
VLDB Journal manuscript No.
(will be inserted by the editor)

MSAD: A Deep Dive into Model Selection for Time series
Anomaly Detection

Emmanouil Sylligardos1 · John Paparrizos2,3 · Themis Palpanas4 · Pierre

Senellart1 · Paul Boniol1

Received: 31 October 2024 / Accepted: 9 October 2025

Abstract Anomaly detection is a fundamental task for

time series analytics with important implications for the

downstream performance of many applications. Despite

increasing academic interest and the large number of

methods proposed in the literature, recent benchmarks

and evaluation studies demonstrated that no overall best

anomaly detection methods exist when applied to very

heterogeneous time series datasets. Therefore, the only

scalable and viable solution to solve anomaly detection

over very different time series collected from diverse

domains is to propose a model selection method that

will select, based on time series characteristics, the best

anomaly detection methods to run. Existing AutoML

solutions are, unfortunately, not directly applicable to

time series anomaly detection, and no evaluation of time

series-based approaches for model selection exists. To-
wards that direction, this paper studies the performance

of time series classification methods used as model se-

lection for anomaly detection. In total, we evaluate 234

model configurations derived from 16 base classifiers

across more than 1980 time series, and we propose the

first extensive experimental evaluation of time series

classification as model selection for anomaly detection.

Our results demonstrate that model selection methods

outperform every single anomaly detection method while

being in the same order of magnitude regarding execu-

tion time. This evaluation is the first step to demonstrate

the accuracy and efficiency of time series classification al-

gorithms for anomaly detection, and represents a strong

Emmanouil Sylligardos
E-mail: hiimsylli@gmail.com

1 DI ENS, ENS, PSL University, CNRS, Inria, Paris, France
2 The Ohio State University, Columbus, OH, USA
3 Aristotle University Thessaloniki, Thessaloniki, Greece
4 Université Paris Cité, IUF Paris, France

Fig. 1 Summary of our evaluation on the TSB-UAD bench-
mark [75] of model selection methods (best for k = 1 in blue
and k = 4 in green) when compared to 12 anomaly detection
methods and the Avg Ens (in orange).

baseline that can then be used to guide the model selec-

tion step in general AutoML pipelines. Preprint version

of an article accepted at the VLDB Journal.

Keywords Time Series · Anomaly Detection · Model

Selection · Machine Learning

Artifact Availability:

The source code, data, and/or other artifacts have been made

available at https://github.com/sylligardos/MSADv2.

1 Introduction

Extensive collections of time-dependent measurements

are a reality in every scientific domain [71,61]. The

ar
X

iv
:2

51
0.

26
64

3v
2

 [
cs

.L
G

]
 2

 D
ec

 2
02

5

https://arxiv.org/abs/2510.26643v2

2 Emmanouil Sylligardos1 et al.

recording of these measurements results in an ordered

sequence of real-valued data points, commonly referred

to as time series [74,10,73]. Analyzing time series is be-

coming increasingly important in virtually every domain,

including astronomy [48], biology [9], economics [63],

energy sciences [7], engineering [89], environmental sci-

ences [40], medicine [78], neuroscience [13], and social

sciences [26]. Anomaly Detection (AD), in particular,

has received ample academic and industrial attention [70,

37], and has become a significant problem that finds

applications across a wide range of domains and sit-
uations. These applications share the same goal [11,

86,96]: analyzing time series to identify observations

that do not correspond to an expected behavior inferred

from previously observed data. In practice, anomalies

can correspond to [2]: (i) noise or erroneous data (e.g.,

broken sensors); or (ii) actual data of interest (e.g., ab-

normal behavior of the observed system). In both cases,

detecting such types is crucial for many applications [6,

44].

In recent years, many techniques have been proposed

for Time Series Anomaly Detection (TSAD). Multiple

surveys and benchmarks summarize and analyze the

state-of-the-art proposed methods [14,75,81,72,52,93,

57,51,55]. Such surveys and benchmarks provide a holis-

tic view of anomaly detection methods and how they

perform. Unfortunately, these benchmark and evalua-

tion studies demonstrated that no overall best anomaly

detection methods exist when applied to very hetero-

geneous time series (i.e., coming from very different

domains). In practice, we observe that some methods

outperform others on specific time series with either spe-

cific characteristics (e.g., stationary or non-stationary

time series) or anomalies (e.g., point-based or sequence-

based anomalies).

To overcome the above limitation, ensembling solu-

tions have been proposed [4] that involve running all

existing anomaly detection methods and averaging their

anomaly scores. Figure 1 shows that this solution (in

orange) outperforms all individual existing techniques

in the TSB-UAD benchmark (in grey) [75,20]. However,

as shown in Figure 1, such solutions require running all

methods, resulting in an excessive cost that is not feasi-

ble in practice. Additionally, blindly combining models
without considering their performances may lead to re-

duced accuracy compared to a combination of only the

top-performing detectors.

Therefore, the only scalable and viable solution for

solving anomaly detection over very different time series

collected from various domains is to propose a model

selection method that selects, based on time series char-

acteristics, the best anomaly detection methods to run.

