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Abstract Subsequence anomaly (or outlier) detection

in long sequences is an important problem with appli-

cations in a wide range of domains. However, the ap-

proaches that have been proposed so far in the litera-

ture have severe limitations: they either require prior

domain knowledge, or become cumbersome and expen-

sive to use in situations with recurrent anomalies of the

same type. In this work, we address these problems, and

propose NormA, a novel approach, suitable for domain-

agnostic anomaly detection. NormA is based on a new

data series primitive, which permits to detect anomalies

based on their (dis)similarity to a model that represents

normal behavior. The experimental results on several

real datasets demonstrate that the proposed approach

correctly identifies all single and recurrent anomalies

of various types, with no prior knowledge of the char-
acteristics of these anomalies (except for their length).

Moreover, it outperforms by a large margin the current

state-of-the art algorithms in terms of accuracy, while

being orders of magnitude faster.

Keywords Data series · Time series · Anomalies

discovery

1 Introduction

Massive collections of data series1 are becoming a real-

ity in virtually every scientific and social domain, and

P. Boniol · M. Meftah · E. Remy
EDF R&D
E-mail: firstname.lastname@edf.fr

M. Linardi · F. Roncallo · T. Palpanas
Université de Paris
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1 If the dimension that imposes the ordering of the sequence
is time then we talk about time series. In the rest of this

there is an increasingly pressing need by relevant ap-

plications for developing techniques that can efficiently

analyze them [42,8,44].

[Anomaly Detection in Sequences] Anomaly, or

outlier detection is an old problem [9,55,64,30,16,65],

finding applications in a wide range of domains. In the

specific context of sequences, which is the focus of this

paper, we are interested in identifying anomalous sub-

sequences, that is, the outlier is not a single value, but

rather a sequence of values. This distinction is crucial

for the following reason: even though all individual val-

ues in a subsequence look normal when examined inde-

pendently from one another, the sequence of these same

values may be anomalous (e.g., the trend, or shape of

the subsequence may not be normal).

Therefore, subsequence anomaly detection is a very

useful and important operation for many real-world ap-

plications, because it enables the early identification of

problems that would otherwise remain undetected until

too late [7].

[Limitations of Previous Approaches] Existing tech-

niques either explicitly look for a set of pre-determined

types of anomalies [25,4], or identify as anomalies the

subsequences with the largest distances to their nearest

neighbors (termed discords) [64,52]. We observe that

these approaches pose limitations to the subsequence

anomaly identification task, for several reasons, explained

below.

First, the anomalous behavior is not always known.

Therefore, techniques that use specific domain knowl-

edge for mining anomalies (e.g., in cardiology [25], and

engineering [7]) involve several finely-tuned parameters,

and do not generalize to new cases and domains. For ex-

paper, we will use the terms sequence, data series, and time
series interchangeably.
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Fig. 1 (a) MBA ECG (2000 points snippet from patient
820), with two anomalous Supraventricular premature beats
(S). (b) Euclidean distances of each subsequence (length 75 )
to its best non-trivial match in the full sequence: anomalies
do not have the largest distance to their nearest neighbors.

ample, early detection of anomalies in bearings (rolling

elements in rotating machines, such as an aircraft en-

gine) is of great importance for engine manufacturers,

such as Safran2. Even though existing techniques based

on signal processing achieve good performance [4], Safran

engineers have noted that these techniques require ex-

pertise and knowledge of the specific system’s kinematic

model, and would instead like to have an automated

method, capable of detecting anomalies without expert

knowledge [51].

Second, in the case of general, domain-agnostic tech-

niques for subsequence anomaly detection, the state-of-

the-art algorithms (e.g., [64,52]) have been developed

for the case of a single anomaly in the dataset, or mul-

tiple different (from one another) anomalies. The rea-

son is that these algorithms are based on the distance

of a subsequence to its Nearest-Neighbor (NN) in the

dataset: the subsequence that has the farthest NN is

marked as an anomaly.

Figure 1 depicts this situation. We show a snippet

of the MIT-BIH Supraventricular Arrhythmia Database

(MBA) ECG recording [23,40] of patient 820. This se-

quence includes repeated anomalous subsequences (ven-

tricular premature contractions, marked by solid red

rectangles). Following the state-of-the-art approaches [64,

52], we plot in Figure 1(b) the distance of each subse-

quence (of length 75 ) to its NN, and we observe that

the (known) anomalies do not correspond to the most

distant NN (i.e., the highest peak in Figure 1(b)). This

is because our dataset includes several anomalies that

are similar to one another (i.e., of the same type). At

the same time, these approaches mark as outliers sub-

sequences that are normal (dotted black rectangle), re-

sulting in (a large number of) false positives.

Third, in order to remedy this situation, the mth

discord approach has been proposed [61]. This approach

takes into account the multiplicity, m, of the anoma-

2 http://www.safran-group.com/

lous subsequences that are similar to one another, and

marks as anomalies all the subsequences in the same

group, by computing the mth (instead of the 1st) NNs

for each subsequence. Nevertheless, this approach as-

sumes that we know the multiplicity m, which is not

true in practice (otherwise, we need to re-execute the

algorithms for several different m values).

Fourth, another drawback of unsupervised methods

for subsequence anomaly detection is the non-stationarity

of data series: the data characteristics (e.g., basic statis-

tics and trends) may change over time. These situations

are hard to handle and confuse the discord and mth-

discord methods, since an anomalous subsequence may

find a very near neighbor among the subsequences of a

latter part of the series that involves a different set of

normal (and anomalous) patterns.

[Proposed Approach] In this work, we address the

aforementioned problems, and propose NormA, a novel

approach suitable for subsequence anomaly detection.

The proposed approach allows us to detect anomalies

based on their (dis)similarity to a model that represents

the normal (expected) behavior.

NormA starts by carefully selecting some of the sub-

sequences of the dataset, based on a scoring mecha-

nism. The selected set of subsequences are then used

to build the normal behavior model, which is a set of

sequences. This process is automatic (using the mini-

mum description length principle), without the need for

user intervention, and is effective even when the dataset

contains multiple anomalies. We also propose a variant

of NormA that is able to handle situations, where a

single series exhibits multiple normal behaviors. This

is an important case in practice, e.g., when the under-

lying data generation process changes among several

normal states. At the end, NormA detects subsequence

anomalies by comparing candidate subsequences to this

normal behavior model. We note that NormA is un-

supervised, and computes the normal behavior model

based on the original (unlabeled) dataset, despite the

presence of anomalies in it.

Using a large variety of real and synthetic datasets,

we experimentally demonstrate that NormA is statis-

tically significantly better than current state-of-the-art

algorithms in detection accuracy, for both single and

repeated anomalies. At the same time, NormA is one

order of magnitude faster than the competition.

[Contributions] Our contributions can be summarized

as follows3.

• We summarize the state-of-the-art methods on

subsequence anomaly detection, and discuss their prac-

tical shortcomings. To overcome these problems, we

3 A preliminary version of this paper, as well as a corre-
sponding demo paper have appeared elsewhere [10,11].



Unsupervised and Scalable Subsequence Anomaly Detection in Large Data Series 3

propose a new definition of subsequence anomalies, based

on the distance to normal behavior.

•We formalize the concept of Normal Model, which

is a set of data series that represents the recurrent (nor-

mal) behavior in a sequence. The Normal Model can be

the basis for anomaly detection, and can be instantiated

in different ways.

• We describe a new subsequence anomaly detec-

tion algorithm that automatically constructs the Nor-

mal Model series, based on the principles of frequency,

coverage and centrality. Subsequently, the algorithm

uses the Normal Model in order to identify anomalies

in an unsupervised and domain-agnostic manner. We

propose two flavors of this algorithm: NormA-SJ that

is based on full computation, and NormA-smpl, based

on sampling, that achieves almost the same accuracy,

but is considerably faster.

• Furthermore, we propose NormA-mn, an exten-

sion of our approach, that is able to effectively handle

cases where a single series exhibits multiple normal be-

haviors.

• Finally, we conduct an extensive evaluation with

the largest set of real datasets tested in the literature

(including all datasets that have been used in the past),

as well as several synthetic datasets. The results demon-

strate that NormA is significantly more accurate than

the state-of-the-art approaches proposed in the data se-

ries and multi-dimensional outliers literature, includ-

ing a supervised method, even in the presence of many

(similar and/or diverse) anomalies. At the same time,

NormA is up to orders of magnitude faster.

[Paper Structure] The rest of this paper is organized

as follows. We discuss the background and relevant chal-

lenges in Section 2. Section 3 formulates the problem.

In Section 4, we describe our solution, and we report

the results of our experimental analysis in Section 5. In

Section 6, we discuss related work, and we conclude in

Section 7.

2 Preliminaries

A data series T ∈ Rn is a sequence of real-valued num-

bers ti ∈ R [t1, t2, ..., tn]; |T | = n is the length (or size)

of T . We are typically interested in local regions of the

data series, namely subsequences.

A subsequence Ti,` ∈ R` of a data series T is a

subset of contiguous values from T of length ` (usu-

ally ` � n) starting at position i; formally, Ti,` =

[ti, ti+1, ..., ti+`−1].

The problem we are addressing in this work is the

identification of anomalous subsequences (of a given

length) within a long data sequence.

Given two sequences, A and B, of the same length,

`, we can calculate their Z-normalized Euclidean dis-

tance, dist, as follows [18,41,56,58,63]: dist(A,B) =√∑l
1(
Ai,1−µA

σA
− Bi,1−µB

σB
)2, where µ and σ represent

the mean and standard deviation of the sequences. For

the rest of this paper, we will simply use the term dis-

tance.

Given a subsequence Ti,`, we say that its mth Near-

est Neighbor (mth NN) is Tj,`, if Tj,` has the mth short-

est distance to Ti,`, among all the subsequences of length

` in T , excluding trivial matches [66]; a trivial match

of Ti,` is a subsequence Ta,`, where |i − a| < `/2 (i.e.,

the two subsequences overlap by more than half their

length).

2.1 Data Series Discord

The state-of-the-art solutions for subsequence anomaly

detection use the following definition for the anomalies,

also called discords:

Definition 1 (discord [64,52,27,37,21,17,38,35])

Among all subsequences of length ` of series T , the sub-

sequence Ti,` that has the largest distance to its NN is

called a (data series) discord.

