
Noname manuscript No.
(will be inserted by the editor)

Coconut: Sortable Summarizations for Scalable Indexes over
Static and Streaming Data Series

Haridimos Kondylakis · Niv Dayan · Kostas Zoumpatianos · Themis
Palpanas

Received: date / Accepted: date

Abstract Many modern applications produce massive

streams of data series that need to be analyzed, re-

quiring e�cient similarity search operations. However,

the state-of-the-art data series indexes that are used

for this purpose do not scale well for massive datasets

in terms of performance, or storage costs. We pinpoint

the problem to the fact that existing summarizations

of data series used for indexing cannot be sorted while

keeping similar data series close to each other in the

sorted order. To address this problem, we present Co-

conut, the �rst data series index based on sortable sum-

marizations, and the �rst e�cient solution for indexing

and querying streaming series. The �rst innovation in

Coconut is an inverted, sortable data series summa-

rization that organizes data series based on a z-order

curve, keeping similar series close to each other in the

sorted order. As a result, Coconut is able to use bulk-

loading and updating techniques that rely on sorting

to quickly build and maintain a contiguous index us-

ing large sequential disk I/Os. We then explore pre�x-

based and median-based splitting policies for bottom-

up bulk-loading, showing that median-based splitting

outperforms the state of the art, ensuring that all nodes

are densely populated. Finally, we explore the impact

H. Kondylakis
FORTH-ICS
E-mail: kondylak@ics.forth.gr

N. Dayan
Harvard University
E-mail: dayan@seas.harvard.edu

Kostas Zoumpatianos
Harvard University
E-mail: kostas@seas.harvard.edu

Themis Palpanas
Paris Descartes University
E-mail: themis@mi.parisdescartes.fr

of sortable summarizations on variable size window

queries, showing that they can be supported in the pres-

ence of updates through e�cient merging of temporal

partitions. Overall, we show analytically and empiri-

cally that Coconut dominates the state-of-the-art data

series indexes in terms of construction speed, query

speed, and storage costs.

1 Introduction

Many scienti�c and business applications today pro-

duce massive collections and streams of data series1

and need to analyze them, requiring the e�cient ex-

ecution of similarity search, or nearest neighbor oper-

ations, over either the entire dataset, or variable-sized

windows of the incoming data. Example applications

range across the domains of audio [22], images [73], �-

nance [65], telecommunications [51,41], environmental

monitoring [63], scienti�c data [20,2,39], and others.

As the price of digital storage continues to plum-

met, the volume of data series collections grows, driv-

ing the need for the development of e�cient sequence

management systems [47,49,78]. For the speci�c prob-

lem of sequence similarity search, searching for a near-

est neighbor by traversing the entire dataset for every

query quickly becomes intractable as the dataset size

increases. Consequently, multiple data series indexing

techniques have been proposed over the past decade

1 Informally, a data series, or data sequence, is an ordered
sequence of data points. If the dimension that imposes the
ordering of the sequence is time then we talk about time se-
ries, though a series can also be de�ned over other measures
(e.g., angle in radial pro�les in astronomy, mass in mass spec-
troscopy, position in genome sequences, etc.). For the rest of
this paper, we are going to use the terms data series and
sequence interchangeably.

2 Haridimos Kondylakis et al.

to organize data series based on similarity [48,15]. The

state-of-the-art approach is to index data series based

on smaller summarizations that approximate the dis-

tances among data series. This enables pruning large

parts of the dataset that are guaranteed to not contain

the nearest neighbor, and thereby these indexes signif-

icantly improve query speed.

Large data series collections and indexes that span

hundreds of gigabytes to terabytes [2,3,52] must reside

in slow secondary storage devices for cost-e�ectiveness.

This poses a set of challenges for data series indexes. (1)

They must support construction, updates and queries

using I/O e�cient access patterns. (2) They must take

up as little storage space as possible to be cost-e�ective

and to minimize the physical space that queries tra-

verse. (3) They must utilize the limited I/O bandwidth

e�ectively by narrowing a query's search not only spa-

tially but also temporally to the window size that is

most appropriate for a given application.

Unsortable Summarizations. In this paper, we show

that the state-of-the-art data series indexes are de-

signed in a manner that prevents them from meet-

ing the above challenges. We pinpoint the problem

to the fact that the summarizations, used as keys by

data series indexes, are unsortable. Existing summa-

rizations [35,11] partition and tokenize data series into

multiple (independent) segments that are laid out in the

summarized representation based on their original or-

der within the data series; thus, sorting based on these

summarizations would place together data series that

are similar in terms of their beginning, i.e., the �rst

segment, yet arbitrarily far in terms of the rest of the

segments2. Hence, existing summarizations cannot be

sorted while keeping similar data series next to each

other in the sorted order. This leads to the following

two problems.

Problem 1: Top-Down Insertions. The �rst prob-

lem is that traditional algorithms for e�ciently bulk-

loading and updating a database index cannot be used

because they rely on being able to sort the data. In-

stead, state-of-the-art data series indexes perform bulk-

loading and updates using top-down in-place insertions

and splitting nodes as they �ll up [48,10,76]. This ap-

proach leads to many small random I/Os to secondary

storage that slow down both construction speed and

updating during runtime. Moreover, the resulting nodes

(after many splits) are non-contiguous in storage, mean-

ing that querying also involves many slow random I/Os.

Relying on top-down insertions also prevents data-

series indexes from being able to temporally partition

the data to enable e�cient queries over variable-sized

2 This is analogous to sorting points in a multi-dimensional
space based on one dimension.

windows. The reason is that batched updates are peri-

odically applied to the complete data structure through

in-place split operations. While this choice facilitates

queries that touch the entire history of the data, the

absence of temporal partitioning penalizes queries that

need to touch smaller parts of the history. Moreover,

no matter the window size, pending updates are always

applied in an ine�cient manner, as existing indexes do

not support merge-sort operations. While various so-

lutions [9,10] have been proposed to partition pending

updates to touch independent subsets of the index, still

all temporal partitions are merged using top-down in-

sertions, which are prohibitively expensive.

Problem 2: Pre�x-Based Node-Splitting. The sec-

ond problem is that it is not possible to sort and thereby

split data series evenly across nodes (i.e., using the me-

dian value as a splitting point). Instead, state-of-the-art

data series indexes divide data series across nodes based

on common pre�xes across all segments. As a result, it

is impossible for entries that do not share a common

pre�x in one or more of the segments to reside in the

same node. We show that this leads to most nodes being

nearly empty (i.e., their �ll-factor is low, which trans-

lates to an increased number of leaves). This slows down

query speed and ampli�es storage costs.

Our Solution: Sortable Summarizations and Co-

conut. To address these problems, we show how to

transform existing data series summarizations into

sortable summarizations. The core idea is interweav-

ing the bits that represent the di�erent segments, such

that the more signi�cant bits across all segments pre-

cede all less signi�cant bits. As a result, we describe

the �rst technique for sorting data series based on their

summarizations: the series are positioned on a z-order

curve [42], in a way that similar data series are close to

each other.

Moreover, we show that indexing based on sortable

summarizations has the same ability as existing sum-

marizations to prune parts of the index that do not

contain the nearest neighbor, while it o�ers three ad-

ditional bene�ts: it enables (i) e�ciently bulk-loading

and updating the index, (ii) packing data series more

densely into nodes, and (iii) e�cient merging of tem-

poral partitions to allow variable-sized window queries.

Furthermore, we show that using sortable summariza-

tions enables data series indexes to leverage a wide

range of indexing infrastructure.

We further introduce the Compact and Contiguous

Sequence Infrastructure (Coconut). Coconut is a novel

data series indexing infrastructure that organizes data

series based on sortable summarizations. It supports

bulk-loading techniques and log-structured updates to

enable maintaining a contiguous index. This eliminates

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 3

random I/O during construction, updating and query-

ing. Furthermore, Coconut is able to split data series

across nodes by sorting them and using the median

value as a splitting point, leading to data series being

packed more densely into leaf nodes (i.e., at least half

full).

In order to study the design space and isolate the

impact of the di�erent design decisions, we �rst in-

troduce two variants: Coconut-Trie and Coconut-Tree,

which split data series across nodes based on common

pre�xes and median values, respectively. We show that

Coconut-Trie dominates the state-of-the-art in terms of

query speed because it creates contiguous leaves. We

further show that Coconut-Tree dominates Coconut-

Trie and the state-of-the-art in terms of construction

speed, query speed and storage overheads because it

creates a contiguous, balanced index that is also densely

populated. We then introduce Coconut-LSM to support

e�cient log-structured updates and variable-size win-

dow queries over di�erent windows of the data based on

recency. Overall, we show across a wide range of work-

loads and datasets that Coconut-Tree improves both

construction speed and storage overheads by one order

of magnitude and query speed by two orders of mag-

nitude relative to the state-of-the-art. We further show

that Coconut-LSM supports updates without degrad-

ing query throughput, and that it is able to narrow the

search scope temporally. This improves query through-

put by a further 2-3 orders of magnitudes in our exper-

iments for queries over recent data.

Our contributions are summarized as follows.

� We show that existing data series summarizations

cannot be sorted in a straightforward way. Con-

sequently, state-of-the-art data series indexes can-

not e�ciently bulk-load and pack data densely into

nodes, leading to large storage overheads and perfor-

mance bottlenecks for both index construction and

query answering, when dealing with very large data

series collections.

� We introduce a sortable data series summarization

that keeps similar data series close to each other

in the sorted order, and preserves the same prun-

ing power as existing summarizations. We show how

sortability enables new design choices for data series

indexes, thereby opening up infrastructure possibil-

ities that were not possible in the past.

� We introduce Coconut-Trie that exploits sortable

summarizations for pre�x-based bulk-loading of ex-

isting state-of-the-art indexes, leading to improve-

ments at querying time performance.

� We present Coconut-Tree, which employs median-

based bulk-loading to quickly build the index and

to restrict space-ampli�cation, by enabling entries

that do not share a common pre�x to be in the same

node.

� We introduce Coconut-LSM to enable e�cient simi-

larity search over variable-sized windows in the pres-

ence of updates.

� Our experimental evaluation with a variety of syn-

thetic and real datasets demonstrates that Coconut-

Tree and Coconut-LSM strictly dominate existing

state-of-the-art indexes in terms of both construc-

tion speed and storage overheads by one order of

magnitude, and query speed by two orders of mag-

nitude. We further show that Coconut-LSM dom-

inates the state-of-the-art by orders of magnitude

in the presence of insertions for queries over recent

data.

A preliminary version of this paper has appeared in

VLDB [29]. This version extends the previous one by

introducing Coconut-LSM for e�cient similarity search

in the presence of updates, and presents the �rst e�-

cient solution for indexing and querying streaming sets,

along with the corresponding experiments. We have also

developed a system that implements the ideas described

in this paper [30].

2 Preliminaries and Related Work

Data Series. Measuring data that �uctuate over a

dimension is a very frequent scenario in a large vari-

ety of domains and applications. Such data are com-

monly called data series or sequences. The dimension

over which they �uctuate can range from time, angle or

position to any other dimension. They can be measured

at either �xed or variable intervals.

De�nition 1 Formally, a data series s = {r1, ..., rn}
is de�ned as an ordered set of recordings, where each

ri =< pi, vi > describes a value vi corresponding to a

position pi.

Nearest Neighbor Search. Analysts perform a wide

range of data mining tasks on data series including clus-

tering [28,34,64,57], classi�cation and deviation detec-

tion [66,13], frequent pattern mining [44,18], and more.

Existing algorithms for executing these tasks rely on

performing fast similarity search across the di�erent

data series. Thus, e�ciently processing nearest neigh-

bor (NN) queries is crucial for speeding up the afore-

mentioned tasks. NN queries are formally de�ned as

follows.

De�nition 2 Given a set of data series S ⊆ S, where S
is the set of all possible data series, a query data series

sq ∈ S and a distance function d(•, •) : S × S → R, a

4 Haridimos Kondylakis et al.

PAA(S1)S1

 f f
 c d

SAX(S1)a
b
cd
e
g
f

h

000

001
010
011
100
101
110

111

Fig. 1: Example PAA and SAX summarizations.

nearest neighbor query is de�ned as:

nnd(•,•)(sq,S) = si ∈ S : d(si, sq) ≤ d(sj , sq)∀sj 6= si ∈ S.