This topic has been tackled in several recent research

works related to AutoML (Automated Machine Learn-

ing) for the general case of anomaly detection [101,98]

and also for time series [99,42]. Nevertheless, existing Au-

toML solutions require (i) a universal objective function

among models, which is not applicable to anomaly detec-

tion methods; (ii) a predefined set of features, which is

difficult to obtain for time series due to varying lengths

and the lack of standardized featurization solutions; (iii)

running multiple anomaly detection methods several

times, which is prohibitively expensive in practice; or

(iv) labeled anomalies, which (in contrast to classifi-
cation tasks) are difficult to obtain. Therefore, more

work is needed in order to render AutoML solutions

applicable to TSAD.

The objective is to train a classification model on

time series for which we know in advance which anomaly

detection method is the best. However, the lack of a

benchmark with labeled time series has been a limiting

factor for training robust model selection models (this

only changed very recently [75,81,53]). Therefore, there

exists no experimental evaluation that measures the

effectiveness of classification methods for the task of

model selection for TSAD. Thus, such an evaluation

is very important for determining which time series

classification methods are accurate as model selection

methods, and which solutions should be considered in

out-of-distribution settings (i.e., using model selection

approaches on time series from domains that were not

included in the training set). These results would help

the design and effectiveness of general AutoML pipelines

for time series.

Accordingly, in this paper, we evaluate the perfor-

mance of time series classification methods used as model

selectors for TSAD. Rather than relying on a single de-

tector, we explore the benefits of combining multiple

detectors per time series. Different anomaly detectors

tend to specialize in certain data characteristics, as some

detectors are better at capturing point anomalies, others

at detecting sequence anomalies. For example, in Fig-

ure 2 (a) we can see that NormA is undoubtedly better

than CNN on ECG data, which behavior is reversed on

the YAHOO dataset as shown in Figure 2 (d). Overall,

combining multiple detectors improves robustness, since

real-world time series often contain more than a single

type of anomalies.

Thus, we build a framework 1 capable of proposing

a single anomaly detector for a given time series, or a

weighted combination of multiple anomaly detectors. In

this framework we control the number of anomaly de-

tection methods combined by incorporating a dynamic

selection parameter k. By systematically adjusting the

1 A preliminary version of this work has appeared else-
where [87].

MSAD: A Deep Dive into Model Selection for Time series Anomaly Detection 3

value of k, that is the number of detectors to combine,

we study the trade-off between accuracy and runtime

performance, demonstrating how a weighted subset of

top-performing detectors enhances overall performance

without the high costs associated with running all de-

tectors. We evaluate the proposed pipeline in terms

of accuracy and execution time in two distinct experi-

mental settings: in-distribution and Out-Of-Distribution

(OOD). In the in-distribution setting, the model is eval-

uated on time series from known domains, whereas

in the OOD setting, the model is trained on multiple
datasets spanning various domains and tested on a held-

out dataset from a domain not seen during training (e.g.,

trained on electrocardiogram [67], tested on robotics sen-

sors measurements [79]). This OOD setting simulates

a scenario where the inference data is entirely unseen,

allowing us to assess the model’s generalizability and

performance in transfer learning contexts.

Overall, we evaluate our framework on over 1980

time series and 12 anomaly detection methods from

the recent anomaly detection benchmark TSB-UAD.

To the best of our knowledge, our results demonstrate

the first extended evaluation of time series classification

methods as model selectors for TSAD. More specifically,

we provide evidence that combining multiple anomaly

detectors (k > 1) can significantly benefit the pipeline

over choosing only a single detector (k = 1). Model

selectors with k > 1 surpass (i) all stand-alone anomaly

detection methods, (ii) the Averaging Ensemble (Avg

Ens), and (iii) all their single-detector counterparts with

k = 1. The benefits are accentuated in the OOD setting

where single-detector model selectors do not perform

better than the naive Avg Ens, while multi-detector
model selectors can surpass the Avg Ens performance

while significantly reducing execution time. Figure 1

shows a summary of our experimental evaluation in the

in-distribution setting, where the best model selection

methods (shown in blue for k = 1 and green for k = 4)
are up to 2.3× more accurate than the best anomaly de-

tection method in the TSB-UAD benchmark and 1.9×
more accurate than the ensembling solution mentioned

above. In the OOD setting, combining detectors provides

similar performance to the Avg Ens, while significantly

reducing execution time. This framework provides the

first step to demonstrate the accuracy and efficiency of

time series classification algorithms for anomaly detec-

tion. It represents a strong baseline that can then be

used to guide the choice of approaches for the model se-

lection step in more general AutoML pipelines. Overall,

the paper is organized as follows:

– We start with a detailed discussion of the relevant

background and related work for anomaly detection

in time series (Section 2).

– We cast the model selection problem for TSAD meth-

ods into a time series classification problem. We de-

scribe and study the need to evaluate time series clas-

sification methods for model selection (Section 3).

– We introduce our pipeline for model selection ap-

plied to anomaly detection in time series. As this

pipeline is generic, we describe how it can be used

with both feature-based classification methods, tra-

ditional time series classification methods, and deep

learning-based methods (Section 4).

– As multiple detectors can be selected by our pipeline,
we introduce two combination strategies. The first

considers the prediction probabilities of the model

selection methods, and the second uses a voting

system across all the subsequences of the time series.

The probabilities or the number of votes are then

used to weight the detectors anomaly scores and

generate the final anomaly score (Section 4).

– We describe our experimental framework (on top

of TSB-UAD benchmark [75]), and provide details

on both anomaly detection methods and time series

classification methods considered in this paper (Sec-

tion 5). We make all our material publicly available

online [22] and provide an interactive Web applica-

tion [23] for exploring our results.