This is an intuitive definition: a subsequence is a dis-

cord if its NN is very far away. Figure 2(a) depicts the

discord Ti,` and the distance, di, to its NN (note that

for ease of exposition, we represent each subsequence as

a point in 2-dimensional space). Observe that distance

di is the largest NN distance among all other subse-

quences. However, this definition fails when we have

two neighboring discords, with a small distance to each

other, and a very large distance to all the rest of the

subsequences. In order to capture these situations, the

mth-discord has been proposed:

Definition 2 (mth-discord [61]) Among all subse-

quences of length ` of series T , the subsequence Ti,`
that has the largest distance to its mth NN is called an

mth-discord.

Naturally, in anomaly detection we are not only in-

terested in the most significant anomaly. We now pro-

pose a definition that extends the previous two for the

case of the k most significant anomalies:

Definition 3 (Top-k mth-discord) A subsequence Ti,`
is a Top-k mth-discord if it has the kth largest distance

to its mth NN, among all subsequences of length ` of

T .
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Note that this definition subsumes the previous two:

the simple discord (Definition 1) is equivalent to Top-1

1st-discord, and the mth-discord (Definition 2) is equiv-

alent to Top-1 mth-discord.

Example 1 Figures 2(a) and (b) illustrate these notions.

This example depicts the Top-1 1st-discord (Ti,` in Fig-

ure 2(a)): its 1-NN is the furthest away than the NNs

of all other subsequences. Figure 2(a) also shows two

groups with 3 and 5 anomalous subsequences (contain-

ing Tj,` and Tk,`). These two groups cannot be de-

tected using Top-1 1st-discord. However, using the mth-

discord definition, these groups can be detected. For in-

stance in Figures 2(b), Top-1 3rd-discord distance dk.3
of Tk,` is large enough to identify it (and its correspond-

ing group) as anomalous. Similarly, for the group of 5

anomalies, we need to use the Top-1 5rd-discord defini-

tion in order to correctly identify subsequence Tj,` and

the other subsequences in the same group as anomalies.

Even though discords have been extensively studied

and used in the literature, they have shortcomings that

can limit their practical use. Therefore, we argue for

the need of a new, different approach on subsequence

anomaly detection. We elaborate on these issues in the

following sections.

2.2 Shortcomings of Discords

Subsequence anomaly detection based on discords has

attracted lots of attention in the past years. There exist

several studies that have proposed fast and scalable dis-

cord discovery algorithms in various settings [52,27,37,

21,64,17,61,38], including simple and mth-discords4,

in-memory and disk-aware techniques, exact and ap-

proximate algorithms.

Nevertheless, we claim that the way discords are

defined may in some situations complicate the discov-

ery of anomalies. The reason is twofold: (i) the num-

ber of anomalies present in a dataset is usually more

than one, and is not known in advance; and (ii) often

times anomalous subsequences repeat themselves (ap-

proximately the same) in the same dataset.

Example 2 Assume the dataset depicted in Figures 2(a)

and (b). Running the algorithm with m = 1 will only

identify the Top-1 1st-discord (that is, Ti,`). In fact,

anomalies colored in light red in Figure 2(a) are not

identified with m = 1. In order to identify the Top-1

3nd-discord (Tk, `), we will need to rerun the algorithm

with m = 3. Figure 2(b) represents this case (m = 3):

4 The authors of these papers define the problem as kth-
discord discovery.

the group in the bottom of the plot is identified as

anomalous. However, the anomalous group in the mid-

dle of the plot remains undetected (depicted in light

red in Figure 2(b)). We will need to execute the algo-

rithm up to m = 5 in order to identify correctly all the

anomalies colored in red in Figure 2. Since we do not

know when to stop increasing the parameter m, we may

end up in a situation where the algorithm starts report-

ing false positives, i.e., erroneously identifying normal

subsequences as anomalies (this happens for m = 13 in

our example).

3 Problem Formulation

We now formulate a new approach for subsequence anomaly

detection, based on the notion of normal (expected) be-

havior. Since we are interested in subsequence anoma-

lies, we first define the set of all subsequences of length

` in a given data series T : T` = {Ti,`|∀i.0 ≤ i ≤
|T |−`+1}. In general, we assume that T` contains both

normal and anomalous subsequences. We then need a

way to characterize normal behavior:

Definition 4 (Normal Model, NM) Given a data

series T , NM is a model that represents the normal

(i.e., not anomalous) trends and patterns of T .

The above definition is not precise on purpose: it al-

lows several interpretations, which can lead to different

kinds of models. Nevertheless, subsequence anomalies

can then be defined in a uniform way: anomalies are

the subsequences that have the largest distances to the

expected, normal behavior, NM (or their distance is

above a set threshold).

There are several ways to create NM . In this work,

we propose a formalization for NM as follows: NM is a

set of sequences,NM = {(N0
M , w

0), (N1
M , w

1), ..., (Nn
M , w

n)},
where N i

M is a subsequence of length `NM (the same for

all N i
M ) that corresponds to a recurring behavior in the

data series T , and wi is its normality score (as we ex-

plain later, the highest this score is, the more usual the

behavior represented by N i
M is). In other words, this

model averages (with proper weights) the different re-

current behaviors observed in the data, such that all the

normal behaviors of the data series will be represented

in the normal model, while unusual behaviors will not

(or will have a very low weight).

Figure 2(c) is an illustration of a Normal Model. As

depicted, the Normal Model NM is a weighted com-

bination of a set of subsequences (points within the

dotted circles). The combination of these subsequences

and their related weights returns distances di, dj , dk
that are high enough to be differentiated from the nor-

mal points/subsequences. These distances can be seen
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Fig. 2 Illustration of the different subsequence anomaly definitions: (a) discord; (b) mth-discord; (c) NormA.

as the distance between subsequences and a weighted

barycenter B (in green) that represents NM . Note that

we do not actually compute this barycenter; we illus-

trate it in Figure 2(c) for visualization purposes.

We choose `NM > ` in order to make sure that we

do not miss useful subsequences, i.e., subsequences with

a large overlap with an anomalous subsequence. For in-

stance, for a given subsequence of length `, a normal

model of length `NM = 2` will also contain the subse-

quences overlapping with the first and last half of the

anomalous subsequence.

In the experimental section, we demonstrate the ef-

fectiveness of the above formalization of NM , using all

datasets that have been used in the literature for sub-

sequence anomaly discovery.

Definition 5 (Subsequence Anomaly) Assume a data

series T , the set T` of all its subsequences of length `,

and the Normal Model NM of T . Then, the subsequence

Tj,` ∈ T` with anomaly score, i.e., distance to NM ,

dj =
∑
NiM

wi ∗minx∈[0,`NM−`]
{
dist(Tj,`, N

i
Mx,`

)
}

is an

anomaly if d is in the Top-k largest distances among

all subsequences in T`, or d > ε, where ε ∈ R>0 is a

threshold.

Note that the only essential input parameter is the

length ` of the anomaly (which is also one of the inputs

in all relevant algorithms in the literature [52,27,37,21,

64,17,61,38]). The parameter k (or ε) is not essential,

as long as the algorithm can rank the anomalies.

We stress that in practice, experts start by examin-

ing the most anomalous pattern, and then move down

in the ranked list, since there is (in general) no rigid

threshold separating anomalous from non-anomalous

behavior [9]. All anomaly discovery processes function

this way.

As we mentioned above and will detail later on, we

choose to define NM as a set of sequences that summa-

rizes normality in T , by representing the average behav-

ior of a set of normal sequences. Intuitively, NM is the

Symbol Description
T a data series
|T | cardinality of T
` subsequence length
T` set of all subsequences of length ` in T
NM Normal Model of T
NiM the ith sequence of Normal Model of T
wi Normality score of NiM
`NM

length of Normal Model NM
NiM./` T join between NiM and T with subsequence length `
T./` T self-join of T with subsequence length `NM

S a subset of subsequences of T , of length `NM

C a set of clusters of subsequences of length `NM

c one cluster in C
Center(c) the centroid of cluster c

Table 1 Table of symbols

set of data series, which tries to minimize the sum of Z-

normalized Euclidean distances between itself and some

of the subsequences in T . The Normal Model and sub-

sequence anomaly definition is illustrated in Figure 3.

Last but not least, we need to compute NM in an un-

supervised way, i.e., without having normal/abnormal

labels for the subsequences in T`.
Observe that this definition of NM implies the fol-

lowing challenge: even though NM summarizes the nor-

mal behavior only, it needs to be computed based on

T , which may include (several) anomalies. We address

these challenges by taking advantage of the fact that

anomalies are a minority class.

We can now define the problem we want to solve.

Problem 1 (Subsequence Anomaly Detection)

Given a data series T , and the set T` of all its sub-

sequences of length `, define a function f : T`, k → A
that returns A, a set containing the k most important

subsequence anomalies in T`.

In this work, we focus on the Top-k anomalies; using

instead a threshold ε to detect anomalies is a straight-

forward extension.

Table 1 summarizes the symbols we use in this pa-

per.
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subsequences of T : subsequence Tj,` is normal (low score), while T ′
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Algorithm 1: NormA Subsequence Anomaly

Detection.
input : data series T , anomaly length `

output: Anomalies - list of anomalous

subsequences

1 NM ← CompNM(T, `NM ); // compute

Normal Model

2 Anomalies ←
CompAnom(T,NM , `);// detect anomaly

4 Proposed Approach

In this section, we describe NormA, our solution for

automated subsequence anomaly detection.

Algorithm 1 summarizes our approach, which de-

tects anomalies based on their distance from the (set

of) Normal Model (sequences). It takes as input a data

series T , and the length ` of the candidate anomalies.

The algorithm first computes the Normal Model NM
based on T , and subsequently detects and returns a

ranked list of the anomalous subsequences in T based

on NM .

We note that the length of the anomalies, `, is the

only user-defined parameter in the subsequence anomaly

detection techniques we propose in this work, and can

be set by the domain expert (e.g., in the case of elec-

trocardiogram data, cardiologists are interested in an-

alyzing heartbeats, which have a known length). This

parameter appears in all subsequence anomaly detec-

tion methods [61,64,52,28] as well as in outlier tech-

niques [14,36]. All the other parameters described in

the the rest of this section are internal parameters, and

are set automatically to their default values. For in-

stance, the length of the Normal Model sequences, `NM ,

needs to be larger than `. In our experiments, we use

the default value `NM = 3` (the results show stable per-

formance as `NM varies). We further discuss this issue

in our experimental evaluation.