Common distance metrics for comparing data se-

ries include Euclidean Distance (ED) and dynamic time

warping (DTW). While DTW is better for most data

mining tasks, the error rate using ED converges to that

of DTW as the dataset size grows [61,70,67]. There-

fore, data series indexes for massive datasets use ED as

a distance metric [66,67,74�76], though simple modi�-

cations can be applied to make them compatible with

DTW [67,24]. Euclidean distance is computed as the

sum of distances between pairs of aligned points in se-

quences of the same length, where normalizing the se-

quences for alignment and length is a pre-processing

step [66,67,74�76]. In all cases, data are z-normalized

by subtracting the mean and dividing by the standard

deviation (note that minimizing ED on z-normalized

data is equivalent to maximizing their Pearson's corre-

lation coe�cient [45]).

Brute-Force Search. The brute-force approach for

evaluating nearest neighbor queries is by performing

a sequential pass over the complete dataset3. How-

ever, as data series collections grow to terabytes [2,

3,52], scanning the complete dataset becomes perfor-

mance bottleneck taking hours or more to complete.

This is especially problematic in exploratory search sce-

narios, where batch execution of queries is impossible

because the next query depends on the results of pre-

vious queries.

Data Series Summarizations. To mitigate this prob-

lem, various dimensionality reduction techniques have

been proposed to transform data series into summa-

rizations that enable approximating and lower bound-

ing the distance between any two data series. Examples

include generic Discrete Fourier Transforms (DFT) [5,

16,55,54], Piecewise Linear Approximation (PLA) [26],

Singular Value Decomposition (SVD) [31,62], Discrete

Haar Wavelet Transforms (DHWT) [12,23], Piecewise

3 Note that recent state-of-the-art serial scan algo-
rithms [56,43] are only e�cient for scenarios that involve
nearest neighbor operations of a short query subsequence
against a very long data series. On the contrary, in this work,
we are interested in �nding similarities in very large collec-
tions of short sequences.

Constant Approximation (PCA), and Adaptive Piece-

wise Constant Approximation (APCA) [11], as well as

data series speci�c techniques such as Piecewise Aggre-

gate Approximation (PAA) [27], Symbolic Aggregate

approXimation (SAX) [36] and the indexable Symbolic

Aggregate approXimation (iSAX) [67,9]. These smaller

summarizations can be scanned and �ltered [23,33], or

indexed and pruned [76,66,67,74,75,19,7,69,71,38,53,

37,72] to avoid accessing parts of the data that do not

contain the nearest neighbor.

Clustering Approaches. Various clustering algo-

rithms have been proposed for data series [25,34], and

such approaches can be used to facilitate nearest neigh-

bor search. The general approach involves adapting dis-

tance measure between data series and using a cluster-

ing algorithm on top (e.g., K-means [40], K-shape [50],

agglomerative [25], etc.). Such algorithms require mul-

tiple passes over the data to build (e.g., to measure

distances between all pairs of points as in agglomer-

ative clustering, or to iteratively re�ne clusters with

K-means). As a result, construction can take a very

long time. In contrast, we focus on approaches based

on indexable summarizations that are designed to lead

to fast index construction, and thereby shorten the

indexing-to-query time.

Data Series Indexing with SAX. We now discuss

the state-of-the-art in data series indexing. We concen-

trate on SAX summarizations [67,36], which have been

shown to outperform other summarizations in terms of

pruning power using the same amount of bytes [77]. We

illustrate the construction of a SAX summarization in

Figure 1.

SAX �rst partitions the data series in equal-sized

segments, and for each segment it computes its average

value. This is essentially a PAA summarization, and

can be seen in Figure 1(middle). In a second step, it

discretizes the value space by partitioning it in regions,

whose size follows the normal distribution. As a result,

we have more regions corresponding to values close to 0,

and less regions for the more extreme values (this leads

to an approximately equal distribution of the raw data

series values across the regions, since extreme values

are less frequent than values close to 0 for z-normalized

series). A bit-code (or a symbol) is then assigned to

every region. The data series is then summarized by

the sequence of symbols of the regions in which each

PAA value falls.

In the example in Figure 1, the data series S1 be-

comes �fcfd�. This lossy representation requires much

less space (typically in the order of 1%) and reduces

the number of dimensions from the number of points

in the original series to the number of segments in the

summarization (four in Figure 1).

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 5

Data series indexes based on SAX rely on a multi-

resolution indexable SAX representation (iSAX) [67,66]

whereby every node corresponds to a common SAX pre-

�x from across all segments. When a node �lls up, the

segment whose next unpre�xed digit divides the resi-

dent data series most is selected for splitting the data

series across two new nodes. iSAX 2.0 [9] and iSAX

2+ [10] are variants that improve construction speed by

storing all internal nodes in main memory and bu�ering

access to leaf nodes. ADS [74�76] represents the state-

of-the-art method and builds on these ideas by con-

structing an index based on the summarizations; the

method then incorporates the raw data series into the

index adaptively during query processing.

These indexes all share the following four perfor-

mance problems. (1) If main memory is small relative

to the raw data size, they incur many random I/Os

due to swapping and early �ushing of bu�ers. This

signi�cantly elongates construction time and updates

for massive datasets. (2) The resulting leaf nodes af-

ter many splits are non-contiguous in secondary stor-

age and therefore require many slow random I/Os to

query. (3) Temporal partitioning to enable window

queries over recent data cannot be performed e�ciently,

because di�erent temporal partitions cannot be eas-

ily merged. This operation requires top-down entry-

by-entry insertions, which lead to many small random

I/Os. (4) Data series that do not share common pre�xes

cannot reside in the same node, and so the leaf nodes in

these indexes are in practice sparsely populated. This

leads to signi�cant storage overheads and slows down

queries as they must traverse a greater physical area to

access the same data.

Our work follows the same high-level idea of index-

ing the data series based on a smaller summarization

to enable pruning, though our work is the �rst to use

sortable summarizations to speed up index construc-

tion, updating and querying and to restrict storage

space. In all previous work, the index is constructed

and maintained through top-down insertions that lead

to many slow random I/Os and to a sparsely populated,

non-contiguous and unbalanced index. Our work is the

�rst to use fast bottom-up bulk-loading, log-structured

updates, and median-based splitting to e�ciently build

and maintain a contiguous, balanced, and densely pop-

ulated index. Note that our infrastructure can be used

in conjunction with any summarization that represents

a sequence as a multi-dimensional point, and so it is

compatible with all main-stream summarizations [67,5,

16,55,54,26,31,62,12,23,11,9].

e
c

e e

SAX(S1) SAX(S2)

f

c

SAX(S3)

g

SAX(S4)

e

000

001
010
011
100
101
110

111

a
b
c
d
e
f
g

h

e c (100, 010) e e (100, 100) f c (101, 010) g e (110, 100)

Fig. 2: Sorting iSAX summarizations.

3 Problem: Unsortable Summarizations

In this section, we describe why existing data series

summarizations are not sortable, and we discuss the

implications on index design, performance, and storage

overheads.

Sorting summarizations. Figure 2 gives an exam-

ple of sorting data series based on SAX summariza-

tions.There are four di�erent data series with corre-

sponding 2-character SAX words4: S1 = ec, S2 = ee,

S3 = fc, and S4 = ge. Observe that S1 is most similar

to S3, while S2 is most similar to S4 (apart from small

di�erences in the �rst segments). Sorting these summa-

rizations lexicographically gives the order S1, S2, S3, S4:

the data series that are most similar to each other are

not placed next to each other in the sorted order. The

reason is that existing summarizations lay out the seg-

ment representations sequentially, one by one. Sorting

based on such a representation would place next to each

other data series that are similar in terms of their �rst

segment, yet arbitrarily dissimilar in terms of the rest

of the segments. As a result, an index that is built by

sorting data series based on existing summarizations

would degenerate to scanning the full dataset for each

query and would defeat the point of having an index.

It is important to note that even though we use

SAX, the same observations hold for all other main-

stream summarizations (discussed in Section 2). This

is because they all represent data series as multi-

dimensional points. As a result, they still su�er from the

problem of poor lexicographical ordering, where sorting

is based on arbitrarily ordering dimensions. SAX was

chosen in our work, since it has been shown to out-

perform other approaches in terms of quality [77] and

index performance [10,74,9].

We next discuss how existing data series indexes

overcome the inability to sort summarizations, and we

analyze the impact on performance and storage over-

heads.

4 Note that SAX words are typically longer to enable more
precision; we use 2-character SAX words in this example for
ease of exposition.

6 Haridimos Kondylakis et al.

Root

…

0 0 0 1 0 0 1 1 1

0 00 0 0 01 0

Leaf LeafLeaf

Root

…

0 0 0 1 0 0

BufferBuffer

RAM

DISK

1 1 1

…

…

BufferSi =
SAX(Si) 10 10 11

00 01 01

00 01 00

00 01 00

00 00 01

00 00 00

00 01 01

00 01 00

00 01 00

00 00 01

00 00 00

11 10 10

10 10 10

11 10 10

10 10 10

10 10 11

Leaf

Flush

Fig. 3: Indexing using iSAX 2.0.

Term De�nition

N Total number of data series
B Number of data series that �t into one disk block
M Number of data series that �t into main memory

Table 1: Table of terms

3.1 Top-Down Insertions

The standard approach for bulk-loading a database in-

dex (e.g., a B-Tree) relies on external sorting. This ap-

proach cannot be used with existing data series summa-

rizations, because they are not sortable. Instead, state-

of-the-art data series indexes perform top-down inser-

tions [10,76,69]. Here we analyze and compare their

implications on performance and storage overheads. We

analyze them in the disk access model [4], which mea-

sures the runtime of an algorithm in terms of disk blocks

transferred between main memory and secondary stor-

age. The terms we use are in Table 1.

The Current Approach: Top-Down Insertions.

Data series indexes are built and maintained using top-

down insertions: each data series is inserted through

the root node and trickles down to the appropriate leaf

node [66,67]. Since the internal nodes are maintained

in memory [10,9], every top-down insertion involves at

most three I/Os: one to read the appropriate leaf node,

one to update it, and one to create a new leaf node

in case the �rst one splits. The cost per insertion is

therefore at most O(1) I/O, and so the cost of index

construction is at most O(N) I/Os. As new leaf nodes

are allocated wherever there is space on disk, adjacent

nodes in the logical space are not necessarily continuous

in storage.

State-of-the-art data series indexes strive to reduce

construction cost by bu�ering insertions in main mem-

ory before �ushing them to storage. This process is il-

lustrated on Figure 3 for the iSAX 2.0 index. The new

series to be inserted, Si, is translated to the iSAX word

(10 10 11). At the �rst level of the tree, data is split

based on the �rst bit at each of the segments. As a re-

sult Si is bu�ered as a part of the (1 1 1) sub-tree. In

our example, all the bu�ers are full and so the new in-

sertion causes them to �ush and get consolidated with

corresponding leafs in storage. During this operation,

when a leaf node runs out of capacity, it creates two

new children by increasing the number of bits used to

represent one of the segments and divides the data se-

ries between them (we discuss this process in detail in

Section 3.2). The right side of Figure 3 shows an exam-

ple where node (0 0 0) splits into two new nodes, (0 00

0) and (0 01 0). The new leafs are allocated with free

space to be able to absorb new insertions. With ample

spatial locality in the insertion pattern, multiple en-

tries in the bu�er map onto a small set of M
B

leaf nodes.

Since the bu�er �ushes N
M

times during index construc-

tion, the best-case construction cost with bu�ering is
M
B
· N

M
∈ O(N

B
) I/O. With little spatial locality, how-

ever, each entry from the bu�er maps onto a di�erent

leaf node, thereby leading to a cost of M · N
M
∈ O(N)

I/O, the same as without bu�ering. Hence, bu�ering

cannot in general alleviate the high index construction

cost of top-down insertions, and it also cannot ensure

that adjacent logical nodes are contiguous in storage.

The Elusive Alternative: Bottom-up Insertions.

Building an index on a batch ofN application insertions

through external sorting comprises two phases: parti-

tioning and merging. The partitioning phase involves

scanning the raw �le in chunks that �t in main memory,

sorting each chunk in main memory, and �ushing it to

secondary storage as a sorted partition. This amounts

to two passes over the data. The merging phase involves

merge-sorting all the di�erent partitions into one con-

tiguous sorted order, using one input bu�er for each

partition and one output bu�er for the resulting sorted

order. Once the data is ordered, we build the index

bottom-up. Thus, the merging phase amounts to two

additional passes over the data, and so external sorting

involves overall four passes over the data. This amounts

to O(N/B) I/Os with a cost per insertion of O(1/B) I/O

(the reason being that each I/O handles B entries)5.