– We present an extensive experimental evaluation,

measuring the anomaly detection accuracy and exe-

cution time (both training and inference) of model

selection algorithms (Section 5.2). We evaluate the

influence of important parameters and the relation-

ship between classification and anomaly detection

accuracy (Sections 5.3, 5.4, and 5.6). Moreover, we

measure the transferability of model selection algo-
rithms to new types of time series by testing multiple

combinations of train and test datasets that do not

contain the same kinds of time series (Section 5.7).

– Finally, we conclude with the implications of our

work and discuss possible future directions that could
help improve both the accuracy and the execution

time of our proposed pipeline (Section 6).

2 Background and Related Work

We first introduce formal notations (Section 2.1), and

then review in detail existing TSAD methods (Sec-

tion 2.2) and discuss their limitations (Section 2.3).

2.1 Time Series and Anomaly Score Notations

Time Series: A time series T ∈ Rn is a sequence of real-

valued numbers Ti ∈ R [T1, T2, ..., Tn], where n = |T | is
the length of T , and Ti is the ith point of T . We are

4 Emmanouil Sylligardos1 et al.

typically interested in local regions of the time series,

known as subsequences. A subsequence Ti,ℓ ∈ Rℓ of a

time series T is a continuous subset of the values of T

of length ℓ starting at position i, formally defined as

Ti,ℓ = [Ti, Ti+1, ..., Ti+ℓ−1]. We then define a dataset D,

which is a set of time series. Note that the time series

contained in D can be of diverse lengths. We define the

size of D as |D|.
Anomaly Score Sequence: For a time series T ∈

Rn, an AD method (or detector) D returns an anomaly

score sequence ST . For point-based approaches (i.e.,

methods that return a score for each point), we have

ST ∈ Rn. For subsequence-based approaches (i.e., meth-

ods that return a score for each subsequence of a given

length ℓ), we have ST ∈ Rn−ℓ and ST = [ST 1, ST 2, ..., ST n−ℓ]

with ST i ∈ [0, 1]. In most applications, the anomaly

score has to be the same length as the time series. Thus,

for subsequence-based approaches, we define:

ST = [ST 1]ℓ/2 + [ST 1, ST 2, . . . , ST n−ℓ] +

[ST n−ℓ]ℓ/2 with |ST | = |T |
(1)

where + denotes list concatenation, and [x]ℓ/2 represents
a list containing the element x repeated ℓ/2 times.

Anomaly Detection Accuracy: For a time series

T ∈ Rn, an AD method (or detector) D returns an

anomaly score sequence D(T) = ST . The labels L ∈
[0, 1]n indicate with 0 or 1 if the points in T are normal or

abnormal, respectively. We define Acc : Rn × {0, 1}n →
[0, 1] as an accuracy function, for which Acc(D(T), L),

namely the accuracy score, indicates how accurate D is

(i.e., producing an score close to 1 when the label is 1,

and close to 0 otherwise). The closer the accuracy score

is to one, the better the detector.

2.2 Anomaly Detection Methods for Time Series

Anomaly detection in time series is a crucial task for

many relevant applications. Therefore, several meth-

ods (for diverse types of time series, or applications)

have been proposed in the literature [17]. One type of

anomaly detection method is distance-based methods,

that analyze subsequences by utilizing distances to a

given model to detect anomalies. In this category, we can

identify three sub-categories. The first is discord-based.

These methods focus on the analysis of subsequences

for the purpose of detecting anomalies in time series,

mainly by utilizing nearest neighbor distances among

subsequences [96,83,54,59]. The second sub-category is

proximity-based. These methods focus on estimating the

density of particular types of subsequences in order to

either extract a normal behavior or isolate anomalies.

Fig. 2 Accuracy of 12 detectors on 4 datasets.

Since a subsequence can be seen as a multidimensional

point (with the number of dimensions corresponding

to the subsequence length), general outlier detection

methods can be applied for TSAD [25,64].The last cat-

egory is clustering-based, that contains methods using

the distance to a given clustering partition to detect

anomalies. In this sub-category, NormA, that first clus-

ters data to obtain the normal behavior [15,16,21] have

demonstrated strong performance.

While the previously mentioned methods compute

their anomaly score on distances with raw time series

element (such as subsequences), density-based methods

focus on detecting recurring or isolated behaviors by

evaluating the density of the points or subsequences into

a specific representation space. This category can be di-

vided into four sub-categories, namely distribution-based,

graph-based, tree-based, and encoding-based. Among them,

Isolation Forest [60], a tree-based methods grouping

points or subsequences into different trees, and Se-

ries2Graph, a graph-based method that converts the

time series into a graph to facilitate the detection of

anomalies [19], have been shown to work particularly

well for TSAD task [19].

Furthermore, forecasting-based methods, such as re-

current neural network-based [65] or convolutional

network-based [68], have been proposed for this task.

These methods use the past values as input, predict

the following one, and use the forecasting error as an

anomaly score. Such methods are usually trained on

time series without anomalies, or make the assumption

that the anomalies are significantly less frequent than

the normal behaviors.

MSAD: A Deep Dive into Model Selection for Time series Anomaly Detection 5

Finally, reconstruction-based methods, such as au-

toencoder approaches [80], are trained to reconstruct

the time series and use the reconstruction error as an

anomaly score. As both forecasting and reconstruction-

based categories detect anomalies using prediction errors

(either forecasting or reconstruction error), we can group

them into prediction-based methods.