In the rest of this section, we describe in detail these

two steps: computation of the Normal Model, and de-

tection of anomalies.

4.1 Normal Model Based Anomaly Detection

We first discuss the problem of how to identify the

anomalous subsequences in a series T , assuming that

we have already computed the Normal Model NM =

{(N0
M , w

0), (N1
M , w

1)..., (Nn
M , w

n)}. Remember thatNM
(ideally) represents the expected, normal behavior of

the data. Intuitively, the anomalous subsequences are

the ones that are far away from most of the subse-

quences in NM .

Our technique starts by considering the pairwise dis-

tances between each subsequence of length ` in T to

subsequences of the same length in each of N i
M in NM .

For each subsequence N i
M in NM , this operation re-

sults in a meta-sequence, N i
M./` T (the join sequence),

that contains at position j the nearest neighbor dis-

tance between subsequence Tj,` and any subsequence

of the same length, `, in NM . We formally define the

join sequence.

Definition 6 (Data Series Join) Given two data se-

ries A and B, and a subsequence length `, the Join

between A and B denoted by (A./` B), is a meta data

series, where: |A./` B| = |B| − ` + 1, and ∀i.1 ≤ i ≤
|A./` B|, (A./` B)i,1 = min(dist(Bi,`, A1,`), ...

, dist(Bi,`, A|A|−`+1,`)).

In Algorithm 2, we report the pseudo-code of the

anomaly detection procedure. First we compute all the
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Algorithm 2: CompAnom Normal Model

Based Anomaly Detection

input : data series T , NM , anomaly length `

output: Anomalies - ranked list of anomalous

subsequences of length `

1 allJoin ← [];

2 foreach (N i
M , w

i) in NM do

3 allJoin ← N i
M./` T ;

4 end

5 AnomalyScore d ← [];

6 foreach j ∈ [0, |T | − `] do

7 d ←
∑

(NiM ,w
i)∈NM wijoin[j]

8 end

9 Anomalies ← subsequences with top-k d values;

// number of anomalies k ∈ [1, |NM./` T |]
10 Anomalies ← sort subsequences in Anomalies

in order of decreasing values in d;

join sequences N i
M./` T (with (N i

M , w
i) ∈ NM ), which

contains the distances between each subsequence of T

and their nearest neighbor in N i
M . As described in Def-

inition 5, we then compute the anomaly score for each

subsequence. This score corresponds to the nearest neigh-

bor distance between the subsequence to score and all

the subsequences in each N i
M in NM . Given a subse-

quence Tj,`, we retrieve the nearest neighbor distance

between Tj,` and every N i
M ∈ NM , (N i

M ./` T )j . We

then weigh these distances with wi and sum them. For-

mally, for each subsequence in T at position j, the

anomaly score is computed as:

dj =
∑

(NiM ,w
i)∈NM

wi(N i
M./` T )j (1)

These scores represent the degree of abnormality:

the larger the score is, the more abnormal the subse-

quence is. We then have to extract the k subsequences

of length `, which have the highest scores, and rank

them. Algorithm 2 can also operate in an iterative fash-

ion. This means that the algorithm can report the first

(top) anomaly, and then the user can ask the algorithm

to calculate and report the next anomaly, according to

the sorted (in descending order) anomaly scores. The

user can stop this process at any point.

[Complexity Analysis] In Algorithm 2, the anomaly

extraction step is defined by the computation of N i
M./`

T , which is bounded by O((|T | − `+ 1) ∗ `NM ∗ |NM |),
where |NM | is the number of subsequences in NM (re-

member that |NM | << |T |). Then it costs O(|T |−`+1)

if we use a threshold to select the anomalies: we simply

make a pass over the anomaly scores and report all sub-

sequences that have a value greater than the threshold.

If we use a Max Heap to select the subsequences with

the k largest values, this becomes O(k*log(k)). There-

fore, the anomalies extraction step is negligible and the

complexity is O((|T | − `+ 1) ∗ `NM ∗ |NM |).
The distance measure we use for N i

M ./` T is the

Z-normalized Euclidean distance. Though, we can re-

place it with other distance measures, e.g., Dynamic

Time Warping (DTW) in applications where local mis-

alignments do not constitute anomalies.

4.2 Computing the Normal Model

So far we have assumed that we know the Normal Model,

NM . In this section, we explain how we can derive it in

an automated way.

Recall that NM should capture (summarize) the

normal behavior of the data. This may not be very hard

to do for a sequence T that does not contain any anoma-

lous subsequences. In practice however, we would like

to apply the NormA approach in an unsupervised way

on any sequence, which may contain several anomalies.

The challenge is then how to compute NM based on a

sequence T that contains anomalies, without user inter-

vention and no prior knowledge of the anomalies (ex-

cept for their length), and then identify the anomalous

subsequences in this same sequence T .

Note that the NM legnth, `NM is larger than the

anomaly length `, so that we do not miss subsequences

with a large overlap with an anomalous subsequence:

given a subsequence of length `, if we choose a normal

model of length `NM = 2`, it will contain the subse-

quences overlapping with the first and last half of the

anomalous subsequence, which is desirable.

We compute the NM sequences in three steps. First,

we extract the subsequences, which can serve as candi-

dates for building the NM . Then, we group these subse-

quences according to their similarity, adopting a hier-

archical clustering strategy, augmented by automated

identification of the right number of clusters, based on

the Minimum Description Length principle. The last

step consists of scoring the clusters computed in the

previous step. Finally, we set the Normal model NM =

{(N0
M , w

0), (N1
M , w

1)..., (Nn
M , w

n)}, with N i
M the cen-

troid of the ith cluster, and wi its score.

We now elaborate on these NM computation steps.

4.2.1 Candidate Subsequences Selection

Remember that we are interested in describing the nor-

mal behavior of a system. Hence, we need to identify

the subsequences (of the data series in which we wish to

detect anomalies) that occur approximately the same
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along the data series. These subsequences are a form

of recurrent patterns, and should represent the normal

behavior. Good candidate subsequences are those that

satisfy the following properties: (i) they are similar to

one another (normal behavior corresponds repeats ap-

proximately the same); (ii) they cover a large percent-

age of the data (not all extracted from the same part of

the series); and (iii) they have high cardinality (appear

frequently in the series).

We note that recurrent pattern discovery has been

studied under the name motif discovery. Supervised

and unsupervised motif discovery techniques assume

that the user knows how to set this range threshold [41,

24], or otherwise define the target cardinality of the mo-

tif set [34]. One can thus use a motif method to extract

good candidates (we show in the experimental analysis

that this strategy is accurate). However, these solutions

are in general very expensive (quadratic complexity). In

this work, we propose a different strategy requiring less

computational time.

[Proposed Approach] In order to discover groups of

recurrent patterns we adopt a strategy that groups sim-

ilar subsequences, without knowing beforehand their

range and frequency. Since subsequence clustering has

high time and memory complexity, considering every

possible subsequence of a large input data series would

not be a suitable solution, both in execution time effi-

ciency, and in accuracy [26]. We thus decide to ignore

some subsequences [49] and select only a subset of them

in the original data series.

We describe two variations of our candidate sub-

sequence selection strategy, one motif based strategy,

and one random selection strategy. In the first strategy,

we select subsequences from T that have high similar-

ity to T (excluding overlapping subsequences). To that

extent, we sort the subsequences of T according to the

distances to their 1stNN in T . We can achieve this with

the self-join:

Definition 7 (Data Series Self-Join) Given a data

series T , the self-join of T with subsequence length `,

denoted by T./` T , is a meta data series, where: |T./`
T | = |T | − `+ 1 and ∀i.1 ≤ i ≤ |T./` T |, (T./` T )i,1 =

dist(Ti,`, 1stNN of Ti,`).

For each position i, the self-join sequence contains

the nearest neighbor distance of the subsequence Ti,`
(an example is shown in Figure 1(b)). Given the self-

join of T , we can discard the isolated occurrences, namely,

the subsequences that do not have a close match, and

thus have the highest self-join values.

Given an input data series T and its self-join (T./`
T ), we define the set of the clustering candidate pat-

terns (subsequences), Sselfjoin, selected by means of the

self-join:

Definition 8 (Motif Set: Sselfjoin) Given a data se-

ries T and a subsequence length `, Sselfjoin = {Ti,`NM |1 ≤
i ≤ |T |−`NM +1∧(T./` T )i < ε}, where ε ∈ R+. More-

over, If Ti,`NM , Tj,`NM ∈ Sselfjoin =⇒ |i − j| ≥ `NM .

The Sselfjoin set contains non-overlapping subse-

quences of T , which are not isolated occurrences.

In the second selection strategy, we use a random

sampling strategy. Even though random motif selection

could be performed [32], we decide to use uniform ran-

dom sampling as a first baseline. We sample from T a

subset of non-overlapping subsequences, generating the

candidate set as follows:

Definition 9 (Random Set: Ssample) Given a data

series T , a subsequence length `NM , and a sampling

rate 0 < r < 1, Ssample = {Ti,`NM |0 ≤ i ≤ |T − `NM +

1|}, such that |Ssample| < r ∗ |T`NM |/`NM . Moreover, If

Ti,`NM , Tj,`NM ∈ Ssample =⇒ |i− j| ≥ `NM .

In Ssample we place the subsequences that are ran-

domly chosen until we reach the maximum size of |Ssample|
that respect the constraint in Definition 9. Thanks to

the uniform distribution of the random sampling, the

subsequences in Ssample also cover the entire length of

the data series T .

Note that in the optimal case, where T is a periodic

data series, we know that there are at most |T`NM |/`NM
non-overlapping recurrent patterns, assuming that `NM
is the length of the period. We thus consider this value

as an upper bound for the Sselfjoin cardinality. This

value also represents the maximum number of fixed

length cycles occurring in an aperiodic data series. Among

the datasets we consider in the empirical evaluation,

the maximum value of |T`NM |/`NM corresponds to the

1.3% of |T`NM |. Moreover, we notice that setting the

threshold ε = µ(T ./` T ) in Sselfjoin always allows to

filter isolated subsequences in T .