Implications for Index Construction. The analysis

in the disk access model above shows that external sort-

ing dominates top-down insertions in terms of worst-

case index construction cost because we only need to

do a few passes amounting to O(N/B) I/Os rather than

O(N) random I/Os. Since a disk block B is typically

large relative to data elements, this amounts to a 1-2

order of magnitude di�erence in construction speed.

5 In fact this condition only holds as long as M >
√
N [58].

Since main memory is approximately two orders of magnitude
more expensive than secondary storage, this condition holds
in practice for massive datasets.

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 7

Implications for Dynamic Insertions. In a dynamic

setting with ongoing insertions during runtime, every

top-down insertion that takes place requires reading a

target block from storage and rewriting it at a cost

of O(1) I/O per insertion. The inability to sort the

data means that data structures with better perfor-

mance properties for ingesting insertions during run-

time cannot be leveraged. For example, many modern

write-optimized data structures bu�er insertions and

later sort-merge them multiple times while amortiz-

ing the overheads of sorting through large sort-merge

operations. For example, the log-structured merge-tree

(LSM-tree) has an I/O cost per insertion of O(log(N)

B
) as

it merges each entry a logarithmic number of times, but

the sort-merge operations allow us to divide this cost

by the block size B. A (traditional) data-series index,

however, cannot sort-merge the data and so it would

have to rely on top-down insertions to merge the runs

thereby blowing up the insertion cost to O(log(N)) and

making the scheme impractical. Thus, write-optimized

data structures are currently inapplicable for data se-

ries indexing.

Implications for Window Queries. Performing win-

dow queries requires creating temporal partitions of the

data so that a query can skip partitions with older data

that are not needed by the application. Existing data se-

ries indexes do not perform temporal partitioning, and

so the cost for a window query over the last X inser-

tions only requires searching the whole index at a cost

of O(N
B
) I/O. On the other hand, the log-structured

merge tree, for instance, creates a logarithmic number

of partitions of exponentially increasing sizes, and so

performing a query with a selectivity of s over data

within the most recent window of X insertions requires

performing O(X·r
B

) I/O, where r is the size ratio across

the di�erent runs of LSM-tree [6]. The problem, as we

just saw, is that using LSM-tree is that it blows up the

cost of insertions by a logarithmic factor since the sort-

merge operations cannot be performed e�ciently. For

this reason, such data structures that naturally tempo-

rally partition the data and o�er support for window

queries cannot be used, and as a result, window queries

cannot be supported e�ciently.

Implications for General Query Processing. Per-

forming bulk-loading and insertions through external

sorting has two performance advantages for subsequent

query processing. Firstly, the sorted order can be writ-

ten contiguously in secondary storage, meaning that

queries can traverse leaves using large sequential I/Os

rather than small random I/Os. Secondly, it is possible

to pack data series as compactly as possible in nodes

rather than leaving free space for future insertions. Im-

mediately after bulk-loading, this saves storage costs

and speeds up queries by reducing the physical space

that a query must traverse by a factor of 2.

Summary. Overall, external sorting dominates top-

down insertions in terms of both construction and query

speed. The problem is that existing data series indexes

cannot use external sorting as they cannot sort the data

based on existing data series summarizations.

3.2 Splitting Nodes

Database indexes such as B-trees split nodes when they

run out of capacity using the median value as a split-

ting point, whereas data series indexes use pre�x-based

splitting. We now describe these methods in detail and

analyze their implications on performance and storage

overheads. We again use the disk access model [4] to

quantify storage overheads in terms of disk blocks.

Pre�x-Based Splitting. In state-of-the-art data se-

ries indexes, every node is uniquely identi�ed by one

pre�x for every segment of the SAX representation, and

all elements in the node or its subtrees have matching

pre�xes for all segments. When a leaf node runs out of

capacity, we scan the summarizations and identify the

segment whose next unpre�xed bit divides the elements

most. We create two new children nodes and divide the

elements among them based on the value of this bit.

The problem is that data is not guaranteed to be un-

evenly distributed across the nodes. In the worst-case,

every node split divides the entries such that one moves

to one of the new nodes and the rest move to the other,

meaning that the index is unbalanced, most nodes con-

tain only 1 entry, and so storage consumption is O(N)
disk blocks.

Median-Based Splitting. Splitting a node using the

median value involves sorting the data elements to iden-

tify the median, moving all elements to the right of this

mid-point into a new node, and adding a pointer from

the parent to the new node to ensure the index remains

balanced. This approach ensures that every node is at

least half full. As a result, the amount of storage space

needed is at most double the size of the actual data.

This amounts to O(N/B) blocks.

Comparison. Pre�x-based splitting results in an un-

balanced index ampli�es worst-case storage overheads

relative to median-based splitting by a factor of B.

Since exact query answering time is proportional to the

number of leaf nodes in the index, it ampli�es it by

the same factor. Overall, median-based splitting domi-

nates pre�x-based splitting, but we cannot use it in the

context of data series indexing because existing sum-

marizations are not sortable.

8 Haridimos Kondylakis et al.

4 Coconut

In this section, we present Coconut in detail. Coconut

is a novel data series indexing infrastructure that orga-

nizes data series based on sortable summarizations. As

a result, Coconut indexes are able to use bulk-loading

techniques based on sorting to e�ciently build a con-

tiguous index. Furthermore, they are able to divide data

series among nodes based median values to ensure that

the index is balanced and that all nodes are densely

populated. Finally, Coconut indexes are able to lever-

age di�erent data structures during runtime to support

di�erent read/write cost trade-o�s, and they can opti-

mize particularly well for streaming applications that

require di�erent temporal views over the data.

In Section 4.1, we show how to make existing sum-

marizations sortable using a simple algorithm that in-

terleaves the bits in a summarization such that all more

signi�cant bits from across all segments precede all

less signi�cant bits. In Sections 4.2 and 4.3, we in-

troduce Coconut-Trie and Coconut-Tree, respectively.

These data structures allow us to isolate and study the

impact of the properties of contiguity and compactness

on query and storage overheads. In Section 4.4, we in-

troduce Coconut-LSM, the �rst data series index that

supports e�cient, log-structured insertions during run-

time.

4.1 Sortable Summarizations

Each data series summarization can be viewed as a

point in multi-dimensional space, where each segment

in the summarization represents a dimension. The ques-

tion is how to place points that are similar across all

dimensions as close to each other as possible in storage

so as to minimize disk access during similarity search.

A well-known technique is to use a space-�lling

curve, which linearizes multi-dimensional data on stor-

age while preserving locality. We illustrate an example

in Figure 2 with a z-order curve [42], which linearizes

data by using recursive Z shapes which allow proximal

points to remain close to each other in the linearized

order.

The standard technique for projecting entries into a

Z-order is to (1) interleave the bit representation of all

segments of an entry, and then (2) sorting the entries

based on the inverted bit representation [8,59]. The in-

tuition is that each dimension is represented as a bit

string, whereon more signi�cant bits carry more infor-

mation, while smaller bits increase precision. Concep-

tually, sorting data is an operation that involves recur-

sively dividing data entries based on the most signi�-

cant bit into a hierarchy of sets, and then laying out the

000

001

010
011
100
101

110

111

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

S1

S3

S2

S4

Fig. 4: Z-ordered SAX summarization.

elements in the hierarchy in a depth-�rst order. Sorting

the inverted summarizations therefore places more im-

portance on co-locating entries that are similar across

their most signi�cant bits, and a decreasing amount of

importance on being closer in terms of each segment's

lesser signi�cant bits. An implementation of this tech-

nique for data series is shown in Algorithm 1, trans-

forming existing summarization schemes into sortable

ones. To the best of our knowledge we are the �rst to

apply this into data series summarizations.

Figure 4 shows how to transform the four summa-

rizations in Figure 2 into sortable Z-ordered summa-

rizations in two dimensions (for ease of illustration).

The technique applies to data with any number of

segments/dimensions. The �gure also shows their lin-

earized order along the z-ordered curve. As shown, the

data series that are most similar to each other are in-

deed placed closest to each other (which is not the case

when sorting them based on the original representa-

tion).

Note that a sortable summarization contains the

same amount of information as the original summa-

rization, the only di�erence being that the bits are or-

dered di�erently. Hence, it is easy and e�cient to switch

back and forth between sortable summarizations and

the original form, and we therefore do not lose any-

thing in terms of the ability to prune the index during

querying.

New Infrastructure Opportunities. The ability to

sort data series summarizations enables a plethora of

new indexing infrastructure possibilities for data se-

ries indexes, ranging from read-optimized B-trees [60]

to write-optimized LSM-trees [46] to adaptive struc-

tures that change performance characteristics based

on workload [21,14]. Coconut-Trie, Coconut-Tree, and

Coconut-LSM represent three points in this space that

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 9

Algorithm 1 Sortable Summarization

1: procedure invertSum(Sum)
2: for each bit i of a segment in Sum do

3: for each segment j do
4: Add the i bit of segment j to SSum
5: end for

6: end for

7: return SSum
8: end procedure

push upon the current state-of-the-art, though we ex-

pect that many more opportunities for specialization

based on hardware and workload are possible.

4.2 Coconut-Trie

We now present Coconut-Trie, a data series index that

uses sortable summarizations to construct a contigu-

ous index using bulk-loading. Similarly to the state-

of-the-art indexing schemes, Coconut-Trie divides data

entries among nodes based on the greatest common pre-

�x among all segments. The advantage relative to the

state-of-the-art is that the resulting index is contigu-

ous, meaning that queries do not issue random I/Os,

but a large sequential I/O.

Construction. The construction algorithm is shown

in Algorithm 2. The algorithm initially constructs the

sortable summarizations of all data series and sorts

them using external sort. Then it constructs in a

bottom-up fashion a detailed iSAX index. Finally this

index is compacted by pushing more data series in the

leaf nodes.

The input of the algorithm is a raw �le, which con-

tains all data series. The process starts with a full scan

of the raw data �le in order to create the sortable sum-

marizations for all data series (lines 4-6). For data se-

ries we also record their o�set in the raw �le, so future

queries can easily retrieve the raw values. All sortable

summarizations and o�sets are stored in an FBL bu�er

(First Bu�er Layer). As soon as the bu�er is full, it is

sorted in the main memory and the sorted pairs are

written to disk.

The process continues until we reach the end of the

raw �le.

If there are more than one sorted runs on disk, we

sort them using external sort, and the �nal sorted �le

is written to disk.

Having the sortable summarizations sorted, all

records that belong to a speci�c subtree are grouped

together. As such we exploit them in order to build a

minimal tree in a bottom-up fashion, i.e., a tree that

does not contain any raw data series (lines 22-24). The

Algorithm 2 Coconut-Trie: bottom-up bulk-loading of

an pre�x split based tree

1: procedure Coconut-Trie(rawFile)
2: while not reached end of �le do
3: position = current �le position;
4: dataSeries= read data series of size n from rawFile;
5: SAX = convert dataSeries to SAX;
6: invSAX = invertSum(SAX);
7: Move �le pointer n points;
8: Add the (invSAX, position) pair to the bu�er;
9: if the main memory is full then
10: Sort bu�er according to invSAX
11: Flush sorted bu�er to the disk
12: end if

13: end while

14: Sort �ushed runs using external sort
15: while not reached end of sorted �le do
16: Read the next (invSAX, position) in the bu�er
17: if the main memory is full then
18: for every di�erent subtree in bu�er do
19: //Move data from the bu�er
20: //to leaf bu�er
21: //and construct bottom-up the index
22: for every (invSAX, position) in bu�er do
23: insertBottopUp(invSAX, position);
24: end for

25: //merge leaf nodes as much as possible
26: CompactSubtree(root)
27: //Flush all Leaf Bu�ers containing
28: //(Sax, position) pairs to the disk
29: for every leaf in subtree do do
30: Flush the leaf to the disk;
31: end for

32: end for

33: end if

34: end while

35: end procedure

main idea of the corresponding algorithm, i.e. the in-

sertBottopUp procedure, is that initially a new node

is created for each di�erent SAX representation. Then,

the algorithm replaces in iterations the least signi�cant

bits of the SAX representations with star marks until a

common SAX pre�x is identi�ed to be placed in the par-

ent node. Then this idea is applied at the parent level

and so on, until we reach the root (the corresponding

algorithm is omitted due to lack of space).

The next phase is to compact this subtree, i.e. to

push as many records in the leaf nodes as possible.

This is performed using the CompactSubtree procedure

(line 26). To do that the algorithm iteratively checks

whether the records of two sequential sibling nodes can

�t together in a parent node. If they do, the algorithm

merges them and continues till all leaf nodes are vis-

ited. Then the algorithm iterates again over the all

leaves, until no more leaves are merged. Finally each

compacted subtree is �ushed back to disk (lines 29-31).