2.3 Limitations of Anomaly Detection Methods

Recently, several benchmarks and experimental evalu-

ations for anomaly detection in time series have been

proposed in the literature [81,72,53]. Such benchmarks

offer a comprehensive collection of time series from vari-

ous domains and evaluate multiple methods within the

categories mentioned above. However, these experimen-

tal evaluations led to the same conclusion: no method

exists that outperforms all the others on all time series

from various domains. Figure 2, which depicts the ac-

curacy of 12 diverse AD methods2 on four time series

datasets, illustrates the conclusion above. In Figure 2

(a.2), NormA is the most accurate model on the ECG

dataset [67] (a time series example is depicted in Figure 2

(a.1)). However, Local Outlier Factor (LOF) [25], and

Matrix profile (MP) [96] are significantly outperforming

NormA on the MGAB dataset [88] (see Figure 2 (b.2)),

whereas CNN [68] is outperforming NormA, LOF, and

MP on the YAHOO dataset [56] (see Figure 2 (d.2)).

The following two reasons explain this difference in per-

formance among datasets.

2.3.1 Heterogeneity in anomaly types

First, there are three types of time series anomalies:

point, contextual, and collective anomalies. Point anoma-

lies refer to data points that deviate remarkably from

the rest of the data. Similarly, contextual anomalies

refer to data points within the expected range of the
distribution (in contrast to point anomalies) but deviate

from the expected data distribution, given a specific

context (e.g., a window). For instance, Figure 2 (d.1)

illustrates a subsequence from the YAHOO dataset with

contextual anomalies. The values of the anomalies fall

within the range of normal values, but are abnormal in

the context of the distribution of the surrounding points.

For these specific types of anomalies, reconstruction and

forecasting-based methods are particularly accurate (as

shown in Figure 2 (d.2)).

2 We use 12 methods that have been employed in previous
studies [75,72]. Note that other variations exist that may
lead to improved results.

Collective anomalies refer to sequences of points

that do not repeat a typical (previously observed) pat-

tern. The first two categories, namely, point and contex-

tual anomalies, are referred to as point-based anomalies,

whereas collective anomalies are referred to as subse-

quence anomalies. For instance, Figure 2 (a.1), (b.1),

and (c.1) show three time series with sequence anoma-

lies. However, even for time series belonging to the same

anomaly type categories, we observe that the most ac-

curate models are all different.

2.3.2 Heterogeneity in time series structures

This diversity in model accuracy can be explained by

other factors related to the time series structures. In-

deed, on top of these categories mentioned above, the

combination of them also matters. First, we need to dif-

ferentiate time series containing single anomalies from

time series containing multiple anomalies. Then, the

multiple time series category has to be divided into two

subcategories, namely time series containing multiple

different and multiple similar anomalies. For instance,

methods based on neighbor distance computation such

as LOF are very accurate in detecting single or multiple

different anomalies, but less accurate for multiple simi-

lar. To illustrate this point, Figure 2 (a.2) depicts the

results of 12 AD methods on the ECG dataset (that con-

tains a large number of multiple similar anomalies), for

which LOF accuracy is low. On the contrary, Figure 2

(b.2) depicts the results of the same 12 AD methods

on the MGAB dataset (that contains multiple different

anomalies), for which LOF accuracy is high.

On top of the large variety of time series and anomaly

characteristics mentioned above, time series can have
distinct statistical characteristics, resulting in an even

larger variability in the accuracy of AD methods. The

latter can be the differences between stationary (i.e.,

with a constant distribution of values over time) and

non-stationary (i.e., with a changing distribution of

values over time) time series, or single normality (i.e.,

time series containing only one normal behavior) and

multiple normalities (i.e., time series containing multiple

normal behaviors) time series.

3 Motivation and Problem

In this section, we describe solutions that can be applied

to solve the limitations mentioned above, and we moti-

vate the benefits of these solutions. Finally, we formally

define the problem.

6 Emmanouil Sylligardos1 et al.

3.1 Ensembling Detectors

The first solution is to ensemble the anomaly scores

produced by all the detectors. Multiple ensembling tech-

niques have been proposed in the literature [4] from

which three main methods arise: (i) Averaging : the aver-

age of the anomaly scores for each timestamp, (ii) Maxi-

mizing : the maximum anomaly score for each timestamp

(iii) Average of Maximum: the average of the maximum

for a randomly selected subset of detectors. Averaging

strategy is proven to be the more robust and low-risk

strategy compared to the other two [4]. Formally, the

Averaging strategy is defined as follows:

Definition 1 Given a time series T of length n and

a set of detectors B, the anomaly score sequence pro-

duced by the Averaging strategy is defined as AvgEns =

[Avg1, Avg2, ..., Avgn] where each element Avgi (for i ∈
[1, n]) is equal to Avgi = (1/|B|)

∑
D∈B D(T)i.

In the rest of the paper, we call the Averaging strat-

egy Averaging Ensemble (Avg Ens). As depicted in Fig-

ure 1 (a), which shows the accuracy of detectors (in

grey) and the Avg Ens (in orange), we observe that

such a strategy already outperforms all existing ap-

proaches. Nonetheless, such a method requires running

all detectors to produce one ensembled anomaly score,

resulting in a costly execution time (see Figure 1 (b)). In

a scenario with very long time series and an increasing

number of detectors to consider, such an approach is

not sustainable and feasible in practice.

