adaptive Piecewise Constant Approximation
(APCA) [6] segment a vector into equal or arbitrary-length seg-
ments, approximating each by its mean. The Extended Adaptive
Piecewise Approximation (EAPCA) [36] enhances APCA using both
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the mean and standard deviation. Symbolic Aggregate Approxima-
tion (SAX) [22] discretizes PAA values into a binary representation.
Quantization maps continuous values to a finite set of codewords,
with scalar and vector quantization operating on individual dimen-
sions or entire vectors respectively. Product quantization divides
the vector into sub-vectors for quantization, while Optimized Prod-
uct Quantization (OPQ) improves it by decorrelating dimensions
beforehand.
Tree-based Indexes have been the method of choice for exact vec-
tor search for data series and generic high-dimensional vectors [3,
36]. Some works have proposed using tree indexes to support ap-
proximate search with [9, 12] or without guarantees [3, 12, 24].
The tree-based methods that support ng-approximate search either
build multiple randomized kd-trees [24], segment the space into
smaller dimensions indexed by an RDB tree [3], or use heuristics
to select candidates from some leaf nodes.
Hash-based Approaches primarily use locality-sensitive hashing
(LSH) [19] for approximate vector search with guarantees [12].
These methods use hash functions to group similar data points into
the same bucket with high probability [18, 31]. Trade-offs in search
accuracy and efficiency are controlled by user-defined parameters
specifying error and probability thresholds, and index building
parameters like the number of hash tables and random projections.
Graph-based Approaches are currently favored for ng-
approximate vector search. They commonly utilize a proximity
graph structure [17, 33], where each vertex represents a data point
and edges connect similar vertices. The connectivity between ver-
tices is often determined by a distance measure like the Euclidean
distance [13]. Search typically starts from a set of initial points or
seeds, chosen randomly or based on specific criteria. The search
process begins from one seed as an entry node and others as initial
candidate answers. It proceeds by visiting neighboring vertices in
a best-first, greedy manner until no better matches are found [27].
State-of-the-art methods like ELPIS [5], HNSW [23], EFANNA [14],
and NSG [16] employ similar search algorithms [27] but vary in
graph construction and seed point selection.
Summary. These data structures operate on either raw data or
data summaries. Tree-based approaches offer efficient indexing
due to their hierarchical structure, but struggle with hard queries
due to the discrete nature of their partitions. Hash-based methods
provide theoretical guarantees due to their probabilistic nature, but
incur overhead due to the need to maintain multiple hash tables.
Graph-based approaches provide the best query performance due
to their efficient pruning of the search space, but lack guarantees
and are expensive to construct. Some methods like ELPIS [5] and
SPTAG [34] combine multiple structures to balance these trade-offs.

3 OURWORK
We conduct an exhaustive experimental evaluation of in-memory
graph-based vector search approaches [2] where we describe their
key design choices and highlight their strengths and weaknesses.
We propose ELPIS [5], an in-memory 𝑛𝑔-approximate vector search
algorithm, which combines the advantages of graph and tree-based
index structures while mitigating the limitations inherent in each
class. We also pinpoint our ongoing and future research directions,
including the extension of the experimental study to out-of-core
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Figure 1: Graph-based vector indexes

datasets and the enhancement of ELPIS to outperform the state-of-
the-art in throughput-optimized settings.

3.1 Completed Work
3.1.1 Experimental Study. We evaluated ten state-of-the-art meth-
ods within a unified experimental framework using many evalu-
ation criteria [2]. To facilitate reproducibility and support future
research, we provide a public archive containing all source codes,
datasets, and queries [1]. We present an elaborate discussion based
on the deep insights gained about the graph-based approximate
vector search problem. The main points are the following:

1. The index construction algorithm has an important impact
on query performance. We identify and distinguish four main
paradigms for constructing graph-based indexes:
Neighborhood Propagation (NP) refines an existing graph
through a specified number of iterations of the neighborhood propa-
gation process, also known as NNDescent [8]. During each iteration,
nodes choose candidate neighbors from their own neighborhood
list as well as the lists of their current neighbors.
Incremental Insertion (II) constructs a graph incrementally by
adding vertices one at a time. Each new node connects with bidirec-
tional edges to candidate neighbors found via beam search among
the already inserted nodes [26]. Methods such as HNSW [23] and
ELPIS reduce the neighborhood list size using the RND process,
showing strong performance in indexing large datasets [4, 5, 12].
Neighborhood Diversification (ND) constructs a sparse graph,
where nodes are not only connected to their closest neighbors but
also to some distant neighbors. This reduces unnecessary compar-
isons during graph traversal, allowing quicker access to promis-
ing regions. ND-based methods have demonstrated significant effi-
ciency improvements during searches [5, 15, 16, 21, 23, 30, 34].
Divide-and-Conquer (DC) methods partition the dataset into
several, potentially overlapping, subsets and construct a separate
graph for each. Methods like SPTAG [7] and HCNNG [25] merge
these individual graphs into a single graph for beam search, while
ELPIS [5] performs search in parallel on the separate graphs.

2. ND-based approaches have demonstrated superior perfor-
mance compared to other methods, due primarily to the pruning of
unnecessary edges during graph construction. We identify three
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Figure 2: Evaluation of ND techniques (Deep)

strategies for diversification: Relative Neighborhood Diversification
(RND), Relaxed Relative Neighborhood Diversification (RRND), and
Maximum Orientation Diversification (MOND). RND, initially used
by HNSW and later adopted by NSG, SPTAG, and ELPIS, selects
a candidate neighbor as a neighbor for the current node, if it is
closer to the current node than to any of the current node’s existing
neighbors, thus keeping only necessary edges for efficient traversal.
RRND, introduced by VAMANA, is a more flexible version of RND
that uses a relaxation factor to allow for a broader selection of
neighbors, reducing the number of edges that get pruned. When
this factor is set to one, RRND is equivalent to RND. Lastly, MOND,
proposed by DPG and used in NSSG, focuses on maximizing the
angles between connections. It selects neighbors based on their
orientation to ensure that connections point in different directions.
We compare these three ND strategies under a unified framework
(same graph structure, dataset, and dataset size). The results, sum-
marized in Figure 2, demonstrate that ND generally enhances search
performance compared to non-diversified approaches (NOND), and
RND and MOND have an equivalent performance overall.

3. The seed selection strategy, which determines the nodes used
to start the search, has a significant impact on the number of dis-
tance calculations during both search and indexing.We identify four
main seed selection strategies in the literature: Stacked-NSW (SN),
Medoid (MD), Single Fixed Random Entry Point (SF), K-Sampled
Random Seeds (KS), and KD-trees (KD). SN, used by HNSW, builds
multi-level diversified NSW graphs with random nodes in each
layer, organized hierarchically. KD, utilized by EFANNA, SPTAG-
KDT, and HCNNG, builds one or more KD-trees from a dataset
sample. The Single Fixed Random Entry Point (SF) method selects
a random node as a permanent entry point for all searches. The K-
Sampled Random Seeds (KS) selects k random nodes for each query
to initialize candidate answers, a strategy supported by DPG, NSG,
and VAMANA, which supplement the medoid entry point with
random nodes. We evaluate these strategies using the same graph
structure on the two popular real datasets Deep [29] and Sift [32],
with sizes of 25GB, 100GB, and 1B. We run 100 queries for each
strategy and extrapolate the results to 1 million queries, We report
the number of distance calculations needed to achieve 0.99 accu-
racy in Figure 3. SN and KS emerged as the most efficient strategies
across all scenarios, while SF and MDwere the least efficient overall.
The KD strategy performed well on Deep25GB and Deep100GB, but
its performance declined on the billion-scale dataset. These results
indicate the importance of adapting the seed selection strategy
to the dataset size, and developing more sophisticated sampling
methods and efficient lightweight index structures.