4.2.2 Candidate Subsequences Clustering

At this point, we are ready to present the adopted clus-

tering technique to group subsequences in S (Sselfjoin,

or Ssample). In that regard, we consider their complete-

linkage (dendrogram), resulting from the agglomerative

hierarchical clustering [15]. Following previous work, we

select a dendrogram cut by applying the Minimum De-

scription Length principle [50,49].

We define description length as the total number

of bits used to represents a subsequence, namely its
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entropy. Given a data series T , we measure its entropy

H(T ) as:

H(T ) = −
|T |∑
i=1

(P (T = Ti,1)log2P (T = Ti,1) (2)

The notation P (T = Ti,1), denotes the probability of

finding the value Ti,1 in T . The description lengthDL of

T is then defined as DL(T ) = |T |∗H(T ), and quantifies

the storage requirement of a sequence. It is minimized,

as a data series contains the highest number of repeated

values. In this case, bits compression reduces the space.

Once the subsequences are grouped, we can repre-

sent them by using their distances to the cluster cen-

ters. If the clustering is optimal, we expect that the

sequences have high similarity to their cluster centers.

We consider the subsequences at the clustering stage in

their SAX form (Symbolic Aggregate approXimation),

where each real value is assigned a discrete label [54].

We introduce the conditional description length of

a data series T (that quantifies the bits needed to store

it), when knowing its cluster center sequence Center(c):

DL(T |Center(c)) = DL(T − Center(c)) (3)

Given a cluster of subsequences, c, (with the centroid

Center(c)), we compute the conditional cluster descrip-

tion length DLC, namely the amount of bits used to

encode the cluster using its center:

DLC(c|Center(c)) =

DL(Center(c)) +
∑
d∈c

(DL(d|Center(c))) (4)

where the non-conditional DLC(c) =
∑
d∈c(DL(d)).

Given a set of clusters A, in order to quantify the com-

pression achieved by A, we compare the bits needed to

store all the subsequences, with and without knowing

Center(c). We thus apply the bitsave measure:

bitsave(A) =
∑
c∈A

DLC(c)−DLC(c|Center(c)) (5)

In Algorithm 3, we report the clustering procedure,

which selects and outputs the clusters of a dendrogram

cut. The subsequences linkage is computed in Line 1.

Subsequently, we iterate over the cuts in a top-down

manner (Line 4). Therefore, we start by considering the

cuts that produce the least number of clusters. We ex-

pect that the highest bitsave is attained grouping sub-

sequences in the smallest amount of groups, if cluster

intra-similarity is maximized. Hence, we iterate the cuts

until their clusters bitsave stops to increase (Line 6).

We thus pick the clusters resulting from the last encoun-

tered cluster. This permits to group the subsequences,

maximizing their similarity and frequency.

Algorithm 3: SubsequencesClustering

input : subsequences set S
output: a cluster set C

1 Dendogram ← CompleteLinkage(S);

2 C ← ∅;
3 lastBitsave ← −∞;

4 foreach cut in Dendogram in top-down order

do

5 C′ ← get subsequences clusters from cut;

6 if bitsave(C′) > lastBitsave then

7 C ← C′;
8 lastBitsave ← bitsave(C′);
9 else

10 break;

11 end

12 end

4.2.3 Candidate Clusters Scoring

Each cluster we compute in Algorithm 3, becomes the

candidate group of subsequences (candidate cluster),

that are considered to build the Normal Model. We now

propose a scoring function, which permits to compute

wi (that can be seen as the normality degree) for each

candidate clusters i. Intuitively, the cluster and subse-

quences with the top score are the most representative

of the different, recurring patterns in the entire data

series; the next cluster is less representative (but still

contains subsequences that are close to normal behav-

ior).

Let S ⊆ T`NM be a subset of subsequences in T

of length `NM . We can then compute the coverage of

S, Coverage(S) = MaxOffset(S) − MinOffset(S),

which measures the distance between the maximum and

minimum offsets in T (of two S subsequences), and cor-

responds to the span of T from where the subsequences

in S were extracted. We will also refer to the frequency

of S, Frequency(S) = |S| (equal to the cardinality of

S).

Moreover, we want to consider an inter-clustering

property, namely the centrality. We borrow this defini-

tion from the graph analysis literature [60], which states

that the most central node in a graph denotes its in-

fluence. Given a cluster set C and a cluster c ∈ C, we

define centrality as:

centrality(c,C) =
1∑

x∈C dist(Center(c), Center(x))

(6)

Recall that a cluster of subsequences, denoted by c,

formally coincides with a set of subsequences S. The
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Center function we adopt in our work is the centroid,

which is the arithmetic mean vector of the subsequences

in a cluster c.

Intuitively, in order to set the weights wi for all clus-

ters i, we need to consider the subsequences that most

often occurs along the largest part of the data. This

translates to identifying the cluster with the highest

frequency and the largest coverage. In order to account

the most recurrent subsequence, we also adopt the cen-

trality measure. If a subsequence is the most recurrent,

we expect that all its occurrences are grouped in the

cluster with the highest centrality.

We are now ready to score the candidate clusters,

taking into account the frequency and coverage of the

subsequences in each cluster, and its centrality as well.

After normalizing Frequency(c), Coverage(c), and Cen-

trality(c) so that each lies in the [1, 2] interval for all

c ∈ C (normalization is needed so that all three criteria

have equal weight), the score we assign to a cluster c,

given also the complete clusters set C, is the following:

Norm(c,C) =

Frequency(c)2 × Coverage(c)× centrality(c,C) (7)

The Norm function provides an index, with regards

to the Normal Model properties we take in considera-

tion. Since high coverage values might erroneously be

assigned to clusters with low frequency, we favor clus-

ters that have high frequency. For this reason, it appears

squared in Equation 7.

4.2.4 Normal Model Extraction

In Figure 4(a), we report the cluster scores we obtain

for the MBA ECG recordings (patient 803). In the plot,

we report each cluster Norm score (the size of the red

point is proportional to Frequency(c)) coupled with

their coverage (blue line), which starts and ends re-

spectively at the smallest and largest offset of the clus-

ter subsequences. In the right part of Figure 4, we de-

pict the subsequences in each cluster. The x-axis value

assigned to each red point is the arithmetic mean of

its subsequences offsets in the corresponding cluster.

This set of clusters C = {c0, ..., cn} will be used in

the normal model NM = {(N0
M , w

0), ...(Nn
M , w

n)}, with

N i
M = Center(ci) and wi = Norm(ci,C).

In this example, the subsequences contained in the

cluster with the highest Norm score, represent cor-

rect Heartbeat Ventricles contracts. The centroid of

this cluster will be the most influential in NM . On

the other hand, clusters with low scores contain sub-

sequences that do not represent any known features

(they may be noise, or even repeated anomalies) and

therefore, will not have a real influence in NM .

Algorithm 4: CompNM Compute Normal

Model
input : data series T , Normal Model length

`NM
output: Normal Model NM

1 compute Sselfjoin (or Ssample) from T ;
// compute the set of subsequences clusters in

T (C)
2 C ← SubsequencesClustering(S, `NM );

3 NM ← {} ;

4 for c in C do
5 add (centroid(c), Norm(c,C)) in NM ;

6 end

4.2.5 Overall Algorithm

The overall procedure for computing the Normal Model

is then structured as shown in Algorithm 4. In Line 1,

we select a subset of subsequences, S, applying one of

the two strategies we discussed earlier (i.e., Sselfjoin, or

Ssample), which take into consideration several desired

characteristics of the correct (non-anomalous) part of

the data. Subsequently we cluster them in Line 2. In

Line 4, we iterate each cluster that is assigned to the

Norm score (Line 5), and then added to the normal

model as a tuple composed of its centroid and its score.

The assigned score quantifies how much a group of sim-

ilar subsequences (cluster) supports the properties we

define over correct data. We use NormA-SJ to refer to

the algorithm that uses Sselfjoin, and NormA-smpl for

the variation with Ssample.

[Complexity Analysis] The complexity of Algorithm 4

depends on the choice of the subsequence selection strat-

egy, performed in the initial part. We can compute

Sselfjoin, using the state-of-the art algorithm Stomp [66]

in O(|T |2) time. On the other hand, computing Ssample,
takes linear time in the worst case (O(|T |)). In the ex-

perimental evaluation we test the two selection strate-

gies in isolation to assess their accuracy separately. Sub-

sequently, the subsequences linkage computation takes

O(`|S|2).

It is important to note that the space of |S| is in

general two order of magnitude smaller than the origi-

nal space of T . In turn, selecting a dendrogram cut has

worst case time complexity of O(`|S|2), when all the

cuts need to be evaluated. As we show in the exper-

imental evaluation, the number of cuts considered in

Algorithm 4 is very small in practice.
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Fig. 4 (a) Norm cluster scoring of MBA ECG recordings (patient 803); (b) Norm cluster scoring of the concatenation of two
MBA ECG recordings (patient 803 and 805).

4.3 Multiple Normal Behaviors

In general, a system may be characterized by several

(i.e., more than one) different recurrent patterns that

all correspond to normal behaviors. This may happen

when the underlying generation process changes among

multiple different normal states of operation (e.g., when

a machine has two, or more operating states). In such

cases, we would expect the occurrence of multiple dif-

ferent and valid Normal Models subsequences as well.

Thanks to the Normal Model structure, multiple

normal patterns can be identified. Assume a data series

that is composed of two segments (partitions) corre-

sponding to two different sets of normal behavior subse-

quences (patterns). If these two subsequence sets have

the same cardinality (i.e., the two segments are simi-

lar in size), then both of them will be represented by

one of the Normal patterns N i
M , N

j
M in the Normal

Model NM , and both N i
M , N

j
M will have similar weights

wi, wj . In principle, NormA is capable to handle data

series composed of different segments. Figure 4(b) de-

picts the scoring step on a data series composed of two

MBA ECG datasets. As we can see, the clusters are dis-

tributed between the two parts that correspond to the

offsets of the two segments. Moreover, the two normal

patterns (N0
M , N

1
M ) have similar scores (i.e., value on

the y-axis), and thus, will have the same significance

on the distance computation to the normal model.