3.2 Model Selection

A solution to tackle the limitations mentioned above is

to apply model selection based on the characteristics

of the time series. The primary objective is to train a

model to automatically select the optimal combination of

detectors (AD methods) for a given time series. In such

a case, the user must run only k models (k ranging from

1 to the total number of available detectors), drastically

reducing the execution time required (for k significantly

smaller than the total number of detectors). This allows

users to benefit from the robustness of combining the

complementary strengths of different detectors without

having to run all of them as in Avg Ens. The model

selectors predict the most relevant detectors based on

the time series characteristics and exclude the irrelevant

ones.

This topic has been tackled in several recent papers

related to AutoML (Automatic Machine Learning). Re-

cent approaches, such as MetaOD [101,99], explored

meta-learning to identify the best outlier detection algo-

rithm on tabular datasets. These research works rely on

the performance of pre-computed models on a subset of

datasets to learn a mapping from the dataset’s character-

istics to the detectors’ performance. Methods have been

proposed to select models in an unsupervised way [42],

but require running multiple models in advance, which

(as Avg Ens) limits the applicability due to high cost.

3.3 Classification for Model Selection

In general, for the specific case of time series, most of

the work described above and future AutoML methods

will rely on time series classification methods for the

model selection step. In the simple case of model selec-
tion, where a single detector is predicted, the goal is to

classify the time series into classes corresponding to the

available AD methods. While this single-detector ap-

proach is sufficient for datasets with heterogeneous time
series, it fails to capture the complementary strengths

of multiple detectors like Avg Ens. This limitation be-

comes particularly evident in complex time series with

multiple patterns and anomaly types, where no single

detector is consistently reliable. Thus, to combine mul-

tiple detectors, the probability distribution inherently

produced by the classification method is used as weights,

and a weighted average combines the output of the de-

tectors. However, no existing guidelines indicate which

time series classification approach can be used for model

selection. Thus, there is a need to evaluate and measure

the benefit that time series classification approaches can

bring to the anomaly detection task.

The first step is to evaluate the potential gain in

accuracy that model selection could bring. To do this,

recent TSAD benchmarks [75,81] can be used. We can

evaluate the upper bound on the accuracy that model

selection could reach on such benchmarks. Thus, we

define a hypothetical model called Oracle, which, for a

given time series, always selects the single most accurate

anomaly detector to use.

Specifically, the aforementioned benchmarks provide,

along with each time series, their ground-truth labels

and the anomaly scores produced by multiple detectors.

To compute the Oracle, we calculate the AUC-PR (Area

Under the Precision-Recall curve) between the labels

and each detector’s anomaly score for each time series.

The Oracle then selects, for each time series, the detec-

tor that achieves the highest AUC-PR. This provides

a theoretical upper bound for model selection perfor-

mance, simulating the perfect model selector. We are

not creating a theoretical upper bound that combines

more than one detector, as the Oracle already serves

the purpose sufficiently (see Figure 1 (a)). Nonetheless,

MSAD: A Deep Dive into Model Selection for Time series Anomaly Detection 7

we hope that in the future, this upper bound will be

surpassed and the need for another upper bound will

arise. Formally, Oracle is defined as follows:

Definition 2 Given a dataset D composed of time se-

ries T and labels L (with the length of the time se-

ries |T | = n non-constant for all time series in D),

and a set of detectors B = {D1, Di, ..., Dm} with the
number of detectors defined as |B| = m, Oracle(T) =

argmaxD∈B
{
Acc

(
D(T), L

)}
We refer toOracle, the hypothetical modelOracle(T),

as applied to all T in a given benchmark. For example,

Figure 1 shows in white the accuracy of Oracle applied

to the TSB-UAD benchmark [75] and demonstrates that

a perfect model selection method outperforms the best
detector in TSB-UAD and the Avg Ens by a factor of

3 and 2.5 accordingly. This large improvement in accu-

racy and execution time confirms the potential benefits

of model selection applied to TSAD. Thus, there is a
need to evaluate the performance of existing time series

classification methods when used as model selection al-

gorithms and how close such methods can get to the

Oracle.

3.4 Problem Formulation

Therefore, based on the limitations and the motivation

listed above, we can formalize the problem of model

selection as follows:

Problem 1 Given a dataset D composed of time series

T (with the length of the time series |T | = n non-

constant for all time series in D) and a set of detectors

B = {D1, D2, ..., Dm} with the number of detectors

defined as |B| = m. We want to build a model selection

method M that takes a time series T ∈ D and returns

a set of weights WT = {w1, w2, ..., wm} (formally M :

Rn → Rm) such that the anomaly score ST is a weighted

combination of the scores from the detectors in B:

ST =

m∑
i=1

wiDi(T), where

m∑
i=1

wi = 1 and wi ≥ 0

For a given parameter k, which specifies the number of

detectors to combine, M will ensure that only k out of

the m weights are non-zero. The goal is to maximize

the accuracy of the combined anomaly score ST with

respect to the label L:

M(T) = argmax
WT

{
Acc

(m∑
i=1

wiDi(T), L
)}

In practice, we do not have the label L. Therefore,

the objective is to build a model M that estimates

the equation above. Moreover, as the input of M is

a time series and the output is a set of weights for

the detectors in B, the problem can be seen as a time

series classification problem for which the classes are the

detectors in B and the set of weights is the produced

probability distribution over the classes. Thus, the only

requirement is to have computed all Acc(D(T), L) for

all T ∈ D and all D ∈ B and use it as a training set.