The above algorithm is used to create a secondary

index over the original raw �le, keeping only the o�sets

10 Haridimos Kondylakis et al.

Fig. 5: Constructing bottom-up a Coconut-Trie index -

before calling the compactSubtree procedure.

in the leaf nodes. The algorithm performs the follow-

ing passes over the data: (i) read the raw data series

and compute the sortable summarizations; (ii) �ush the

sorted partitions of the summarizations to disk (along

with their o�sets); (iii) merge-sort them; and (iv) build

the index. This process involves O(N/B) I/Os, but usu-

ally all the summarizations and their o�sets �t in main

memory, eliminating the need for passes (ii) and (iii).

A slight variation of the aforementioned algorithm

could be used to create a fully-materialized iSAX index

as well.6 We call this variation Coconut-Trie-Full. This

would require the raw data series to be sorted alongside

their sortable summarizations in the sort-merge phase,

and then �ushed to disk. Although the complexity of

the algorithm would be the same, it would require addi-

tional passes in the sort-merge phase, and an additional

pass over the raw data, in order to �ush them to the

leaf nodes.

Example 1 Figure 5 illustrates an example of creating

a Coconut-Trie index using the bottom-up Algorithm 2.

As shown in the �gure, we initially construct the sum-

marizations (SAX) for all data series, as well as their

sortable summarizations (invSAX). Then, we sort them

using their invSAX value, and we construct the corre-

sponding Coconut-Trie index using the InsertBottomUp

algorithm. Following this algorithm, initially, the �rst

data series is placed in a new node. The second data se-

ries is placed in yet a new node, since it has a di�erent

6 In a materialized index, the raw data-series are stored
alongside their summarizations within the index, whereas in
a non-materialized one the index contains pointers to the raw
data series that are stored in a di�erent �le.

SAX representation than the �rst one. Then, the create-

Uptree procedure is called to link the new node with the

previous node. As such, the four least signi�cant bits are

replaced with stars, until the algorithm identi�es a com-

mon pre�x that could be used as the mask of the parent

node (0∗0∗1∗1∗). The parent is generated and linked to

the root node. The third data series is then inserted to

the tree, and a new node is generated. This node should

be linked to the already existing tree: the createUptree

procedure is called again, using as input the SAX rep-

resentations of the second and third data series. The

least signi�cant bits are again replaced by a star, one

by one until we identify the parent that should be gen-

erated linking the third node to the tree. The resulting

Coconut-Trie tree (refer to Figure 5) demonstrates the

state of the tree before calling the CompactSubtree pro-

cedure, which will follow in order to compact the entire

tree. Assuming that a leaf node can hold two data se-

ries, the corresponding algorithm will identify that the

�rst two time-series have the same parent and they �t

together. As such they can be placed directly in their

parent node, removing the child nodes.

Queries. Since the constructed index is essentially no

di�erent than an iSAX index, we use the traditional

approximate and exact search algorithms in order to

perform querying. Approximate search works by visit-

ing the single most promising leaf, and calculating the

minimum distance to the raw data series contained in

it. It provides answers of good quality (returns a top 100

answer for the nearest neighbor search in 91.5% of the

cases for iSAX with extremely fast response times [67]).

On the other hand, exact search guarantees that we get

the exact answer, but with potentially much higher ex-

ecution time. For exact search, we employ the SIMS

algorithm, implementing a skip sequential scan algo-

rithm, shown to outperform traditional exact search al-

gorithms [76].

4.3 Coconut-Tree

Although Coconut-Trie achieves contiguity, i.e. adja-

cent leaf nodes are placed next to each other in stor-

age, a lot of disk space is wasted in those leafs: many

of them are half-full or less, due to the way the index

is constructed (i.e., compacting child nodes to a parent

one). In addition, since the constructed tree in both

Coconut-Trie and in current state-of-the-art are unbal-

anced trees, they o�er no guarantees for the query an-

swering time.

We now present Coconut-Tree, a data series index

that organizes data series based on sortable summariza-

tions, and improves upon Coconut-Trie by eliminating

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 11

Algorithm 3 Coconut-Tree: Bottom-up bulk-loading

of a balanced tree

1: procedure Coconut-Tree(rawFile)
2: while not reached end of �le do
3: position = current �le position;
4: dataSeries = read n data series from rawFile;
5: iSAX = convert dataSeries to iSAX;
6: invSAX = invertSum(iSAX);
7: Move �le pointer n points;
8: Add the (invSAX, position) pair in the bu�er;
9: if the main memory is full then
10: Sort bu�er according to invSAX
11: Flush sorted bu�er to the disk
12: end if

13: end while

14: Merge-sort all �ushed runs
15: Build internal nodes on top of sorted �le
16: end procedure

the constraint that a node can only contain elements

with a common pre�x. This leads to a balanced index

that can densely pack data in its leaf nodes (at a �ll-

factor that can be controlled by the user). The corre-

sponding algorithm completes index construction again

in O(N/B) time.

Index construction, shown in Algorithm 3, receives

the raw data �le as input. A bu�er is initialized, and

while the bu�er is not full the next data series is loaded

from the raw �le, and the sortable summarization is

calculated and stored along with the position of this

data series in the raw data �le (lines 2-8). Whenever the

bu�er �lls up, it gets sorted and �ushed to storage as

an independent sorted partition (line 9-13). Ultimately,

all sorted partitions get sort-merged into a single sorted

partition (line 14). Some padding may be left in each

storage block as space for future insertions. Internal

nodes are then built on top of this sorted partition to

construct a B-tree (line 15).

The Algorithm 3 builds a secondary index with only

o�sets in the lead nodes, but it can be used to construct

a fully materialized index as well, where all data reside

in the leaf nodes. We call the materialized version of

the algorithm Coconut-Tree-Full. We expect that index

construction time of Coconut-Tree-Full will be signi�-

cantly larger. Nevertheless, we also expect that query

execution time would be better, since it will not perform

additional I/Os to go to the raw data �le for accessing

each required data series record.

Example 2 Figure 6 illustrates the construction of

a Coconut-Tree index. Initially, we construct for all

data series their SAX and their invSAX representa-

tions. We then sort them using their invSAX value,

and we construct the Coconut-Tree index in a bottom-up

fashion (exploiting the bulk-loading algorithm for UB-

Fig. 6: Constructing a Coconut-Tree index.

Algorithm 4 Approximate search for the Coconut-

Tree

1: procedure approxSearchCoconutTree(dataSeries,
invSAX, index, radius)

2: targetPoint = point where invSAX should be inserted
3: //Calculate the real leaf distance between
4: //the dataSeries and the raw data series
5: //in a radius around the place that the
6: //dataSeries should reside if existed
7: bsf = caclRadLeafDist(targetPoint, dataSeries, ra-

dius);
8: end procedure

Trees [58]). Note that the constructed index in this case

is balanced.

Querying. For approximate search, when a query ar-

rives (in the form of a data series), it is �rst converted

to its sortable summarization. Then the Coconut-Tree

index is traversed searching for this sortable summa-

rization similar the approximate search in iSAX trees.

The idea is to search for the leaf, where the query series

would reside if it was part of the indexed data set. If

such a record exists, it is retrieved from the disk and re-

turned to the user. On the other hand, if such a record

does not exist, all data series in a speci�c radius from

this speci�c point are retrieved from the disk (usually a

disk page), and their real distances from the query are

calculated. The data series with the minimum distance

found among the data series in that radius is used as

the approximate answer. Thus, in terms of execution

cost, the algorithm visits as many nodes as the depth

of the tree, and any additional leaf nodes within the

selected radius.

Note that in a Coconut-Tree index, we have pointers

between neighboring leaves, which are allocated sequen-

tially on disk. This allowed us to experiment with the

radius size, optimizing the trade-o� between the quality

of the answer and the execution time of the approximate

search.

12 Haridimos Kondylakis et al.

Algorithm 5 Coconut-Tree Scan of In-Memory sum-

marizations

1: procedure coconutTreeSIMS(dataSeries, invSAX,
index, radius)

2: //if SAX sums are not in memory, load them
3: if invSums = 0 then
4: invSums = loadinvSaxFromDisk();
5: end if

6: //perform an approximate search
7: bsf = approxSearchCoconutTree(dataSeries, invSAX,

index, radius);
8: //Compute minimum distances for all summaries
9: Initialize mindists[] array;
10: //use multiple threads & compute bounds in parallel
11: parallelMinDists(mindists, invSums, dataSeries);
12: //Read raw data for unprunable recorde
13: recordPosition = 0;
14: for every mindist in mindists do
15: if mindist < bsf then
16: rawData = read raw data series from index;
17: realDist = Dist(rawData, dataSeries);
18: if realDist < bsf then
19: bsf = realDist;
20: end if

21: end if

22: recordPosition++;
23: end for

24: end procedure

For implementing exact search for Coconut-Tree,

we implement a skip sequential scan algorithm (refer

to Algorithm 5) similar to SIMS [76]. Our algorithm

employs approximate search as a �rst step in order to

prune the search space. It then accesses the data in a se-

quential manner, and �nally produces an exact, correct

answer. We call this algorithm Coconut-Tree Scan of

In-Memory Summarizations (CoconutTreeSIMS). The

main intuition is that while the raw data do not �t in

main memory, their summarized representations (which

are orders of magnitude smaller) will �t in main mem-

ory (remember that the SAX summaries of 1 billion

data series occupy merely 16 GB in main memory). By

keeping these data in-memory and scanning them, we

can estimate a bound for every data series in the data

set.

The algorithm di�ers from the original SIMS algo-

rithm in that it searches over the sorted invSAX rep-

resentations for the initial pruning, and it then uses

the Coconut-Tree index to get the raw data-series in-

stead of accessing the original �le with the raw data

series. As such, Algorithm 5 starts by checking whether

the sortable summarization data are in memory (lines

3-4), and if not it loads them in order to avoid recal-

culating them for each query. It then creates an initial

best-so-far (bsf) answer (line 7), using the approximate

search algorithm described previously (Algorithm 4).

A minimum distance estimation is calculated between

the query and each in-memory sortable summarization

(line 11) using multiple parallel threads, operating on

di�erent data subsets. For each lower bound distance es-

timation, if this is smaller than the real distance to the

bsf, we fetch the complete data series from the Coconut-

Tree index, and calculate the real distance (lines 15-22).

If the real distance is smaller than the bsf, we update

the bsf value (lines 19-21). Since the summaries array

is aligned to the data on disk, what we essentially do

is a synchronized skip sequential scan of the raw data

and the in-memory mindists array. This property al-

lows us to prune a large amount of data, while ensuring

that the executed operations are very e�cient: we do

sequential reads in both main memory and on disk, and

we use modern multi-core CPUs to operate in parallel

on the data stored in main memory. At the end, the

algorithm returns the �nal bsf to the user, which is the

exact query answer.

4.4 Coconut-LSM

While Coconut-Tree creates a compact and contiguous

index that can be constructed and queried e�ciently, it

does not perform well in the presence of random inser-

tions (i.e., that are uniformly distributed across the key

space). The reason is that when insertions are randomly

distributed, each of them requires O(1) I/O to process

(i.e., one I/O to read the corresponding node and an-

other I/O to rewrite it). For insertion-heavy workloads,

this can harm throughput. To mitigate this problem, we

introduce Coconut-LSM, a new write-optimized data

series index based on sortable summarization.

Coconut-LSM organizes the data series summariza-

tions as an LSM-tree [46,14]. The core idea is to bu�er

incoming insertions in memory, to �ush the bu�er to

storage as an independent sorted run every time that it

�lls up, and to bound the overall number of runs in stor-

age by gradually sort-merging them to restrict read cost

(i.e., the number of runs a read has to search). LSM-

tree sort-merges runs of similar sizes, and it organizes

them into levels of exponentially increasing capacities.

We use a variation of LSM-tree with a size ratio of 2

between the capacities of every pair of adjacent levels.

As a result, there are at most O(log2(N)) runs in the

system. Since every insertion gets merged across each

level, and since every I/O during sort-merge copies B

entries, the amortized cost per insertion is O(log2(N)

B
)

I/O. Since the storage block size B is large, the inser-

tion cost for Coconut-LSM gets amortized and is there-

fore signi�cantly lower than for any existing data series

index. Thus, Coconut-LSM enables more e�cient inser-

tions at the expense of slightly more expensive queries.