However, since the normal subsequences of each seg-

ment may be significantly different from one another, it

may be the case that an anomalous subsequence in one

of the segments is similar to the normal subsequences of

some other segment. In this case, the algorithm will not

be able to detect this anomalous subsequence, which is

obviously not desirable. In order to remove this undesir-

able effect, we define NormA-mn, a variant of NormA-

smpl, where we use a different method to compute the

distance to the Normal Model. For each subsequence

Tj,` of T , the anomaly score is defined as the distance

d̃j of that subsequence to the Normal Model, computed

as follows:

d̃j =

(∑
NiM

wi(N i
M./` T )j

)
− βj (8)

In the equation above, (N i
M ./` T )j represents the

distance of Tj,` to its nearest neighbor in N i
M , while the

role of parameter βj is to suppress the aforementioned

noise. Assuming that S is the changing point of the two

segments of T , βj should be equal to:

βj =


∑
k∈[0,S] dk

S
if we have: j ∈ [0, S]∑

k∈[S,|T |] dk

|T | − S
if we have: j ∈ [S, |T |]

(9)

However, the changing point S is usually not known

in practice (and remains a challenging research prob-

lem [22]). Moreover, it becomes even more difficult if

there is more than one changing point to find (i.e., for

triple and quadruple normalities). Thus, we compute βj
as the average distance of the Normal Model to subse-

quences in a time interval of length τ around the sub-

sequence Tj,`:

βj =

∑
k∈[Ibj,τ (T ),Iej,τ (T )] dk

2τ
(10)

with:

Ibj,τ (T ) = max(0,max(0, j − τ)−max(j + τ − |T |, 0))

Iej,τ (T ) = min(|T |,min(|T |, j + τ) +max(0, τ − j))
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Note that in the above equation, τ ∈ [1, |T |]. In

the specific case when τ = |T |, we have Ibj,τ (T ) = 0

and Iej,τ (T ) = |T | and thus τ = µ(T ), with µ(T ) the

mean of the entire data series. As a matter of fact, us-

ing τ = |T | is similar to using the classical NormA

method. In practice, βj is accurate if τ is large enough

to consider a representative time neighborhood of the

segment with mostly normal subsequences (and maybe

also a few anomalies). In the rest of this paper, we set

τ = 2|NM |. Our experimental evaluation shows that

varying this parameter does not have a strong influence

on the performance of our approach.

5 Experimental Evaluation

In this section, we present the experimental results with

real datasets from different domains, including all an-

notated datasets that have been used in the discord dis-

covery literature. To ensure reproducibility, we created

a web page [3] with the source code and datasets.

The experiments we conduct demonstrate the effec-

tiveness of NormA. We test the accuracy of anomaly de-

tection in datasets characterized by the presence of re-

peated (similar) anomalies, but also in datasets, where

anomalous occurrences correspond to rare patterns, namely

discords. We also study the scalability of NormA, con-

sidering data series of different and increasing size, and

a real-use case dataset containing 20M of points.

[Summary of Results] In summary, the experimental

analysis demonstrates the superiority of NormA against

the current state of the art approaches, both in terms

of accuracy and scalability. In particular, over a wide

variety of datasets, NormA significantly outperforms

(overall) all the competitors used in our analysis, in-

cluding time series discord discovery algorithms, outlier

algorithms for multidimensional data, and a deep learn-

ing technique. Moreover, the results show that NormA

is up to one order of magnitude faster than the com-

petitors, irrespective of the anomaly length considered

(`), or the dataset characteristics (number of anoma-

lies, dataset length). Finally, we showcase the meaning-

ful results that NormA produced for two diverse real

use-cases.

5.1 Setup

We implemented our algorithms in C (compiled with

gcc 5.4.0) and Python 3.5. The evaluation was con-

ducted on a server with Intel Xeon CPU E5-2650 2.20GHz

and 250GB RAM.

[Datasets] We benchmark our system using real and

synthetic datasets, for all of which a ground truth of

annotated anomalies is available (Table 2). Following

previous work [53], we use several synthetic datasets

that contain sinusoid patterns at fixed frequency fol-

lowing a random walk trend (Figure 5). We then inject

different number of anomalies, in the form of sinusoid

waveforms with different phases and higher than nor-

mal frequencies (Figure 5(a)), and add various levels of

Gaussian noise on top (Figure 5(b)). We refer to those

datasets using the label SRW-[# of anomalies]-[% of

noise]-[length of anomaly], and use them in order to

test the performance of the algorithms under different,

controlled conditions.

Our real datasets are the following. Simulated en-

gine disks data (SED) from the NASA Rotary Dynam-

ics Laboratory [5]. representing disk revolutions recorded

over several runs (3K rpm speed). MIT-BIH Supraven-

tricular Arrhythmia Database (MBA) [23,40], which

are electrocardiogram recordings from 5 patients, con-

taining multiple instances of two different kinds of anoma-

lies. Five additional real datasets from various domains

that have been studied in earlier works [28,52], and

their anomalies are simple discords (usually only 1):

aerospace engineering (Space Shuttle Marotta Valve [28]),

gesture recognition (Ann’s Gun dataset [52]), medicine

(Patient’s respiration measured by the thorax exten-

sion [28], ECG recordings qtb/sel102 [28]), and elec-

trical consumption study (Dutch Power Consumption

data [28]).

Finally, we use the following two non-annotated datasets.

The Nasa Bearing dataset [1] that consists of individ-

ual files that are 1-second vibration signal snapshots of

bearings installed on a shaft, and the New York City

Taxi and Limousine Commissions dataset (NTC) [2]

that records the number of New York City taxi pas-

sengers every for every 30 minutes from July 2014 to

January 2015.

We note that the largest datasets used in the lit-

erature have length of 15,000 and 36,000 points [28,

52]. In contrast, we use sequences that are 2 and 3 or-

ders of magnitude larger, with a maximal length up to

20,000,000 points (Nasa Bearing).

[Algorithms] We compare NormA to the current state-

of-the-art algorithms. We consider two techniques that

enumerate Top-k 1st discords, GrammarViz (GV) [52]

and STOMP [64]. Moreover, we compare NormA against

the Disk Aware Discord Discovery algorithm (DAD) [61],

which finds mth discords. We also compare to Local

Outlier Factor (LOF) [14] and Isolation Forest [36].

These two methods are not specific to subsequence anomaly

detection, but constitute strong baselines from the lit-

erature on multi-dimensional data outlier detection. Fi-

nally, we include in our comparison LSTM-AD [39], a

semi-supervised deep learning technique. Note that the
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Fig. 5 Synthetic datasets. (a) Random walk sequence (left),
and sinusoid signal following the same trend (right) with in-
jected anomalies (red/bold subsequences). (b) A second ex-
ample, with 20% of Gaussian noise added on top.

comparison to LSTM-AD is not fair to all the other

techniques: LSTM-AD has to first train on labeled nor-

mal data, which gives it an unfair advantage; all the

other techniques are unsupervised. We include it to get

an indication as to how the unsupervised techniques

compare to a state-of-the-art supervised anomaly de-

tection algorithm. In practice, we train LSTM-AD on

the longest subsequence without anomalies: 4109-10846

points (7000 on average).

[Measures] We use the precision-at-k (P@k) accuracy

measure to evaluate the effectiveness of the methods.

P@k accuracy is defined as the number of correctly

identified anomalies among the k answers of the algo-

rithm, divided by k. (This corresponds to precision on

the anomaly class TPA/(TPA + FPA), where TPA is

the number of detected true anomalies, and FPA the

number of false positives.) Note that we use k only for

evaluation purposes: none of the algorithms tested in

the following section require k as a parameter. In our

accuracy evaluation, we set k to the number of anoma-
lies in the sequence (k = NA of Table 2). Recall that the

annotated datasets we use in this work have all their

anomalies annotated.

We also measure time, in order to evaluate the effi-

ciency and scalability of the methods.

5.2 Normal Model Tuning

In this section, we evaluate the sensitivity of the Normal

model NM , as a function of its length `NM (relevant for

NormA-SJ and NormA-smpl), and of the sampling rate

r (relevant for NormA-smpl).

First, we measure the performance for P@k anomaly

detection, setting k equal to the number of anomalies

contained in each one of our six real annotated datasets

with multiple anomalies, and we vary the length of

the Normal Model (`NM ), using a multiplicative fac-

tor ranging between 2-5 times the anomalous pattern

length `. Figure 6 shows the cumulative accuracy for

Datasets Length ` NA Domain

Annotated
SED 100K 75 50 Electronic

MBA (803) 100K 75 62 Cardiology
MBA (805) 100K 75 66 Cardiology
MBA (806) 100K 75 27 Cardiology
MBA (820) 100K 75 76 Cardiology

MBA (14046) 100K 75 142 Cardiology

Marotta Valve 20K 1K 1
Aerospace
engineering

Ann Gun 11K 800 1
Gesture

recognition
Dutch Power
Consumption

35K 800 3
Elect. cons.

study
Patient Respiration 24K 800 1 Medicine

SRW-[20-100]-[0%]-[200] 100K 200 var. Synthetic
SRW-[60]-[5%-25%]-[200] 100K 200 60 Synthetic
SRW-[60]-[0%]-[100-1600] 100K var. 60 Synthetic

Non-Annotated
NYC Taxi (NTC) 10K 100 - Transport

Nasa Bearing 20M 20K - Bearings

Table 2 List of dataset characteristics: series length,
anomaly length (`), number of annotated anomalies (NA),
domain.
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Fig. 6 Cumulative P@k anomaly detection accuracy for
NormA-SJ (left) and NormA-smpl (right) on the 6 real an-
notated datasets with multiple anomalies, when varying the
Normal Model length.

each Normal Model length we tested (the results for

NormA-smpl are averages over 100 runs). We compute

accuracy as the ratio of correctly identified anomalies

over the total number of anomalies in each dataset.

We observe that the accuracy values become stable

once the Normal Model length is at least 2.5x larger

than the anomaly length. We also note that this be-

havior is the same for both NormA-SJ and NormA-

smpl, and moreover, absolute accuracy values are in

both cases almost the same. In all following experi-

ments, we set the Normal Model length to the default

value of 4x the anomaly length.

Second, we computed accuracy as we vary the sam-

pling ratio r (see Definition 9) for computing the Nor-

mal Model for NormA-smpl. We varied r between 0.1-

0.6, and observed that accuracy remained always (al-

most) stable (graphs omitted for brevity). In all follow-

ing experiments, we use the default value r = 0.4.



14 P. Boniol et al.

Overall, we note that NormA only needs ` as an in-

put parameter (all the rest are set as discussed above).