3.5 Objectives

In summary, our goal is to answer the following ques-

tions:

– Classification as Model selection: How do clas-

sification methods compare to individual detectors

and the Oracle?

– Single vs. multiple detectors: Is combining mul-

tiple detectors (i.e., k > 1) better than selecting a
single best one?

– Ensembling or selecting: Is selecting k detectors

automatically more accurate than ensembling them?

How large k should be to outperform ensembling?

– Features or Raw values: Should we use time series

features or the raw time series values to predict which
detectors to use?

– Out-Of-Distribution: What happens when the

model selection approach is trained on some datasets

and tested on entirely new ones? Are the answers

from the previous questions still valid?

We now describe our pipeline and experimental evalua-

tion to answer the questions listed above.

4 MSAD: Proposed Pipeline

In the following section, we provide a comprehensive

explanation of the proposed pipeline. This pipeline in-

volves a sequence of preprocessing and postprocessing

steps to ensure that the inputs to the model selection

algorithms are of equal length. The proposed pipeline,

illustrated in Figure 3, consists of the following steps:

(i) Preprocessing step: Extraction of subsequences of

the same length (Figure 3 (b)), (ii) Prediction step:

Producing the probability distribution over the avail-

able classes for each subsequence (Figure 3 (c)), and

(iii) Combination step: Transforming the probability

distributions into a sequence of weights (Figure 3 (d)),

one for each class, and combining the scores from indi-

vidual detectors according to these weights (Figure 3

(f)). In the following section, we describe the three steps

mentioned above in detail.

8 Emmanouil Sylligardos1 et al.

Fig. 3 Proposed pipeline for the method selection

4.1 Preprocessing Step

Time series classification can be performed with three

different strategies: (i) treating the entire time series as

one sample, (ii) dividing the time series into overlapping

subsequences, (iii) dividing the time series into shifting

subsequences (i.e., non-overlapping subsequences). The

first strategy is straightforward, as each time series is

treated as a single observation. Nevertheless, not all

classifiers can handle variable-length inputs, and train-

ing such models can be computationally intensive (i.e.,

batches of time series cannot be treated in parallel). The

second strategy involves dividing the time series into

overlapping subsequences (of a given window length ℓ).

Despite possible loss of information, it forces each input

of the methods to be the same length (ℓ), allowing sim-

pler and faster computation when performed in parallel.

In the third strategy, we divide time series into non-

overlapping subsequences (of a given length ℓ), removing

redundant information in overlapping subsequences. The

latter might lead to separate anomalies into multiple

windows, but significantly reduces the number of inputs

generated by the second strategy and significantly accel-

erates the training and inference time. For these reasons,
we chose the third strategy.

Thus, the time series of length |T | are divided into

Tl non-overlapping subsequences of length ℓ. When the

length of the time series is not divided evenly by the

window length ℓ, the remainder is added with an overlap

between the first two windows. Formally:

Tℓ =

{Ti·ℓ, ℓ | i ∈ [0, n]} , if |T | mod ℓ = 0

{T0, ℓ} ∪
{
T|T |−n·ℓ+i·ℓ, ℓ

∣∣ i ∈ [0, n− 1]
}
, otherwise

With n =
⌈
|T |
ℓ

⌉
− 1. We expect the length ℓ to have

an impact on the anomaly detection accuracy. We thus

test multiple length values and measure their influence

(on accuracy and execution time) in Section 5.

At this point, we preprocessed the time series into

subsequences of equal length. We now discuss the la-

bel (i.e., the best detector to apply) attribution. For

that matter, we use the TSB-UAD benchmark [75] that

contains 12 different AD methods. We compute the 12

methods for each time series and attribute the most ac-

curate (based on AUC-PR) detector as the label. Then,

the produced subsequences share the same label as the

time series they originate from. This design choice aims

MSAD: A Deep Dive into Model Selection for Time series Anomaly Detection 9

Table 1 Summary of datasets, methods, and measures used in this experimental evaluation.

Datasets Description
Dodgers [50] unusual traffic after a Dodgers game (1 time series)

ECG [67] standard electrocardiogram dataset (52 time series)
IOPS [1] performance indicators of a machine (58 time series)

KDD21 [53] composite dataset released in a recent SIGKDD 2021 (250 time series)
MGAB [88] Mackey-Glass time series with non-trivial anomalies (10 time series)

NAB [5] Web-related real-world and artificial time series (58 time series)
SensorScope [95] environmental data (23 time series)

YAHOO [56] time series based on Yahoo production systems (367 time series)
Daphnet [8] acceleration sensors on Parkinson’s disease patients (45 time series)
GHL [35] Gasoil Heating Loop telemetry (126 time series)

Genesis [12] portable pick-and-place demonstrator (6 time series)
MITDB [67] ambulatory ECG recordings (32 time series)

OPPORTUNITY [79] motion sensors for human activity recognition (465 time series)
Occupancy [27] temperature, humidity, light, and CO2 of a room (10 time series)

SMD [85] Server Machine telemetry (281 time series)
SVDB [43] ECG recordings (115 time series)