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 13

Algorithm 6 Coconut-LSM: Bottom-up bulk-loading

of an LSM-tree

1: procedure Coconut-LSM(rawFile)
2: while not reached end of �le do
3: position = current �le position;
4: dataSeries = read n data series from rawFile;
5: iSAX = convert dataSeries to iSAX;
6: invSAX = invertSum(iSAX);
7: Move �le pointer n points;
8: Add the (invSAX, position) pair in the bu�er;
9: if the main memory is full then
10: Sort bu�er according to invSAX
11: Flush sorted bu�er to the disk
12: end if

13: end while

14: Sort �ushed runs using external sort
15: Use LSM-Tree bulk-loading algorithm to build a tree

on top of the sorted �le and record the individual �ushes
on disk

16: end procedure

The construction algorithm is similar to the one

for Coconut-Tree, performing a two-pass external sort

of the data in O(N/B) I/O, and is shown in Algo-

rithm 6. The resulting sorted �le, also called a run,

becomes the largest level of the LSM-tree. Similarly to

Coconut-Tree, we also consider a materialized variant

of Coconut-LSM called Coconut-LSM-Full, which stores

raw data series within the LSM-tree, and which we eval-

uate later.

Example 3 Figure 7 illustrates the construction of

a Coconut-LSM index. Initially, we construct for all

data series their invSAX representations. We then sort

them using their invSAX value, and we construct the

Coconut-LSM index in a bottom-up fashion (exploit-

ing the bulk-loading algorithm for LSM-Trees). The bulk

loading algorithm bu�ers incoming insertions in mem-

ory and �ushes the bu�er to storage as it �ll-up, creat-

ing multiple Coconut indexes. As multiple indexes are

constructed in the incoming bu�er (also referred to as

level 0), they are asynchronously merged to form larger

indexes in level 1. The same applies for level 1 indexes

that are asynchronously merged to formulate larger,

level 2 indexes.

Querying. For approximate search, Algorithm 4 for

Coconut-Tree is applied to each individual run of

Coconut-LSM. The data series with the minimum dis-

tance found across the runs of Coconut-LSM is used

as the approximate answer. Note that approximate

search in Coconut-LSM is more expensive in terms of

I/Os than Coconut-Tree, as multiple runs need to be

searched. In this way, Coconut-LSM trades approxi-

mate query performance for insertion performance.

Algorithm 7 Coconut-LSM Scan of In-Memory sum-

marizations

1: procedure coconut-LSM-SIMS(dataSeries, invSAX,
index, radius)

2: //if SAX sums are not in memory, load them
3: if invSums = 0 then
4: invSums = loadinvSaxFromDisk();
5: end if

6: //perform an approximate search
7: bsf = approxSearchCoconutTree(dataSeries, invSAX,

index, radius);
8: for every subtree of the LSM structure do
9: //Compute minimum distances for all summaries
10: Initialize mindists[] array;
11: //use multiple threads & compute bounds in par-

allel
12: parallelMinDists(mindists, invSums, dataSeries);
13: //Read raw data for unprunable recorde
14: recordPosition = 0;
15: for every mindist in mindists do
16: if mindist < bsf then
17: rawData = read raw data series from index;
18: realDist = Dist(rawData, dataSeries);
19: if realDist < bsf then
20: bsf = realDist;
21: end if

22: end if

23: recordPosition++;
24: end for

25: end for

26: end procedure

For implementing exact search for Coconut-LSM,

we revisit the corresponding algorithm for Coconut-

Tree. The new algorithm is shown in Algorithm 7. In the

�rst step, the algorithm employs approximate search in

order to prune the search space. It then accesses the

subtrees in a sequential manner, and �nally produces an

exact, correct answer. We call this algorithm Coconut-

LSM Scan of In-Memory Summarizations (Coconut-

LSM-SIMS).

The main intuition for this algorithm is that we

would like to search sequentially all subtrees of the LSM

tree in order to optimize read, still however performing

a skip sequential scan. As such we use the snapshot

of the available summarizations produced in indexing

phase. By keeping these data in-memory and scanning

them, we can estimate a bound for every data series in

the data set.

5 Sliding windows

Up until now, we focused on nearest neighbor search

across an entire dataset. In many modern applications,

however, queries have temporal constraints: they must

�nd the nearest neighbor from within the most re-

cent data (e.g., in infrastructure monitoring, or geo-

14 Haridimos Kondylakis et al.

Indexed Run

Merge-sort

00110101 00111100 01100110

01100110

invSAX

Raw data

Indexed Run

M
erge-sort

01011001 01111100invSAX

Raw data

Buffer

Empty slot Sort and index

When the buffer is full:

It is sorted, indexed and flushed to
Level 1 forming an “indexed run”

When Level i reaches capacity:

 The runs within it are merged
and flushed to level i+1

Incoming data series are summarised
and the summaries along with the
 raw data are pushed into a buffer

invSAX

Raw data

Indexed Run

Bu
ffe

r
Le

ve
l 1

Le
ve

l 2
Le

ve
l 3

N
ew

er
 d

at
a

O
ld

er
 d

at
a

…

Fig. 7: Constructing a Coconut-LSM index.

temporal applications). The size of the temporal win-

dow of interest often varies across and within applica-

tions to enable di�erent granularities of analysis (e.g.,

data from the past week, month, year, etc.). Therefore,

a data series index needs to �exibly support variable-

sized window queries. Ideally, it should save on storage

bandwidth by avoiding access to data that is older than

a speci�ed query window.

In this section, we describe three approaches for sup-

porting window queries. The �rst two approaches, post-

processing and temporal partitioning, only support ef-

�cient long or short window queries, respectively, but

neither supports both. These two approaches represent

the best we can do with existing data series indexes as

well as with Coconut-Trie and Coconut-Tree. We then

show how Coconut-LSM enable a third approach that

supports window queries of any size e�ciently. We coin

it bounded temporal partitioning (BTP). For all three

approaches, we attach a timestamp to each entry. We

experimentally compare them in Section 6.

5.1 Approach 1: Post-Processing (PP)

Post-processing relies on examining the timestamp of

every entry as it is encountered during query processing

and discarding it if the timestamp does not �t within

the window speci�ed by the query. Exact queries take

place as before, with the di�erence that they now also

check every entry's timestamp. Approximate queries,

however, may need to broaden the scope of their search

if the �rst node that is encountered only contains en-

tries that are outside of the speci�ed window. Hence, we

adapt them to incrementally expand their search across

adjacent leaf nodes until an entry within the speci�ed

window is found.

While post-processing is the simplest approach to

implement, it is ine�cient for exact queries if the spec-

i�ed time window encompasses a small proportion of

the data. The reason is that it does not allow to save

storage bandwidth by avoiding access to older entries.

Hence, an exact query to the most recent data con-

sumes as much storage bandwidth as a query over the

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 15

entire data. For approximate queries, search may also

take signi�cantly longer to execute as potentially many

nodes need to be searched until an entry within the

window is found.

5.2 Approach 2: Temporal Partitioning (TP)

With temporal partitioning, we create a new index par-

tition based on the in-memory bu�er's contents every

time that the bu�er �lls up. In this way, the system

gathers more and more temporal partitions over time,

and it organizes them based on their creation time. This

allows both approximate and exact queries to access

only indexes whose creation timestamp falls within or

intersects with a speci�ed query window.

TP works well for short window queries as it al-

lows them to skip access to most of the data in stor-

age. On the other hand, it performs poorly for windows

that span a signi�cant proportion of the data. For exact

queries, the reason is that they must begin the search

from scratch for every partition, and so they cannot

leverage the lower-bounding property of invSAX as ef-

fectively to spatially prune within each partition. For

approximate queries, the reason is that they need to

issue one I/O to every qualifying partition (potentially

hundreds for large data sizes).

5.3 Approach 3: Bounded Temporal Partitioning

(BTP)

While neither the �rst nor the second approach sup-

ports both long and short window queries e�ciently,

many applications need to be able to use both short

and long window sizes, while maintaining good perfor-

mance in all cases. Our insight is that Coconut-LSM

enables a new approach that combines the best of these

two approaches. By design, Coconut-LSM creates a new

temporal partition every time the bu�er �ushes (as with

TP), and it sort-merges temporal partitions of similar

sizes. In this way, newer data resides in smaller parti-

tions, while older data gradually moves to larger con-

tiguous partitions. This allows queries over short win-

dows to save storage bandwidth by skipping larger par-

titions. At the same time, it allows exact queries over

long windows to spatially prune a greater proportion

of the data by leveraging the lower bounding property

of invSAX more e�ectively, and it allows approximate

queries over long windows to issue fewer I/Os by bound-

ing the overall number of partitions that need to be

accessed.

We refer to this windowing approach as Bounded

Temporal Partitioning (BTP). We implement BTP on

top of Coconut-LSM by modifying it to take a window

size as a query parameter, and to skip accessing larger

partitions that fall outside of a speci�ed window size.

We demonstrate the bene�ts of BTP for both small and

large window queries in Section 6.

Note that with unsortable summarizations (as is the

case with the traditional state-of-the-art data series in-

dexes), the BTP approach would have been inviable,

as it would have to rely on expensive in-place inser-

tions for merging partitions. We therefore observe here,

too, that the ability to sort the summarizations opens

up new opportunities for optimization that would have

been impossible otherwise.

Example 4 Figure 8 illustrates schematically the three

approaches. In the �rst case, PP, a full index is con-

structed that covers the entire dataset. For TP, multiple

indexes are constructed, each one for a di�erent window

partition of the data. Finally, in the BTP approach, the

index is constructed containing all entries, however cre-

ating a temporal partition each time the bu�er is �ushed

to disk. Therefore, it guarantees optimal access to win-

dow queries, but it also enables querying records that

reside on other sliding window sizes.

6 Experimental Evaluation

In this section, we present our experimental evaluation.

We demonstrate the bene�ts of sortability, enabling a

variety of new choices for data structures to be used

for better space-e�ciency and for more e�ciently bulk-

loading, querying, and updating the data.

Algorithms.We benchmark all indexing methods pre-

sented in this paper against the state-of-the-art data

series indexing techniques. More speci�cally, we com-

pare our materialized methods with R-tree [19], Ver-

tical [23], DSTree [69] and ADS-Full [76], and our

non-materialized methods with ADS+ [76] and a non-

materialized version we implemented over R-tree, the

R-tree+.

The Vertical approach generates an index using data

series features, obtained by a multi-resolution Discrete

Wavelet Transform, in a stepwise sequential-scan man-

ner, one level of resolution at a time. DSTree is a

data adaptive and dynamic segmentation tree index

that provides tight upper and lower bounds on dis-

tances between time series. ADS-Full is an algorithm

that constructs an iSAX clustered index by perform-

ing two passes over the raw data series �le. ADS+ is

an adaptive data structure, which starts by building a

minimal secondary index. Leaf sizes are re�ned during

query answering, and leaves are materialized on-the-�y.

16 Haridimos Kondylakis et al.

Fig. 8: The various sliding windows appoaches: (a) Post-Processing (PP), (b) Temporal Partitioning (TP) and (c)

Bounded Temporal Partitioning (BTP).

Astronomy Randomwalk Seismology

−5
.0

−2
.5 0.

0
2.

5
5.

0
−5

.0
−2

.5 0.
0

2.
5

5.
0
−5

.0
−2

.5 0.
0

2.
5

5.
0

0.00

0.01

0.02

0.03

0.04

Value

P
ro

ba
bi

lit
y

Fig. 9: Value histograms for all datasets used.

As such query answering has the additional overhead

of the re�nement of the leafs. The R-tree index is built

on the raw data series by indexing their PAA summa-

rizations. The raw data series are stored in the leaves

of the tree. Our R-tree implementation uses the Sort-

Tail-Recursive bulk loading algorithm [32]. R-tree+ is

the non-materialized version of the R-tree, using �le

pointers in the leaves instead of the original time se-

ries. In our experiments, we used the same leaf size

(2000 records) for all indexing structures.

In the experiments on index construction and query-

ing, we do not include Coconut-LSM. The reason is

that in the absence of insertions, Coconut-LSM after

bulk-loading contains all of its data in one level, and

a one-level LSM-tree is structurally equivalent to a B-

tree [46]. We therefore include Coconut-LSM in the ex-

periments when we also introduce insertions into the

workloads.

Infrastructure. All algorithms are compiled with

GCC 4.6.3 under Ubuntu Linux 12.04 LTS. We used an

Intel Xeon machine with 5x2TB SATA 7.2 RPM hard

drives in RAID 0. The memory made available for each

algorithm was controlled according to the experiment.

Datasets. For our experiments we used both synthetic

and real datasets. Synthetic datasets were generated

using a random walk data series generator: a random

number is drawn from a Gaussian distribution (0,1);

then, at each time point a new number is drawn from

this distribution and added to the value of the last

number. This kind of data has been extensively used

in the past (see [77] for a list of references), and has

been shown to e�ectively simulate real-world �nancial

data [16].