Note that ` is also an input parameter for all other

subsequence anomaly detection algorithms, which nev-

ertheless also need additional user-defined parameters

(e.g., LOF and DAD require the number of similar

anomalies, m, that we want to detect).

5.3 Distance Measure Impact

In this section, we evaluate the impact of the distance

measure used in the NormA framework (we use NormA-

smpl as our baseline). For this purpose, we use in the

dist function of 5 the Euclidean distance (i.e., the core

distance measure for our proposed method), the Shape-

Based Distance (SBD) [45], and the Dynamic Time

Warping (DTW ) distance.

Figure 7(a) depicts the NormA-smpl score for the

three distance measures for a 6000 points snippet of

the MBA(803). In Figure 7(b), we depict the averaged

accuracy results over 10 different runs for the SED and

all the MBA datasets. The results show that the SBD,

DTW and Euclidean distances lead to similar results

(with no clear winner). Overall, Euclidean provides ac-

curate results. Moreover, through the use of the MASS

algorithm [64] it is significantly faster than the other

two distance measures. We thus use this distance for

the rest of the experimental section.

5.4 Anomaly Detection Evaluation

In this section, we report the the anomaly detection

accuracy results.

[Anomalies Detection Accuracy] In Table 3, we

show the P@k accuracy (correctly identified anomalies

among the k retrieved divided by k), with k equal to

the number of anomalies. These experiments test the

capability of each method to correctly retrieve the k

anomalous subsequences in each dataset. For NormA,

we simply have to report the P@k anomalies that the al-

gorithm produces. In the same manner, we compute ac-

curacy for Isolation Forest and LOF, considering the k

subsequences assigned with the highest scores by these

two approaches. For the discord based techniques, we

have to consider the Top-k 1st discord and the mth

discord (with m = k). Finally, LSTM-AD marks as

anomalies the subsequences that have the largest er-

rors (distances) to the sequences that the LSTM-AD

algorithm predicts; we compute accuracy considering

the subsequences with the k largest errors.

In the first section of Table 3, we report the re-

sults of all techniques on the annotated real datasets

with multiple (diverse and similar) anomalies. NormA is

clearly the winner, with the exception of MBA(14046),

for which its performance is still very close to the best

performer. As expected, Top-k 1st discord techniques

(GV and STOMP) achieve low accuracy, since anoma-

lies do not correspond to rare subsequences (i.e., iso-

lated discords). We also observe that the mth discord

technique (DAD), which is able to detect groups of m

similar anomalous subsequences, does not perform well,

either. This is due to the many false positives produced

by the algorithm.

In the other three sections of Table 3, we report

the accuracy of the evaluated methods on all the syn-

thetic datasets (where we vary the number of anomalies,

the % of Gaussian noise, and the anomaly subsequence

length `). We note that the accuracy of the discord dis-

covery techniques substantially improves, since in this

case most anomalies correspond to rare and isolated

subsequences (i.e., different from one another). Even in

these cases, NormA is clearly superior to the competi-

tors. In contrast to GV, STOMP and DAD, NormA’s

performance is stable for increasing noise.

Regarding LSTM-AD, we note that in general it

is more accurate than the discord based algorithms.

Nevertheless, we stress that LSTM-AD only achieves

this performance, because (contrary to the rest of the

techniques) it benefits from a training phase on labeled

data. However, in several situations labeled data are not

available (and extremely expensive to generate). Even

as such though, LSTM-AD cannot match the perfor-

mance of NormA. Since we would expect a supervised

algorithm to perform at least as good as an unsuper-

vised one, these results suggest that supervised methods

still have lots of potential for improvement.

Regarding LOF, we observe that it does not perform

well in our context. Isolation Forest achieves better per-

formance, but not as good as NormA.

Overall, we observe that NormA is more accurate

than all competitors (with very few exceptions, for which

its performance is still very close to the best one), in all

the settings we used in our evaluation. Furthermore, we

note that the performance of NormA-smpl is in almost

all cases equal to that of NormA-SJ, or very close to it.

[Critical Difference Diagram] After rejecting the

null hypothesis using the Friedman test, we use the

pairwise Post-Hoc Analysis using a Wilcoxon signed-

rank test [59] to test and produce the critical difference

diagram for the algorithms and datasets of Table 3. The

critical difference diagram with α = 0.05 (Figure 8)

shows that NormA-SJ and NormA-smpl are the overall

winners, with NormA-SJ and NormA-smpl being sig-

nificantly better than all previous algorithms.
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SBD               DTW                 Euclidean

NormA-smpl score

(a) NormA-smpl result for MBA(803) using SBD, DTW and Euclidean 
distances

(b) NormA-smpl accuracy on MBA datasets using SBD, DTW and Euclidean distances
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Fig. 7 Distance measure impact experiment. (a) NormA-smpl accuracy score for MBA(803) for sbd, DTW and Euclidean
distances. (b) Overall accuracy for all the MBA datasets.

Datasets GrammarViz STOMP DAD LSTM-AD LOF Isolation Forest (stddev) NormA-smpl (stddev) NormA-SJ
SED 0.46 0.57 0.44 0.10 0.65 0.65 (0.02) 0.92 (0.05) 0.91

MBA (803) 0.15 0.72 0.01 0.35 0.08 1.00 (0.00) 0.99 (0.01) 1.00
MBA (805) 0.09 0.10 0.03 0.85 0.42 0.99 (0.01) 0.99 (0.00) 0.99
MBA (806) 0.01 0.59 0.66 0.10 0.92 0.75 (0.06) 0.86 (0.02) 0.85
MBA (820) 0.05 0.92 0.04 0.09 0.42 0.92 (0.03) 0.98 (0.01) 0.98

MBA (14046) 0.09 0.54 0.71 1.00 0.64 0.99 (0.01) 0.95 (0.04) 0.93
SRW-[20]-[0%]-[200] 1.0 0.77 0.55 0.94 0.74 0.75 (0.05) 1.00 (0.00) 1.00
SRW-[40]-[0%]-[200] 0.97 1.0 0.05 1.00 0.89 0.92 (0.02) 0.97 (0.01) 0.97
SRW-[60]-[0%]-[200] 0.96 0.88 0.10 0.92 0.76 0.87 (0.02) 0.99 (0.01) 1.00
SRW-[80]-[0%]-[200] 0.96 0.43 0.14 0.95 0.82 0.86 (0.01) 0.98 (0.00) 0.98
SRW-[100]-[0%]-[200] 0.95 0.99 0.11 1.00 0.75 0.92 (0.02) 1.00 (0.00) 1.00
SRW-[60]-[5%]-[200] 1.0 0.73 0.21 0.96 0.88 0.89 (0.01) 1.00 (0.00) 1.00
SRW-[60]-[10%]-[200] 0.83 0.98 0.01 0.94 0.70 0.80 (0.01) 0.98 (0.00) 0.98
SRW-[60]-[15%]-[200] 0.76 0.62 0.17 0.94 0.66 0.82 (0.01) 0.99 (0.01) 1.00
SRW-[60]-[20%]-[200] 0.73 1.0 0.01 0.96 0.73 0.85 (0.02) 1.00 (0.00) 1.00
SRW-[60]-[25%]-[200] 0.63 0.64 0.09 0.83 0.67 0.80 (0.01) 0.99 (0.01) 0.94
SRW-[60]-[0%]-[100] 0.98 1.0 0.23 1.00 0.74 0.88 (0.02) 1.00 (0.00) 1.00
SRW-[60]-[0%]-[200] 0.96 0.60 0.19 1.00 0.85 0.83 (0.01) 1.00 (0.00) 1.00
SRW-[60]-[0%]-[400] 0.98 1.0 0.63 0.88 0.76 0.88 (0.01) 0.98 (0.01) 1.00
SRW-[60]-[0%]-[800] 0.91 0.86 - 0.76 0.69 0.87 (0.01) 0.97 (0.02) 0.98
SRW-[60]-[0%]-[1600] 1.0 1.0 - 0.90 0.52 0.64 (0.02) 0.92 (0.04) 0.97

average 0.62 0.73 0.24 0.78 0.68 0.85 0.97 0.98

Table 3 P@k accuracy for DAD, STOMP, GrammarViz, LSTM-AD, NormA-smpl (standard deviation over 100 runs shown
in parenthesis), and NormA-SJ. We set k equal to the number of anomalies, and ` to the length of the (annotated) anomalies.

Fig. 8 Critical difference diagram (α = 0.05) for the data
series of Table 3.

[Varying k in P@k] In this part, we measure P@k

accuracy for different values of k (1,5,10,50,100 ). The

objective of this experiment is to evaluate the anomaly

detection, testing the ability of each technique to assign

and place the real anomaly in the first k places of the

ranking, for a variable k. The results shown in Table 4

show that NormA is the technique with the best and

most stable performance. Figure 9 helps us understand

why. In this figure, we depict on the left, the distribution

of the distances of each subsequence in the MBA(805)

dataset to their NN in the Normal Model, built by

NormA. On the right, we show for the same dataset, the

distribution of the distances between each subsequence

and their NN in the dataset itself (excluding trivial
matches). In both diagrams, each bar is gradually col-

ored according to the number of distances that belong

to annotated anomalous subsequences, from dark/black

(many) to gray/light (few). We observe that on the

right plot, the subsequences with the k largest NN dis-

tances are not the annotated anomalies, whereas on the

left plot the subsequences with the k largest distances

are the true anomalies, which are also the P@k anoma-

lies discovered by NormA. These results demonstrate

that NormA is able to correctly rank the real anoma-

lies, according to the highest distances to the NN in the

Normal Model, whereas in the discord ranking there are

many subsequences with high NN distance that are not

anomalous (false positives).

[Rare Subsequence Anomalies] To further evaluate

the quality of the Normal Model, we consider a collec-

tion of datasets, widely used in the data series anomaly

(discord) literature. Those are datasets characterized

by one (three for Dutch Power Consumption) anoma-
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80 2 4 6

Dataset:,MBA(805)

Distance,to,the,1st NN,in,the,
Normal,Model

Distance,to,
1st NN

Annotated Anomalies

40 1 2 3

Fig. 9 Distribution of nearest neighbor (NN) distance of the
MBA(805) subsequences. Bars are colored according the num-
ber of distances that belong to anomalous subsequences, from
dark/black (many) to gray/light (few). (left) Distribution of
distances to the NN in the Normal Model built by NormA.
(right) Distribution of the distances to the NN in the dataset
(excluding trivial matches).