Anomaly Detection Description
IForest [60] constructs trees based on random splits. The nodes (i.e., subsequences) with shorter depth are labeled as anomalies
IForest1 [60] same as IForest, but each point (individually) is used as input

LOF [25] computes the ratio of the neighboring density to the local density
MP [97] detects abnormal subsequences with the largest nearest neighbor distance

NormA [16] identifies normal patterns using clustering and computes weighted distance to the normal patterns

PCA [3] projects data to a lower-dimensional hyperplane and computes distance between subsequences and this plane

AE [80] trained to encode and reconstruct the data, and outliers are expected to have larger reconstruction errors

LSTM-AD [65] use an LSTM network to forecast the following value. The error prediction is then used to identify anomalies

POLY [58] fits a polynomial to forecast time series values. Outliers are detected with prediction error

CNN [68] forecasts the time series values with a convolutional neural network. The anomaly score is the prediction error

OCSVM [82] is a support vector method that fits the normal training dataset and finds the normal data’s boundary

HBOS [41] builds a histogram for the time series. The anomaly score is the inverse of the height of the bin

Model Selection Description
SVC [24] maps instances to points in space to maximize the gap between classes

Bayes [100] uses Bayes’ theorem to classify a point using each class posterior probabilities

MLP [46] consists of multiple layers of interconnected neurons
QDA [39] is a discriminant analysis algorithm for classification problems

AdaBoost [38] is a meta-algorithm using boosting technique with weak classifiers

Decision Tree [49] is an approach that splits data points into separate leaves based on features

Random Forest [47] is a set of Decision Trees fed with random samples and features

kNN [36] assigns the most common class among its k nearest neighbors

Rocket [31] transforms time series using a set of convolutional kernels, creating features used to train a linear classifier

ConvNet [92] uses convolutional layers to learn spatial features from the input data

ResNet [92] is a ConvNet with residual connections between convolutional block

Inception Time [34] is a combination of ResNets with kernels of multiple sizes

SiT-conv [32] is a transformer architecture with a convolutional layer as input

SiT-linear [32] is a transformer architecture for which non-overlapping subsequences are linearly projected into the embedding space

SiT-stem [94] is a transformer architecture with convolutional layers with increasing dimensionality as input

SiT-stem-ReLU [91] is similar to SiT-stem but with Scaled ReLU

Evaluation Description
Classification Accuracy the number of correctly selected methods divided by the total number of time series

AUC-PR [30] Area under the Precision-Recall curve
VUS-PR [72] Volume under the Precision-Recall surface (obtained from different length of a buffer region surrounding the anomalies)

Training Time number of seconds required to train a model selection method

Selection Time number of seconds required to predict the best model to use

Detection Time number of seconds required to compute an anomaly score (i.e., selection time plus detector execution)

to learn global signal characteristics, rather than lo-

calized anomaly behavior, which we found to result in

better classifier performance. We experimented with

assigning different labels per subsequence, but this led

to significantly worse results and was also challenging

to evaluate reliably. This labeled dataset can then be

used to train classification methods and divided into

the train, test, and validation sets. It is important to

note that although each time series produces multiple

samples (i.e., subsequences), these samples should not

be mixed between train, validation, and test sets. In-

deed, too strong similarities between subsequences that

belong to the same time series, if contained in both the

train, validation, and the test, can lead the classifica-

tion model to overfit or create an illusion of accuracy.

Therefore, we guarantee that the intersection between

the train, validation, and test sets, regarding which time

series the corresponding subsequences originate from, is

empty.

4.2 Time Series Classification Approaches

In this section, we describe the time series classifier ap-

proaches that we use as model selection methods. As

10 Emmanouil Sylligardos1 et al.

many approaches have been proposed in the literature,

we restrict our experimental evaluation to two main

categories: (i) feature-based and (ii) raw-based meth-

ods. In addition, the second category can be divided

into two sub-categories: (i) convolutional-based and (ii)

transformer-based. It is worth noting that raw-based

methods also utilize features for classification, as the

extraction of these features is performed automatically

within the network. Despite this, we classify them as

raw-based due to the nature of their input. Figure 4 illus-

trates a simplified taxonomy of the methods considered,
and we describe them in the following section.

4.2.1 Feature-based classification

The main idea regarding feature-based classification is

to use the dataset of time series (or subsequences of

time series) to create a dataset whose samples are de-

scribed by features common to all samples. Using the

feature-based dataset, we then employ traditional ma-

chine learning classifiers to classify each time series. We

use the TSFresh [28] (Time Series Feature extraction

based on scalable hypothesis tests) to extract each sub-

sequence’s features. The latter is used for automated

time series feature extraction and selection based on the

FRESH algorithm [29]. More specifically, it automati-

cally selects relevant features for a specific task. This

is achieved using statistical tests, time series heuristics,

and machine learning algorithms. The TSFresh package

provides three options for automated feature extraction,

namely, (i) comprehensive, (ii) efficient, and (iii) min-

imal. The first two options provide 700 features and

the latter provides only 9. For scalability reasons (the

datasets can reach millions of subsequences), we consider

the minimal option in this paper.

Moreover, the objective is not to evaluate Feature-

based classifiers per se, but rather to evaluate the ability

of TSFresh to extract meaningful features for time series

classification (and model selection for anomaly detection,

in particular). In this paper, we consider the following

classification approaches.