The real datasets we used in our experiments are

seismic and astronomy data. We used the IRIS Seismic

Data Access repository [1] to gather data series repre-

senting seismic waves from various locations. We ob-

tained 100 million data series by extracting one sample

per second from the original data series, and then par-

titioning them into smaller series of 256 samples each

by sliding every 4 samples over the original series. The

complete dataset size was 100GB. For the second real

dataset, we used astronomy data series representing ce-

lestial objects [68]. The dataset comprised of 270 million

data series, obtained by partitioning the original series

into smaller series of 256 samples each using a sliding

step of one sample. The total dataset size was 277GB.

All our datasets have been z-normalized by sub-

tracting the mean and dividing by the standard devia-

tion. This is a requirement by many applications that

need to measure similarity irrespective of translation

and scaling of the data series [17]. Moreover, it allows

us to compute correlations based on the euclidean dis-

tance values [45].

In Figure 9, we show the distributions of the values

for all datasets. The distributions of the synthetic and

seismology data are very similar, while astronomy data

are slightly skewed.

Query Workloads. Each query is given in the form of

a randomly selected data series q and having the index

try to locate whether this data series or a similar one

exists in the database. For querying the real datasets we

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 17

Fig. 10: Indexing & Querying data series using variable

number of summary segments.

obtained additional data series from the raw datasets

using the same technique for collecting the datasets to

be used in the query workload.

Con�guring number of segments. As a �rst step,

before comparing with other approaches, we studied the

e�ect of the number of segments of the generated sum-

maries on performance. The idea was to evaluate the

trade-o� between number of segments, space overhead

introduced by the indexing structure over the raw data,

and indexing and querying execution time. We used a

synthetic data series collection of 100GB data series and

100 exact queries, using limited memory (100K data se-

ries) for both indexing and querying. The accumulative

execution time for both querying and indexing is shown

in Figure 10, where we can also see the index space over-

head in each case (thin gray line). As shown, the larger

the number of segments, the larger the indexing time

for both materialized (CTreeFull) and non-materialized

(CTree) approaches. In addition, the bene�t in index-

ing has an impact on querying, as smaller summaries

cannot prune e�ectively the search space when perform-

ing exact queries. On the other hand going beyond 16

number of segments almost doubles the additional space

introduced by our indexing structures. Therefore, we se-

lected 16 as the number of segments. Unless mentioned

otherwise, in the rest of the experimental evaluation,

the summarizations use 16 SAX words, the size of data

series was of 256 points, and each point has a �oating

precision of 4 bytes.

6.1 Indexing

In our �rst set of experiments, we evaluate index con-

struction speed. The results for the materialized algo-

rithms are shown in Figure 11a as we vary the memory

budget for each method to control the amount of bu�er-

ing and caching they are able to leverage. We observe

that Coconut-Tree-Full (CTreeFull) exhibits the best

construction speed in all cases it is able to externally

sort the raw data �le. As memory becomes limited,

external sorting degrades gracefully in terms of per-

formance. The construction time of Coconut-Trie-Full

(CTrieFull) on the other hand, signi�cantly increases

as we constrain the memory (and the corresponding

bu�ering), due to the extensive I/Os spent on the last

pass of the data, for loading the unsorted raw data

to the sorted leaves. Moreover, we observe that Ver-

tical is slower in all cases, while R-tree performs rather

poorly. The STR algorithm [32] that R-tree uses �rst

sorts based on the �rst dimension into N
1
D slabs (where

N is the number of points in a D-dimensional space),

and then recursively repeats the process within each

slab with one less dimension. As a result, runtime is the

product of the number of elements and the number of

dimensions: O(N ·D) I/Os. In contrast, our implemen-

tation uses sortable summarizations to sort based on

all dimensions with just one pass, amounting to O(N)

I/Os. Finally, DSTree requires more than 24 hours to

�nish in most of the cases, as it inserts all data series

in the index one by one, in a top-down fashion. This

requires multiple iterations to be performed over the

raw data during splits in order to create more detailed

summarizations, leading to a high I/O overhead.

In the non-materialized versions of the algorithms,

shown in Figure 11b, ADS+ is slightly better than

Coconut-Tree (6.3 vs 7.8 mins), when given ample

memory. However when we restrict the available main

memory, Coconut-Tree becomes faster than ADS+ (8.2

vs 13.4 mins). This is due to the fact that as the leaves

in ADS+ split, they cause random disk I/Os. This

slows down index construction, since bu�ering is lim-

ited when the main memory is limited. On the other

hand, Coconut-Trie (CTrie) spends a signi�cant time in

compacting its nodes, which signi�cantly slows down in-

dex construction. The performance of R-tree+ matches

the behavior of the materialized R-tree, requiring much

more execution time than the leading approaches.

Finally, we observe that non-materialized versions

outperform the materialized ones, since they do not

store the entire dataset, but only the summarizations

and pointers to the raw data �le. Moreover, we note

that sorting in the non-materialized versions is really

fast, since only the summarizations need to be sorted,

and so far less data has to be moved and reshu�ed.

Space. Since storage space becomes a critical cost for

many applications as the data grows, we next examine

the space overhead imposed by the various indexing

schemes. The results are shown in Figure 11c, where

we report the space required for 10GB of raw data.

18 Haridimos Kondylakis et al.

(a) Index construction - materialized.
(b) Index construction - non-
materialized.

(c) Indexing space overhead.

(d) Index construction - materialized.
(e) Index construction - non-
materialized.

(f) Indexing data series of di�erent
lengths.

Fig. 11: Indexing.

Fig. 12: Indexing data series di�erent number of sum-

mary segments.

For the materialized indexes, we observe that

Coconut-Tree-Full and DSTree have a smaller space

overhead. Median-based solutions, such as Coconut-

Tree-Full generate indexes with the leaf nodes as full

as possible, whereas in pre�x-based solutions there is a

lot of empty space in the leaf nodes: leaves are on aver-

age 10% full in pre�x-based solutions, whereas for the

median-based ones utilization reaches 97%. Note that

in the case of Coconut-Trie-Full more space is wasted,

since more leaf nodes are produced, and we cannot fur-

ther compact the leaf nodes due to the speci�c pre�x-

based scheme that is used (there are 55K leaf nodes

for the Coconut-Trie-Full, and 54K leaf nodes for the

ADSFull). For the Coconut-Tree-Full, we can e�ectively

control the number of leaf nodes produced, resulting in

6K leaf nodes with a 75% �ll rate.

For the non-materialized indexes, we can again ob-

serve the superiority of our median based solution, re-

quiring almost half the space required by other solu-

tions.

Scalability with Data Growth. Have identi�ed the

Coconut-Tree methods as the quickest to build data

series indexes and the ADS methods as the closest

contenders, we now proceed to evaluate how construc-

tion speed scales for these methods as the data size

increases. We will return to the other methods when

we evaluate query performance. In this set of experi-

ments, we �x the amount of main memory to that of

a common desktop workstation (8GB), and gradually

increase the number of data series to be indexed. The

results are shown in Figures 11d and 11e. We observe

that when the amount of data is relatively small with

respect to the available main memory, Coconut-Tree-

Full and Coconut-Tree require similar times to ADS-

Full and ADS+, respectively. However, as the data size

increases, the random I/Os of ADSFull and ADS+ in-

cur a signi�cant overhead on the overall time to con-

struct the index, and the Coconut-Tree algorithms be-

come faster. This e�ect is especially pronounced for the

materialized indexes in Figure 11d. In addition, the ex-

periments show that in Coconut-Tree-Full most of the

time is spent on sorting the raw data, whereas in the

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 19

(a) Exact query answering. (b) Approximate query answering. (c) Approximate query answering (40G).

(d) Average distance of approximate
search.

(e) Exact query answering.
(f) Visited records in exact query an-
swering.

Fig. 13: Querying.

case of CTree only the summarizations are sorted, and

as such the external sort overhead is really small when

compared to the cost of I/Os and CPU.

Variable Data series and Summary Length.

Next, we evaluate construction speed for the

Coconut-Tree and ADS methods, as we vary the lengths

of the individual data series that need to be indexed,

and the number of segments that are used in the sum-

marizations. We use a data series collections of 100GB,

using limited memory (100K data series) for both ex-

periments. The results for variable lengths of dataseries

are shown in Figure 11f, and the results for the vari-

able number of segments are shown in Figure 12. When

looking at Figure 11f, we observe that in all cases the

Coconut-Tree variations surpass the ADS ones, demon-

strating once again the superiority of Coconut-Tree in

terms of construction speed. Regarding the variable

number of segments, as we observe in Figure 12, the

indexing process becomes slower when we increase the

number of segments, as more segments need to be writ-

ten to disk. We note that the ADS family does not scale

beyond 16 segments as the corresponding indexing al-

gorithms need to construct 2#segments root nodes in

each case, and as such they have a limitation that the

Coconut family has not.

6.2 Querying

Exact Query Performance. Next we evaluate the

various schemes in terms of exact query performance.

To do this, we measure execution time across 100 ran-

dom exact queries as we vary the index sizes. As shown

in Figure 13a, CTree and CTreeFull are faster across

the board. The reason is that Coconut-Tree indexes are

contiguous and compact, and so fewer I/Os are needed

to traverse them.

Interestingly, the non-materialized R-tree in 40GB

is faster than the materialized R-tree. This happens

since R-tree+ needs only the summarizations in mem-

ory to perform query answering, whereas the material-

ized version needs large parts of data series, which leads

to memory swapping to disk.

Approximate Query Performance. We now evalu-

ate the performance of the di�erent indexes in terms

of approximate query answering. To do so, we mea-

sure execution time across 100 random approximate

queries as we vary the size of the dataset. We focus on

the indexes that were deemed most promising by the

last experiment. The results are shown in Figure 13b.

We observe that CTree and CTreeFull are always faster

than the other methods as there are fewer nodes to tra-

verse before reaching the target leaf node. In addition,

the materialized versions of the indexes are faster than

their non-materialized counterparts, since the records

are materialized in the leaf nodes and can be directly

accessed instead of issuing additional accesses to the

raw data �le.

Approximate Query Quality vs. Performance. In

the next series of experiments, we explore whether it

is possible to strike di�erent trade-o�s between perfor-

20 Haridimos Kondylakis et al.

mance and accuracy for approximate queries. The idea

is that by searching slightly more nodes during an ap-

proximate query and thereby sacri�cing some perfor-

mance, we may be able to improve accuracy by �nding

a better candidate. To run this experiment, we consider

three variants of our approximate query algorithm that

di�er in terms of the number of nodes that get searched:

half a node, a whole node, or ten adjacent nodes. Fig-

ure 13c demonstrates that approximate query execution

time increases in proportion to the number of nodes

we search. In Figure 13d, we measure the correspond-

ing accuracy in terms of Euclidean distance between

the search target to the closest data series we found in

the searched nodes. We indeed observe in these exper-

iments that CTree(1) (which checks one node) is more

accurate than the ADS family for 69% of the queries,

while CTree(10) is more accurate for 94% of the queries.

However, we observe that we quickly hit the point of di-

minishing marginal returns in terms of accuracy as we

search more nodes.

Since the �rst step of the exact search is the ex-

ecution of an approximate query, we might expect

that a better initial approximate result would lead to

more pruning and thus improved performance for exact

queries. Figure 13f indeed shows that the ADS fam-

ily on average visits more than 80K records during ex-

act query answering, whereas the Coconut family visits

fewer than 59K records in all cases. In Figure 13e, how-

ever, we observe that all the Coconut variants perform

approximately the same. This implies that the perfor-

mance improvement that we observe for the Coconut

family compared with the ADS family mostly arises due

to the compactness and contiguity of the Coconut in-

dexes, which allow us to issue fewer I/Os during exact

queries.

6.3 Complete Workloads on Real Datasets

We now compare Coconut to the state-of-the-art, sim-

ulating the complete process of index construction and

query answering. The results are shown in Figure 14a

for the Astronomy dataset and in Figure 14b for the

Seismic dataset.

The index sizes for the astronomy dataset were as

follows: ADSFull: 311GB, ADS+: 19GB, CTree: 10GB,

CTreeFull: 298GB; and for the seismic dataset: ADS-

Full: 111GB, ADS+: 6GB, CTree: 4GB, CTreeFull:

108GB.