Method P@k
1 5 10 50 100 average

GV 0.25 0.13 0.20 0.18 0.23 0.15
DAD 0.50 0.30 0.30 0.34 0.41 0.37

STOMP 0.50 0.53 0.58 0.58 0.46 0.44
LSTM 0.75 0.61 0.58 0.62 0.61 0.64
LOF 0.83 0.86 0.81 0.72 0.56 0.64
IF 1.00 0.96 0.95 0.82 0.62 0.72

NormA-smpl 1.00 0.96 0.98 0.91 0.65 0.75
NormA-SJ 1.00 0.96 0.98 0.92 0.66 0.75

Table 4 Anomaly detection accuracy (average value of all
annotated datasets in Table 2) for different P@k, of NormA
and the competitors.

lous subsequences, which correspond to the P@k 1st-

discord. In Figure 10(left), we report the excerpts of

those datasets, whereas in Figure 10(right), we depict

the Normal Model subsequence with the largest Norm

score (weight wi) computed by NormA in green/light
color, and the discord in red/dark color. The Normal

Model subsequence with the largest Norm score is in all

cases very different than the discords, which are always

correctly identified by NormA as the Top-1 anomalies.

5.5 Multi Normality

In this experiment, we demonstrate the ability of NormA-

mn to capture anomalies in data series that have more

than one normal behavior patterns. By concatenating

real datasets enumerated in Table 2 (SED and MBA

datasets), we evaluate the P@k accuracy of NormA-mn

and some state-of-the-art methods for datasets with 2-

4 different normal patterns, for a total of points equal to

200,000 (for two-normality), 300,000 (for three-normality),

and 400,000 points (for four-normality). Note that apart

from having different normal patterns, the concatenated

data series also have different value ranges in each seg-

ment. These are challenging cases for our problem.

(a)

(b)

(c)

(d)

Patient’s respiration

Dutch power consumption

Ann Gun Datasets

Space Shuttle Marotta Valve

DATASETS Normal Model (green)/Discord (bold red)

ECG qtdb/sel102 (exerpt)

(e)

Fig. 10 (left) Excerpts of 5 datasets used in the litera-
ture. (a) Patient’s respiration [28]. (b) Dutch Power Con-
sumption [28,52]. (c) Ann Gun centroid dataset [52]. (d)
Space Shuttle Marotta Valve dataset [28]. (right) Normal
model subsequence with the largest Norm score extracted
(green/light), and anomalous pattern (red/dark).

In this experiment, we only consider the three best

competitors according to Table 3, namely, STOMP, Iso-

lation Forest (IF) and Local Outlier Factor (LOF). We

assume that the segmentation is not known: thus, Norma

and the other methods are run on the entire data se-

ries, without any information on where each segment

starts and ends. (We do not include LSTM-AD in this

experiment, because it would need to be trained on nor-

mal subsequences from each different segment, and thus

require prior knowledge of the segments as well.)

Table 5 shows the P@k accuracy (average results

over 10 executions). The results show that the change of

normal behavior by the different segments of the series

does not have a strong impact on the anomaly discovery

accuracy of NormA-mn. On the contrary, IF is signif-

icantly less accurate, which means that it sensitive to

normality changes (compare to Table 3). Table 5 also

shows that the accuracy of IF is getting significantly

smaller as the number of the different normal behaviors

increase. This does not affect much the other methods.

Figure 11 summarizes all the above results, and com-

pares the accuracy between NormA-mn and IF/LOF/

STOMP (Figure 11(a,b,c), respectively) for datasets

with single, double, triple and quadruple normality. These

graphs show that the majority of points (representing

the datasets of Table 5) are under the diagonal, which

means that NormA-nm is more accurate for the major-
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Data Series Anomalies repartition STOMP LOF Isolation Forest (stddev) NormA-mn (stddev)
Double Normality

MBA(803 + 805) 0.48/0.52 0.32 0.53 0.53(0.03) 0.95(0.02)
MBA(803 + 806 ) 0.69/0.31 0.58 0.64 0.75(0.00) 0.89(0.03)
MBA(803 + 820) 0.45/0.55 0.78 0.67 0.75(0.05) 0.92(0.01)

MBA(803 + 14046) 0.30/0.70 0.52 0.80 0.97(0.02) 0.41(0.09)
MBA(803) + SED 0.55/0.45 0.67 0.44 0.45(0.00) 0.60(0.14)
MBA(805 + 806 ) 0.83/0.17 0.20 0.54 0.68(0.04) 0.85(0.01)
MBA(805 + 820) 0.46/0.54 0.51 0.79 0.49(0.04) 0.97(0.00)

MBA(805 + 14046) 0.31/0.69 0.43 0.68 0.88(0.07) 0.64(0.10)
MBA(805) + SED 0.56/0.44 0.30 0.39 0.37(0.01) 0.87(0.05)
MBA(806 + 820) 0.26/0.74 0.83 0.68 0.78(0.00) 0.92(0.01)

MBA(806 + 14046) 0.16/0.84 0.59 0.85 0.84(0.00) 0.58(0.05)
MBA(806) + SED 0.35/0.65 0.62 0.62 0.57(0.01) 0.84(0.01)
MBA(820 + 14046) 0.34/0.66 0.70 0.81 0.66(0.00) 0.65(0.04)
MBA(820 + SED 0.60/0.40 0.82 0.40 0.38(0.01) 0.92(0.02)

MBA(14046) + SED 0.73/0.27 0.61 0.61 0.28(0.00) 0.83(0.08)
Average 0.47/0.53 0.56 0.63 0.63 0.79

Triple Normality
MBA(803 + 805 + 806) 0.40/0.42/0.18 0.37 0.56 0.43(0.02) 0.84(0.01)
MBA(803 + 805 + 820) 0.30/0.32/0.37 0.54 0.67 0.37(0.02) 0.86(0.06)
MBA(803 + 805) + SED 0.35/0.37/0.28 0.41 0.41 0.26(0.00) 0.60(0.12)
MBA(803 + 805 + 14046) 0.23/0.24/0.53 0.44 0.71 0.73(0.02) 0.25(0.21)
MBA(803 + 806 + 820) 0.38/0.16/0.46 0.74 0.66 0.68(0.05) 0.82(0.04)
MBA(803 + 806) + SED 0.45/0.19/0.36 0.62 0.52 0.34(0.01) 0.67(0.04)
MBA(803 + 806 + 14046) 0.27/0.12/0.61 0.53 0.80 0.88(0.00) 0.32(0.22)
MBA(803 + 820) + SED 0.33/0.40/0.27 0.75 0.41 0.26(0.00) 0.64(0.02)
MBA(803 + 820 + 14046) 0.22/0.27/0.51 0.64 0.80 0.73(0.00) 0.66(0.07)
MBA(805 + 806 + 820) 0.39/0.16/0.45 0.53 0.69 0.41(0.02) 0.85(0.00)
MBA(805 + 806) + SED 0.46/0.19/0.35 0.35 0.49 0.31(0.00) 0.79(0.02)
MBA(805 + 820) + SED 0.34/0.40/0.26 0.54 0.44 0.24(0.00) 0.94(0.01)
MBA(806 + 820) + SED 0.18/0.50/0.32 0.78 0.48 0.31(0.00) 0.82(0.01)

Average 0.33/0.29/0.38 0.55 0.59 0.46 0.70
Quadruple Normality

MBA(803 + 805 + 806 + 820) 0.27/0.29/0.12/0.33 0.53 0.67 0.32(0.02) 0.86(0.03)
MBA(803 + 805 + 806) + SED 0.30/0.32/0.13/0.24 0.44 0.53 0.23(0.00) 0.74(0.06)
MBA(803 + 806 + 820) + SED 0.29/0.13/0.35/0.23 0.71 0.50 0.23(0.00) 0.60(0.27)
MBA(805 + 806 + 820) + SED 0.30/0.12/0.35/0.23 0.55 0.50 0.21(0.00) 0.55(0.30)

Average 0.29/0.21/0.24/0.26 0.56 0.55 0.25 0.69

Table 5 P@k accuracy for STOMP, LOF, IF, and NormA-mn (with the default sampling rate r = 0.4) applied to multi-normal
datasets. The repartition of anomalies is reported as the percentage of anomalies in each segment.

(a) NormA vs Isolation Forest (b) NormA vs Local Outlier Factor (c) NormA vs STOMP (b) Accuracy vs number of normalities

× +single double triple quadruple × +NormA-mn IF LOF STOMP

Fig. 11 NormA-mn P@k accuracy versus Isolation forest (a), Local Outlier Factor (b), and STOMP (c). Blue dots represent
single normality datasets, green crosses represent double normality, and red crosses represent triple normality datasets. (d)
depicts the P@k accuracy evolution for different number of normalities. Each point is the average accuracy for all datasets of
the corresponding type (single, double, triple normality).

ity of the datasets. Moreover, Figure 11(d) depicts the

average accuracy results for each algorithm as a func-

tion of the number of normal behaviors in the dataset.

The results demonstrate that the accuracy of all meth-

ods decreases as the number of normal behaviors in-

crease and the problem becomes harder, with IF (black

dashed line) being the most sensitive of all.

[Influence of τ ] We also evaluate the influence of pa-

rameter τ on the Precision@k of NormA-nm. Remem-

ber that in this work, we always use the default value

of τ = 2`NM (see Section 4.3).

Figure 12 depicts the evolution of Precision@k for

(a) double, (b) triple and (c) quadruple normality datasets,

when we vary τ . As expected, Precision@k is low when

τ is very small. In this case, the algorithm considers too
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(a) ! vs Precision@k for double normality datasets (b) ! vs Precision@k for triple normality datasets (c) ! vs Precision@k for quadruple normality datasets

Fig. 12 Precision@k for (a) double, (b) triple, (c) quadruple normality datasets as a function of τ (refer to Section 4.3).

Fig. 13 Critical difference diagram (α = 0.05) for the
multiple-normality data series of Table 5.

few neighbors to have a representative local sample. We

observe a convergence of the Precision@k for values of

τ a bit larger than `NM , which then remains stable as

τ increases further.

[Critical Difference Diagram] We once again em-

ploy the pairwise Post-Hoc Analysis using a Wilcoxon

signed-rank test [59] to test and produce the critical

difference diagram for the algorithms and datasets of

Table 5. The critical difference diagram with α = 0.05

depicted in Figure 13 shows that NormA-mn is signifi-

cantly better than all competitors.