(a) Deep25GB (b) Deep100GB (c) Deep1B

Figure 3: Evaluation of seed selection strategies (Deep)

Figure 1 shows a roadmap of the state-of-the-art graph-based
vector indexes, indicating the strategies used by each method in
index construction, seed selection and diversification.

3.1.2 ELPIS. We propose ELPIS [5], a novel technique for in-
memory ng-approximate vector search, that leverages the optimal
features of both tree-based and graph-based methods to address
the indexing scalability challenge of graph-based vector search
techniques. ELPIS is the first in-memory graph-based vector search
solution to combine EAPCA-based clustering with intra-query par-
allelism. It partitions the dataset into clusters using an EAPCA
tree, then constructs parallel HNSW graph indexes for each clus-
ter. This DC-based approach, coupled with ND pruning, improves
indexing scalability by reducing the required outdegree. However,
the resulting multiple graph structures present a search efficiency
challenge. To address this, ELPIS employs multi-level pruning dur-
ing search, utilizing EAPCA lower-bounding distances and k-th
best-so-far (bsf) results. The search process begins with a heuristic
depth-first search (DFS) traversal of the EAPCA tree to select an
initial cluster, followed by beam search on its corresponding graph.
The bsf results initialize search priority queues for other clusters,
from which a subset is selected based on the bsf results and lower-
bound distances between the query and the EAPCA summarization
of each cluster. ELPIS then initiates concurrent beam searches on
the selected clusters’ graphs. This approach efficiently reduces un-
necessary distance calculations compared to starting from scratch.
Finally, ELPIS consolidates results from all candidate clusters to
return the top-K answers.

We empirically demonstrate the efficacy, scalability, and robust-
ness of ELPIS through extensive experiments on large real-world
datasets from various domains. In Figure 4, we present our latest
benchmark results for in-memory graph-based vector search on
various Deep1B dataset sizes, 25GB, 100GB, 250GB and 380GB cor-
responding respectively to 66M, 266M, 666M and 1B vectors of 96
single-precision floating-points. ELPIS exhibits efficient indexing,
achieving speeds 2 to 2.8 times faster than the best-performing
methods, HNSW and VAMANA [30], on large scale Deep1 (Fig-
ure 4a). Furthermore, ELPIS requires less memory, utilizing up to
50% less, with less than 500GB (including the raw dataset vectors) of
mainmemory needed to efficiently index a billion of vectors Deep1B
dataset of 380GB size (Figure 4b). During the search phase, ELPIS
consistently ranks among the top performers for small datasets and
achieves the best performance for both Deep25GB (Figure 4c) and
Deep1B (Figure 4d).
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Figure 4: Index and search performance on the Deep dataset.

3.2 Ongoing and Future Work
Work In Progress. Our ongoing work focuses on enhancing the
current latency-optimized ELPIS to support efficient query answer-
ing in throughput-optimized settings, leveraging graph merging
techniques. Furthermore, we are expanding our evaluation to out-
of-core graph-based vector search methods (e.g., DiskANN [30]) to
assess the applicability of our findings to scenarios where datasets
exceed main memory capacity.
Future Work. Currently, ELPIS leverages HNSW to construct
graphs within its leaf nodes. We intend to develop a novel graph
technique based on our experimental insights to further enhance the
performance of ELPIS. Besides, we plan to adapt ELPIS for efficient
out-of-core search using insights from our disk-based evaluation.

4 CONCLUSIONS

The goal of this work is to develop a graph-based index to support
efficient approximate vector search on large datasets. First, we eval-
uate experimentally the state-of-the-art approaches, understand
their key strengths and weaknesses, and pinpoint possible direc-
tions for improvement. Second, we propose a new technique called
ELPIS, which is optimized for latency. Finally, we outline ongoing
work and future research directions. In particular, we plan to extend
our study to out-of-core data, enhance ELPIS to efficiently support
throughput-optimized workloads, and propose a novel index to use
within the ELPIS leaves, exploiting the insights learned about seed
selection strategies and index diversification techniques.
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