We measure the time to construct �rst the corre-

sponding indexes, and then to answer 100 exact queries

over the constructed index, using various memory con-

�gurations. As shown, when we constrain the available

memory, Coconut-Tree becomes better in all cases, for

both the materialized and non-materialized approaches,

corroborating the experimental results with the syn-

thetic datasets. An interesting observation here is that

the queries are harder on these datasets for all indexes,

because the datasets were denser (for a detailed dis-

cussion on hardness see [77]). As a result, pruning was

not as e�cient as with the random walk data. There-

fore, even though Coconut was faster than all compet-

ing methods, it still had to scan a considerable amount

of data in order to answer the exact queries.

6.4 Insertions

Next, we evaluate the di�erent indexes in the pres-

ence of insertions of new data series. We focus on the

ADS and Coconut-Tree families as they were shown

to perform best for index construction. This time, we

also include Coconut-LSM in the experiment (i.e., as

the structural di�erence between Coconut-LSM and

Coconut-Tree only manifest themselves in the presence

of insertions). In particular, we use C-LSM and C-LSM-

Full as non-materialized and materialized instances of

Coconut-LSM, respectively. We use a synthetic work-

load consisting of 100 random exact queries, where ev-

ery two queries are interleaved by a batch of insertions.

We control the experiment by ensuring that the �nal

data size after all insertions at the end of each of the

experiments is 100GB, while the initial data size and

the insertion batch size vary. In addition, we limit the

available memory to 0.01% of the data size. The results

in Figure 15 show that in the presence of insertions,

C-LSM performs at least twice as fast as the other ap-

proaches. The reasons are that (1) the LSM-tree on

top of which C-LSM is built optimizes heavily for in-

sertion workloads by bu�ering and later sort-merging

data and thereby using only sequential rather than ran-

dom writes, and (2) C-LSM is non-materialized and so

only new incoming summarizations get indexed while

the bulk of the data (i.e., the data series) are appended

to the raw �le. We further observe that in the absence

of insertions (the �nal set of bars), C-LSM and CTree

perform similarly because in this case both consist of

one contigous and compact level of summarizations.

We attribute the performance di�erence in this case

to implementation di�erences between BerkeleyDB and

RocksDB, on top of which they are implemented. C-

LSM-Full does not perform as well as CTree due to the

overheads of continually sort-merging the whole data

rather than just the summarizations. Overall, we ob-

serve here again that being able to sort the data al-

lows us to optimize for di�erent workload characteris-

tics (in this case for insertions), as well as to introduce

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 21

(a) Astronomy - complete workload. (b) Seismic - complete workload.

Fig. 14: Complete Workloads.

Fig. 15: Updates for both materialized and non-

materialized versions of ADS, Coconut-Tree and

Coconut-LSM.

Coconut-LSM as the �rst highly write-optimized data

series index.

6.5 Sliding windows

Finally, we show that sortable data series summariza-

tions further allow to process e�cient sliding window

queries for streaming applications. To recap from Sec-

tion 5, the baseline approaches for processing sliding

window queries with unsortable summarizations are

post-processing (PP) and temporal partitioning (TP).

Post-Processing (PP) performs a regular exact query

over the whole index and discards data series based

on their creation timestamp after they are retrieved

from storage. Temporal Partitioning (TP), on the other

hand, creates a separate temporal partition for every

new batch of insertions thereby allowing queries to ig-

nore partitions with older data than the speci�ed win-

dow. Our proposed approach, Bounded Temporal Parti-

tioning (BTP), creates temporal partitions as with TP,

but it also sort-merges partitions as they grow older.

This allows to restrict the overall number of partitions.

We implemented the �rst two approaches for Coconut-

Tree-Full and ADSFull, and we call them CTreeFullPP,

CTreeFullTP, ADSFullPP and ADSFullTP. We imple-

mented the BTP approach on top of Coconut-LSM-

Full, and we refer to this algorithm as CLSMFullBTP.

We conduct the experiment as in Section 6.4 by in-

terleaving batches of insertions with exact queries, but

now each of the queries is an exact sliding window query

over the most recent one million data series. The �nal

data size after all insertions is 100GB, and the memory

we use is 0.1% of the �nal data size.

Figures 16 and 18 show the experimental results for

the materialized and non-materialized indexes, respec-

tively. The PP approach is slowest because it accesses

the most data. We stopped the execution of all the PP

methods after 24 hours. The TP approach performs bet-

ter than PP because it allows to restrict the search to

the most recent temporal partitions. However, the high

number of partitions leads to random I/O across parti-

tions. Furthermore, TP does not enable e�ective prun-

ing within each of the partitions because the search

starts from scratch for each partition, and so it cannot

leverage the lower-bounding property of invSAX as ef-

fectively to spatially prune within each of the partition.

BTP, on the other hand, performs best in all cases be-

cause it further sort-merges partitions to restrict their

number and to create large, compact and contiguous

partitions for older data. Thus, this approach allows us

to prune more at older partitions, and it makes the

access patterns to disk less random and more skip-

sequential.

22 Haridimos Kondylakis et al.

Fig. 16: Sliding window experiments with �xed length window (materialized methods).

Fig. 17: Sliding window experiments with variable

length window (materialized methods).

Figures 17 and 19 repeat the experiments as we

vary the sliding window size for the materialized and

non-materialized indexes, respectively. For this exper-

iment, we start with 10GB of data and each insertion

batch is 1.4GB. We observe that querying takes longer

with larger window sizes as a larger fraction of the data

has to be accessed. In all cases, however, BTP con-

tinues to dominate the other approaches. Overall, this

demonstrates that sortable summarizations provide us

with more scalable means of analyzing data at di�er-

ent temporal granularities, an important property for

modern data-heavy streaming applications.

7 Conclusions and Future Work

In this paper, we show that state-of-the-art data se-

ries indexes do not scale well for massive data sizes in

terms of performance for index construction, updating

and querying. We show that the reason is that exist-

ing data series summarizations, on top of which these

indexes are built, are unsortable. As a result, such in-

dexes are constructed and updated through expensive

top-down insertions that create a non-contiguous index

that is expensive to query. To alleviate this problem,

we propose the �rst sortable data series summariza-

tions, showing that indexing based on sortable sum-

marizations optimizes both indexing and querying. We

start by creating and exploring a pre�x-based bottom-

up indexing algorithm, which merely solve the problem

of data contiguity. We proceed by exploring median-

based split trees, and showing that this approach out-

performs the state-of-the-art for both index construc-

tion and querying time. Among the bene�ts of the ap-

proach is that the resulting index structure is balanced,

providing guarantees on query execution time. More-

over, we design the �rst write-optimized data series in-

dex by using log-structured updates, a technique that is

enabled by having sortable data series summarizations.

Finally, we explore three approaches for query answer-

ing over streaming sets and we provide an e�cient so-

lution in this direction. As future work, we intend to

explore how Cococut can be parallelized, by exploring

parallel UB-Tree index building algorithms.

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 23

Fig. 18: Sliding window experiments with �xed length window (non-materialized methods).

Fig. 19: Sliding window experiments with variable

length window (non-materialized methods).

References

1. Incorporated Research Institutions for Seismology � Seis-
mic Data Access. http://ds.iris.edu/data/access/ (2016)

2. Adhd-200. http://fcon_1000.projects.nitrc.org/

indi/adhd200/ (2017)
3. Sloan digital sky survey. https://www.sdss3.org/dr10/

data_access/volume.php (2017)
4. Aggarwal, A., Vitter, J.S.: The input/output complexity

of sorting and related problems. Commun. ACM 31(9),
1116�1127 (1988)

5. Agrawal, R., Faloutsos, C., Swami, A.N.: E�cient simi-
larity search in sequence databases. In: FODO, pp. 69�84
(1993)

6. Alsubaiee, S., Carey, M.J., Li, C.: Lsm-based storage
and indexing: An old idea with timely bene�ts. In:
Second International ACM Workshop on Managing and
Mining Enriched Geo-Spatial Data, GeoRich@SIGMOD
2015, Melbourne, VIC, Australia, May 31, 2015, pp. 1�
6 (2015). DOI 10.1145/2786006.2786007. URL https:

//doi.org/10.1145/2786006.2786007

7. Assent, I., Krieger, R., Afschari, F., Seidl, T.: The ts-
tree: e�cient time series search and retrieval. In: EDBT,
pp. 252�263 (2008). DOI 10.1145/1353343.1353376. URL
http://doi.acm.org/10.1145/1353343.1353376

8. Bayer, R., Markl, V.: The ub-tree: Performance of mul-
tidimensional range queries (1998)

9. Camerra, A., Palpanas, T., Shieh, J., Keogh, E.J.: isax
2.0: Indexing and mining one billion time series. In:
ICDM, pp. 58�67 (2010). DOI 10.1109/ICDM.2010.124.
URL https://doi.org/10.1109/ICDM.2010.124

10. Camerra, A., Shieh, J., Palpanas, T., Rakthanmanon, T.,
Keogh, E.: Beyond One Billion Time Series: Indexing and
Mining Very Large Time Series Collections with iSAX2+.
KAIS 39(1), 123�151 (2014)

11. Chakrabarti, K., Keogh, E.J., Mehrotra, S., Pazzani,
M.J.: Locally adaptive dimensionality reduction for in-
dexing large time series databases. ACM Trans. Database
Syst. 27(2), 188�228 (2002). DOI 10.1145/568518.
568520. URL http://doi.acm.org/10.1145/568518.

568520

12. pong Chan, K., Fu, A.W.: E�cient time series match-
ing by wavelets. In: ICDE, pp. 126�133 (1999). DOI
10.1109/ICDE.1999.754915. URL https://doi.org/10.

1109/ICDE.1999.754915

13. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detec-
tion: A survey. ACM computing surveys (CSUR) 41(3),
15 (2009)

14. Dayan, N., Athanassoulis, M., Idreos, S.: Monkey: Op-
timal navigable key-value store. In: SIGMOD, pp. 79�
94 (2017). DOI 10.1145/3035918.3064054. URL http:

//doi.acm.org/10.1145/3035918.3064054

15. Echihabi, K., Zoumpatianos, K., Palpanas, T., Ben-
brahim, H.: The lernaean hydra of data series similarity
search: An experimental evaluation of the state of the
art. PVLDB (2019)

16. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast
subsequence matching in time-series databases. In: SIG-
MOD, pp. 419�429 (1994). DOI 10.1145/191839.191925.
URL http://doi.acm.org/10.1145/191839.191925

24 Haridimos Kondylakis et al.

17. Goldin, D.Q., Kanellakis, P.C.: On similarity queries
for time-series data: Constraint speci�cation and imple-
mentation. In: Principles and Practice of Constraint
Programming - CP'95, First International Conference,
CP'95, Cassis, France, September 19-22, 1995, Proceed-
ings, pp. 137�153 (1995)

18. Grabocka, J., Schilling, N., Schmidt-Thieme, L.: Latent
time-series motifs. TKDD 11(1), 6:1�6:20 (2016)

19. Guttman, A.: R-trees: A dynamic index structure for spa-
tial searching. In: SIGMOD, pp. 47�57 (1984). DOI
10.1145/602259.602266. URL http://doi.acm.org/10.

1145/602259.602266

20. Huijse, P., Estévez, P.A., Protopapas, P., Principe,
J.C., Zegers, P.: Computational intelligence challenges
and applications on large-scale astronomical time series
databases. IEEE CIM 9(3), 27�39 (2014)

21. Idreos, S., Kersten, M.L., Manegold, S.: Database crack-
ing. In: CIDR 2007, pp. 68�78 (2007). URL http:

//cidrdb.org/cidr2007/papers/cidr07p07.pdf

22. Kashino, K., Smith, G., Murase, H.: Time-series ac-
tive search for quick retrieval of audio and video. In:
ICASSP, pp. 2993�2996 (1999). DOI 10.1109/ICASSP.
1999.757470. URL https://doi.org/10.1109/ICASSP.

1999.757470

23. Kashyap, S., Karras, P.: Scalable knn search on vertically
stored time series. In: SIGKDD, pp. 1334�1342 (2011).
DOI 10.1145/2020408.2020607. URL http://doi.acm.

org/10.1145/2020408.2020607

24. Kate, R.J.: Using dynamic time warping distances as
features for improved time series classi�cation. Data
Min. Knowl. Discov. 30(2), 283�312 (2016). DOI
10.1007/s10618-015-0418-x. URL https://doi.org/10.