5.6 Scalability Evaluation

We now present scalability tests (we do not consider
LSTM-AD, since supervised methods have a completely

different way of operation and associated costs, e.g.,

data labeling and model training.)

In Figure 14(a), we report the execution time (sec-

onds in log scale) of NormA and all the competitors,

when varying the size of the dataset. We use several

prefix snippets (50K, 100K, 500K, 1M, 2M points) of

the real dataset MBA(14406), and we set k equal to

the number of anomalies that are annotated in each

snippet. We observe that NormA-smpl is 1-2 orders of

magnitude faster than the competitors, and gracefully

scales with the dataset size. This is because the number

of distance calculations performed by NormA-smpl in

Algorithm 3 for each subsequence in the data (compu-

tation of join sequence) is limited to the subsequences

contained in NM .

NormA, performs a limited number of distance cal-

culations during subsequence clustering (Algorithm 3),

since only a small part of subsequences in the input se-

ries are selected to be clustered (Sselfjoin, or Ssample).

Thus, NormA-SJ that uses the STOMP algorithm for

the Normal Model computation stage, has a small ad-

ditional time overhead (when compared to STOMP).

GV, DAD and LOF adopt different pruning strategies

in order to reduce the number of Euclidean distance

computations, which prove to be less effective. DAD

and LOF, in particular, reach the time-out point (8

hours in our experiments) for datasets ≥ 1M points.

In the next set of experiments, we measure the ex-

ecution time (seconds in log scale) of the algorithms as

we vary the number of anomalies; we use the MBA(14406)

and instruct the algorithms to find 20,40,60,80,142 anoma-

lies (Figures 14(b)), and the SRW-[20-100]-[0%]-[200]

(Figures 14(c)) datasets. In all experiments, the algo-

rithms compute the Top-k anomalies. We observe that

the time performance of NormA is not influenced by the

number of anomalies, since for every subsequence in the

dataset we compute anyway the distance to its nearest

neighbor in the Normal Model. Similarly, STOMP, IF

and LOF enumerate in quadratic time all the Top-k 1st

discords, always consuming the same amount of time.

In contrast, the performance of GV and DAD are nega-

tively influenced by the number of anomalies. This con-

firms that the pruning strategies they use are influenced

by the number of anomalies to discover.

Figure 14(d) depicts the time performance results

as we vary the length of the anomalies between 100-

1600 points (SRW-[60]-[0%]-[100-1600] datasets). The

performance of STOMP is constant, because its com-

plexity is not affected by the (anomaly) subsequence

length. NormA remains relatively stable, since in Algo-

rithms 2 and 4 the Euclidean distances are computed

using the STOMP algorithm. In NormA, only the clus-

tering operations are affected by the length of the sub-

sequences to consider (Algorithm 3), which in all ex-

periments we ran was always a very small number (∼1-

2% of all subsequences). We observe that the execution

time for NormA-SJ decreases as we move from anomaly

length 100 to length 200. This decrease is explained by

the reduction of the number of non-overlapping sub-

sequences to cluster, which drops from 242 (anomaly
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Fig. 14 Scalability: execution time vs (a) dataset size, (b) number of anomalies for MBA(14406), (c) number of anomalies
for synthetic, (d) anomaly length. Timeout at 8 hours.

length 100 ) to 128 (anomaly length 200 ). Regarding

NormA-smpl, we see a slight fluctuation in execution

time, between 1.1 -2.4 sec. LOF and IF are computing

distances using all overlapping subsequences and the

computational time is therefore affected by their length.

As shown in Figure 14(d), both of these two methods

perform orders of magnitude worse than STOMP and

NormA. GV and DAD do not scale with the anomaly

length, either.

5.7 NTC Dataset Use Case

We now consider the NTC dataset. As depicted in Fig-

ure 15, NormA correctly discovered anomalies that have

been reported in earlier studies [6]: Daylight Saving

Time (c), Thanksgiving (d), Christmas (e), New Years

day (f), and snow storm of January 26-27, 2015 (h). In

addition to the above anomalies though, NormA iden-

tified additional anomalous subsequences that were not

reported by the earlier studies. These anomalies oc-

curred during the Independence Day (a), Labor Day

(b), and the bad weather of January 18, followed by the

Martin Luther King (MLK) day (January 19) (g) that

caused more than 400 accidents and flooding around the

NYC area. These three events resulted to unusually low

Taxi Traffic in NYC, which was detected by NormA.

These results underline the effectiveness of NormA to

discover anomalous subsequences.

5.8 Nasa Bearing Dataset Use Case

The Nasa Bearing dataset consists of 984 records of

20,480 points series each, measuring the vibrations of

gear bearings. In total, this dataset contains (more than)

20 million points. The goal is to detect the records

with failures (anomalous vibrations), which is slightly

different than the problem we have considered so far

(i.e., subsequence anomaly discovery). We adapt our

method by concatenating all records, extracting the

Normal Model NM using subsequences in Ssample.

80000 2000 4000 6000

80000 2000 4000 6000

(a) (b) (c) (d) (e)(f) (g) (h)

NYC Taxi commissions (NTC) 

(NTC ⨝l NM)

Fig. 15 NormA results on the NTC dataset. (top) The join
with the Normal Model. Events in green (c,d,e,f,h): anoma-
lies discovered by NormA and earlier studies. Events in red
(a,b,g): new anomalies discovered by NormA. (bottom) NTC
data series with the anomalies marked in red.

We then score anomalies by considering the join of

each record R with the Normal Model and compute

the average of the join. Summing up the Euclidean

distances from the record subsequences to the ones in

the Normal Model, permits to quantify the degree of

anomalous activity of the record.

In Figure 16, we plot the series of the scores of all

records in the Nasa Bearing dataset. Given C, the con-

catenation of records that do not contain anomalies

(in our case the first 400 records), we set a thresh-

old T = µ(C) + 3 ∗ σ(C) (i.e., 3 standard deviations

away from the mean), as commonly used in statistics

to mark outliers. Based on the results of the analy-

sis by Safran [51] and other experts [7], both of which

are based on application-specific algorithms and make

heavy use of domain knowledge, the failures start at

record 534. NormA detects failures starting at record

533. These results demonstrate again the versatility of

NormA, which successfully identifies anomalies in an

unsupervised manner and no domain knowledge.
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Fig. 16 NormA on the Nasa Bearing Dataset. In blue, data
series S composed of all records R anomaly scores. In orange,
the threshold computed on the first 400 records. When S is
above Threshold, we flag a failure.

6 Related Work

The problem of subsequence anomaly discovery has been

studied by several works that use the discord defini-

tion [64,52,27,37,21,17,38]. In these studies, anoma-

lies are considered the isolated subsequences, that is,

the ones that have the highest Euclidean distances to

their NNs. In practice, these approaches (that are based

on the discord definition) fail when the dataset contains

multiple anomalies that are similar to one another. The

notion of mth discord has been proposed in order to

resolve the problem of multiple similar anomalies [62].

The approach described in this study finds the sequence

that has the farthest mth NN in Euclidean space. Dur-

ing the search, a space pruning strategy based on the

intermediate results of the simple discord discovery is

applied. As we have already discussed, the mth discord

definition fixes the main problem of simple discord but

is very sensitive to the m parameter, can lead to false

positives, and is not scalable. NormA avoids all these

shortcomings, because it is based on a new, different

primitive for identifying anomalies.

Several methods have been proposed for efficient

and scalable similarity (and nearest neighbor) search [43,

48,47,29,33,19,20], which can be used for subsequence

anomaly detection. Nevertheless, even though such meth-

ods have the potential to speed up discord -based tech-

niques (like the ones described above), they will not

remove the drawbacks of the discord definition we have

discussed in this work.

Wang et al. [57] proposed a framework for mining

anomalies of different lengths. However, their algorithm

(SLADE-TS) can only be applied in the specific con-

text of a collection of several series, which need to be

aligned and periodic. This requirement allows them to

identify anomalies based on the behavior of the rest of

the sequences, but cannot be applied in the case of sub-

sequence anomaly detection in a single series, which is

the focus of our work.

In multi-dimensional data, the Local Outlier Fac-

tor [14] is the degree of being an outlier assigned to

each data instance, depending on how distant a data

instance is from other points in its neighborhood. Sim-

ilarly, Isolation Forest [36] is a machine learning tech-

nique that isolates anomalies instead of modeling nor-

mality. It first proceeds on building binary trees with

random splitting nodes to partition the dataset. The

anomaly score is defined as a function of the averaged

path length between a particular sample and the root

of the trees.

In outlier trajectory detection (than can be seen as a

special kind of data series and a sub task of subsequence

anomaly detection), relevant approaches have been pro-

posed [30,16,65]. These approaches partition trajecto-

ries into smaller parts, cluster the resulting trajectories,

and identify outlier trajectories with respect to these

clusters (taking advantage of both distance-based and

density-based approaches). We note that these meth-

ods identify as outliers individual trajectories within a

trajectory dataset (following the partitioning phase),

while in our case, we want to detect an anomalous sub-

sequence within a single long series.

LSTM-AD [39] is a supervised subsequence anomaly

detection algorithm, and as such not directly compa-

rable to our (unsupervised) approach. LSTM-AD first

trains an LSTM neural network using the data seg-

ments that do not contain anomalies, and then fore-

casts the values in the series: when the error between

the forecast and the real value is above some threshold,

the subsequence is classified as an anomaly. LSTM-AD

learns the threshold in the validation set, picking the

value that maximizes the F-score of the classification.

The LSTM model has also been used in a zero posi-

tive learning framework, where the annotated anoma-

lies are not necessary for the training phase [31]. The

major drawback of this approach is that it is super-

vised, requiring a large amount of clean, normal data

for training. In practice, this is not always possible to

do.

7 Conclusions

Even though the problem of anomaly detection in data

series has attracted lots of attention, the techniques

that have been proposed so far fall short in terms of

effectiveness and efficiency. In our work, we describe

a novel approach that is based on the representation

of normal behavior, which enables us to detect both

single and recurrent anomalies, irrespective of the do-

main, and leads to superior accuracy and time perfor-
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mance. As part of future work, we plan to study alter-

native ways for computing the Normal Model, as well

as compare to the recently proposed Series2Graph ap-

proach [46,12,13].
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