1007/s10618-015-0418-x

25. Kaufman, L., Rousseeuw, P.J.: Finding groups in data:
an introduction to cluster analysis, vol. 344. John Wiley
& Sons (2009)

26. Keogh, E.J.: Fast similarity search in the presence of lon-
gitudinal scaling in time series databases. In: ICTAI, pp.
578�584 (1997). DOI 10.1109/TAI.1997.632306. URL
https://doi.org/10.1109/TAI.1997.632306

27. Keogh, E.J., Chakrabarti, K., Pazzani, M.J., Mehrotra,
S.: Dimensionality reduction for fast similarity search in
large time series databases. KAIS 3(3), 263�286 (2001)

28. Keogh, E.J., Pazzani, M.J.: An enhanced representation
of time series which allows fast and accurate classi�ca-
tion, clustering and relevance feedback. In: KDD, pp.
239�243 (1998). URL http://www.aaai.org/Library/

KDD/1998/kdd98-041.php

29. Kondylakis, H., Dayan, N., Zoumpatianos, K., Palpanas,
T.: Coconut: A scalable bottom-up approach for building
data series indexes. PVLDB 11(6), 677�690 (2018). DOI
10.14778/3184470.3184472. URL http://www.vldb.org/

pvldb/vol11/p677-kondylakis.pdf

30. Kondylakis, H., Dayan, N., Zoumpatianos, K., Palpanas,
T.: Coconut palm: Static and streaming data series ex-
ploration now in your palm. In: Proceedings of the 2019
International Conference on Management of Data, SIG-
MOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019., pp. 1941�1944 (2019). DOI
10.1145/3299869.3320233. URL https://doi.org/10.

1145/3299869.3320233

31. Korn, F., Jagadish, H.V., Faloutsos, C.: E�ciently sup-
porting ad hoc queries in large datasets of time se-
quences. In: SIGMOD, pp. 289�300 (1997). DOI
10.1145/253260.253332. URL http://doi.acm.org/10.

1145/253260.253332

32. Leutenegger, S.T., Edgington, J.M., López, M.A.: STR:
A simple and e�cient algorithm for r-tree packing. In:
ICDE, pp. 497�506 (1997). DOI 10.1109/ICDE.1997.
582015. URL https://doi.org/10.1109/ICDE.1997.

582015

33. Li, C., Yu, P.S., Castelli, V.: Hierarchyscan: A hierar-
chical similarity search algorithm for databases of long
sequences. In: ICDE, pp. 546�553 (1996). DOI
10.1109/ICDE.1996.492205. URL https://doi.org/10.

1109/ICDE.1996.492205

34. Liao, T.W.: Clustering of time series data - a survey.
Pattern Recognition 38(11), 1857�1874 (2005). DOI
10.1016/j.patcog.2005.01.025. URL https://doi.org/

10.1016/j.patcog.2005.01.025

35. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic rep-
resentation of time series, with implications for streaming
algorithms. In: Proceedings of the 8th ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowl-
edge Discovery, DMKD (2003)

36. Lin, J., Keogh, E.J., Truppel, W.: Clustering of streaming
time series is meaningless. In: DMKD, pp. 56�65 (2003).
DOI 10.1145/882082.882096. URL http://doi.acm.org/

10.1145/882082.882096

37. Linardi, M., Palpanas, T.: Scalable, variable-length sim-
ilarity search in data series: The ULISSE approach.
PVLDB 11(13), 2236�2248 (2018)

38. Linardi, M., Palpanas, T.: ULISSE: ULtra compact Index
for Variable-Length Similarity SEarch in Data Series. In:
ICDE (2018)

39. Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.J.: Matrix
pro�le X: Valmod - scalable discovery of variable-length
motifs in data series. In: SIGMOD (2018)

40. MacQueen, J.: Some methods for classi�cation and analy-
sis of multivariate observations. In: BSMSP, pp. 281�297
(1967)

41. Mirylenka, K., Christophides, V., Palpanas, T., Pe-
fkianakis, I., May, M.: Characterizing home device us-
age from wireless tra�c time series. In: EDBT, pp.
551�562 (2016). DOI 10.5441/002/edbt.2016.51. URL
http://dx.doi.org/10.5441/002/edbt.2016.51

42. Morton, G.M.: A computer oriented geodetic data base
and a new technique in �le sequencing. Ottawa, Interna-
tional Business Machines Company (1966)

43. Mueen, A., Hamooni, H., Estrada, T.: Time series join on
subsequence correlation. In: ICDM, pp. 450�459 (2014)

44. Mueen, A., Keogh, E.J., Zhu, Q., Cash, S., Westover,
M.B., Shamlo, N.B.: A disk-aware algorithm for time se-
ries motif discovery. DAMI 22(1-2), 73�105 (2011)

45. Mueen, A., Nath, S., Liu, J.: Fast approximate correlation
for massive time-series data. In: SIGMOD, pp. 171�182
(2010). DOI 10.1145/1807167.1807188. URL http://

doi.acm.org/10.1145/1807167.1807188

46. O'Neil, P.E., Cheng, E., Gawlick, D., O'Neil, E.J.: The
log-structured merge-tree (lsm-tree). Acta Inf. 33(4),
351�385 (1996). DOI 10.1007/s002360050048. URL
https://doi.org/10.1007/s002360050048

47. Palpanas, T.: Data series management: The road to big
sequence analytics. SIGMOD Record 44(2), 47�52 (2015)

48. Palpanas, T.: Big sequence management: A glimpse of
the past, the present, and the future. In: SOFSEM, pp.
63�80 (2016). DOI 10.1007/978-3-662-49192-8_6. URL
https://doi.org/10.1007/978-3-662-49192-8_6

49. Palpanas, T.: The parallel and distributed future of data
series mining. In: HPCS, pp. 916�920 (2017). DOI 10.
1109/HPCS.2017.155. URL https://doi.org/10.1109/

HPCS.2017.155

Coconut: Sortable Summarizations for Scalable Indexes over Static and Streaming Data Series 25

50. Paparrizos, J., Gravano, L.: k-shape: E�cient and accu-
rate clustering of time series. In: SIGMOD, pp. 1855�
1870 (2015). DOI 10.1145/2723372.2737793

51. Paraskevopoulos, P., Dinh, T.C., Dashdorj, Z., Palpanas,
T., Sera�ni, L.: Identi�cation and characterization of hu-
man behavior patterns from mobile phone data. In: D4D
Challenge session, NetMob (2013)

52. Pelkonen, T., Franklin, S., Cavallaro, P., Huang, Q.,
Meza, J., Teller, J., Veeraraghavan, K.: Gorilla: A fast,
scalable, in-memory time series database. PVLDB 8(12),
1816�1827 (2015)

53. Peng, B., Fatourou, P., Palpanas, T.: ParIS: The Next
Destination for Fast Data Series Indexing and Query An-
swering (2018)

54. Ra�ei, D.: On similarity-based queries for time series
data. In: ICDE, pp. 410�417 (1999). DOI 10.1109/
ICDE.1999.754957. URL https://doi.org/10.1109/

ICDE.1999.754957

55. Ra�ei, D., Mendelzon, A.O.: Similarity-based queries for
time series data. In: SIGMOD, pp. 13�25 (1997). DOI
10.1145/253260.253264. URL http://doi.acm.org/10.

1145/253260.253264

56. Rakthanmanon, T., Campana, B.J.L., Mueen, A.,
Batista, G.E.A.P.A., Westover, M.B., Zhu, Q., Zakaria,
J., Keogh, E.J.: Searching and mining trillions of time
series subsequences under dynamic time warping. In:
SIGKDD, pp. 262�270 (2012). DOI 10.1145/2339530.
2339576. URL http://doi.acm.org/10.1145/2339530.

2339576

57. Rakthanmanon, T., Keogh, E.J., Lonardi, S., Evans, S.:
Time series epenthesis: Clustering time series streams
requires ignoring some data. In: ICDM, pp. 547�556
(2011). DOI 10.1109/ICDM.2011.146. URL https:

//doi.org/10.1109/ICDM.2011.146

58. Ramakrishnan, R., Gehrke, J.: Database management
systems (3. ed.). McGraw-Hill (2003)

59. Ramsak, F., Markl, V., Fenk, R., Zirkel, M., Elhardt, K.,
Bayer, R.: Integrating the ub-tree into a database system
kernel. In: VLDB 2000, Proceedings of 26th International
Conference on Very Large Data Bases, September 10-14,
2000, Cairo, Egypt, pp. 263�272 (2000)

60. Rao, J., Ross, K.A.: Making b+-trees cache conscious in
main memory. In: SIGMOD, pp. 475�486 (2000). DOI
10.1145/342009.335449. URL http://doi.acm.org/10.

1145/342009.335449

61. Ratanamahatana, C.A., Keogh, E.J.: Three myths about
dynamic time warping data mining. In: SIAM, pp. 506�
510 (2005). DOI 10.1137/1.9781611972757.50. URL
https://doi.org/10.1137/1.9781611972757.50

62. Ravi Kanth, K.V., Agrawal, D., Singh, A.: Dimen-
sionality reduction for similarity searching in dynamic
databases. In: SIGMOD, pp. 166�176 (1998)

63. Raza, U., Camerra, A., Murphy, A.L., Palpanas, T.,
Picco, G.P.: Practical data prediction for real-world wire-
less sensor networks. IEEE Trans. Knowl. Data Eng.
27(8), 2231�2244 (2015). DOI 10.1109/TKDE.2015.
2411594. URL https://doi.org/10.1109/TKDE.2015.

2411594

64. Rodrigues, P.P., Gama, J., Pedroso, J.P.: Hierarchical
clustering of time-series data streams. IEEE Trans.
Knowl. Data Eng. 20(5), 615�627 (2008). DOI 10.1109/
TKDE.2007.190727. URL https://doi.org/10.1109/

TKDE.2007.190727

65. Shasha, D.: Tuning time series queries in �nance: Case
studies and recommendations. IEEE Data Eng. Bull.
22(2), 40�46 (1999)

66. Shieh, J., Keogh, E.: iSAX: disk-aware mining and in-
dexing of massive time series datasets. Data Mining and
Knowledge Discovery 19(1), 24�57 (2009)

67. Shieh, J., Keogh, E.J.: isax: indexing and mining terabyte
sized time series. In: ACM SIGKDD, pp. 623�631 (2008).
DOI 10.1145/1401890.1401966. URL http://doi.acm.

org/10.1145/1401890.1401966

68. Soldi, S., Beckmann, V., Baumgartner, W., Ponti, G.,
Shrader, C., Lubinski, P., Krimm, H., Mattana, F.,
Tueller, J.: Long-term variability of agn at hard x-rays.
Astronomy & Astrophysics 563, A57 (2014)

69. Wang, Y., Wang, P., Pei, J., Wang, W., Huang, S.: A
data-adaptive and dynamic segmentation index for whole
matching on time series. PVLDB 6(10), 793�804 (2013).
URL http://www.vldb.org/pvldb/vol6/p793-wang.pdf

70. Xi, X., Keogh, E.J., Shelton, C.R., Wei, L., Ratanama-
hatana, C.A.: Fast time series classi�cation using nu-
merosity reduction. In: ICML, pp. 1033�1040 (2006).
DOI 10.1145/1143844.1143974. URL http://doi.acm.

org/10.1145/1143844.1143974

71. Yagoubi, D.E., Akbarinia, R., Masseglia, F., Palpanas,
T.: Dpisax: Massively distributed partitioned isax. In:
ICDM, pp. 1135�1140 (2017)

72. Yagoubi, D.E., Akbarinia, R., Masseglia, F., Palpanas,
T.: Massively distributed time series indexing and query-
ing. TKDE (accepted for publication, 2018)

73. Ye, L., Keogh, E.J.: Time series shapelets: a new prim-
itive for data mining. In: ACM SIGKDD, pp. 947�
956 (2009). DOI 10.1145/1557019.1557122. URL http:

//doi.acm.org/10.1145/1557019.1557122

74. Zoumpatianos, K., Idreos, S., Palpanas, T.: Indexing for
interactive exploration of big data series. In: SIGMOD,
pp. 1555�1566 (2014)

75. Zoumpatianos, K., Idreos, S., Palpanas, T.: RINSE: in-
teractive data series exploration with ADS+. PVLDB
8(12), 1912�1915 (2015)

76. Zoumpatianos, K., Idreos, S., Palpanas, T.: ADS: the
adaptive data series index. VLDB J. 25(6), 843�866
(2016). DOI 10.1007/s00778-016-0442-5. URL https:

//doi.org/10.1007/s00778-016-0442-5

77. Zoumpatianos, K., Lou, Y., Palpanas, T., Gehrke, J.:
Query workloads for data series indexes. In: ACM
SIGKDD, pp. 1603�1612 (2015)

78. Zoumpatianos, K., Palpanas, T.: Data series manage-
ment: Ful�lling the need for big sequence analytics. In:
ICDE (2018)