[SVC] A Support Vector Classifier (SVC) [24] is a clas-

sifier that maps instances in space in order to maximize

the width of the gap between the classes. New instances

are mapped into the same space and classified according

to which side of the gap they fall.

[Bayes] The naive Bayes classifier [100] uses Bayes’

theorem to predict the class of a new instance based

on prior probabilities and class-conditional probabili-

ties. The prediction is made by computing the posterior

probabilities for each class.

[MLP] A Multi Layer Perceptron (MLP) [46] is a fully

connected neural network.

[QDA] A Quadratic Discriminant Analysis (QDA) [39]

Classifier is a linear discriminant analysis algorithm.

The prediction is made by computing the discriminant

functions for each class.

[AdaBoost] AdaBoost [38] is a boosting ensemble ma-

chine learning algorithm for solving classification prob-

lems. It creates a sequence of weak classifiers, where each

classifier is trained on a weighted sample of the dataset.

The prediction is made by combining the predictions of

all classifiers, weighted by their accuracy.

[Decision Tree] A Decision Tree Classifier [49] is a tree-
based method that represents a sequence of decisions

based on the features of the dataset. To classify a new

instance, the algorithm follows the decisions in the tree

to reach a leaf node associated with a class.

[Random Forest] A Random Forest [47] is an ensem-

ble machine learning algorithm that combines multiple

decision trees, where each tree is built using a random

subset of the features and a random sample of the data.

The final class prediction for a new instance results from

the aggregation of the predictions of all trees.

[kNN] A kNN classifier [36] is a method that classifies

instances based on their distance to other instances in

a training set. The algorithm assigns the new instances

to the class with the most number of closest neighbors
among the K nearest data points.

4.2.2 Raw-based classification

Instead of using extracted features to perform classifica-

tion, the raw values of the time series can be used directly.
While features are efficient for homogenizing time series

datasets (e.g., setting a constant number of features for

variable length time series), this approach might hide

important information in the shape of consecutive val-

ues. Consequently, many approaches that use raw-values

time series have been proposed. However, it should be

noted that, although raw-based methods use the raw

time series as input, they still perform feature extraction

internally. Features are usually extracted within the first

steps of the model and it is a learned process, in contrast

to the static feature extraction used in feature-based

methods. While other relevant classification methods

could also be considered in this category [96], we have

carefully selected those that have demonstrated strong

performance in recent evaluations [66]. Our choices also

aim to cover the broadest possible range of methods,

ensuring diversity across different approaches.

[Rocket] Among the recent raw-values methods, Mini-

Rocket [31] is one of the state-of-the-art time series

classification methods. The latter consists of a feature

extraction step and a classification step. More specif-

ically, MiniRocket works by transforming input time

MSAD: A Deep Dive into Model Selection for Time series Anomaly Detection 11

series using a small, fixed set of convolutional kernels

and using the transformed features to train a logistic

regression classifier (using stochastic gradient descent).

We refer to MiniRocket as Rocket.

4.2.3 Convolutional-based classification

Convolutional-based approaches take as input raw-values

of time series and have been shown to be accurate for

time series classification [18].

[ConvNet] A Convolutional Neural Network (CNN)

[69] is a type of deep learning neural network widely

used in image recognition that is specially designed to

extract patterns through data with a grid-like structure,

such as images, or time series. A CNN uses convolution,

where a filter is applied to a sliding window over the

time series. The ConvNet architecture proposed in [92]
is composed of three stacked Convolutional blocks fol-

lowed by Global Average Pooling (GAP), and a Softmax

activation function. Each Convolutional block is com-

posed of a convolutional layer (used with a kernel length

of 3) followed by a batch normalization layer, followed

by a ReLU activation function is applied.

[ResNet] The Residual Network (ResNet) architec-

ture [45] was introduced to address the gradient vanish-

ing problem encountered in large CNNs [84]. A ResNet

is composed of several blocks connected together with

residual connections (i.e., identity mapping). For time

series classification, a ResNet architecture has been pro-

posed in [92], and has demonstrated strong classifica-

tion accuracy [33]. It is the same architecture as the
previously described ConvNet, with additional residual

connections between convolutional blocks.

[InceptionTime] The model consists of a network us-
ing residual connections and convolutional layers with

kernels of variable lengths [34]. Such a network uses

three Inception blocks that replace the traditional resid-

ual blocks that we can find in a ResNet architecture.

Each Inception block consists of a concatenation of con-

volutional layers using different sizes of filters. For each

block, the time series is fed to three different 1D con-

volutional layers with different kernel sizes (10, 20, and

40) and one Max-Pooling layer with kernel size 3. The

last step consists of concatenating the previous four lay-

ers along the channel dimension and applying a ReLU
activation function to the output, followed by batch

normalization. The convolutional layers have 32 filters

and a stride parameter of 1.

4.2.4 Transformer-based classification

Transformer-based approaches were initially introduced

for Natural Language Processing [90]. Such methods

can easily be adapted for time series classification tasks,

and in this paper we propose SiT (Signal Transformer),

an extension of a recent computer vision transformer

approach [32]. SiT first starts by projecting the input

to the latent space with an embedding step. After the

embedding step, the input is mapped to a D dimensional

space (we use D = 256 in the rest of the paper) that

serves as input to an encoder. For SiT, we use an encoder

originally proposed for computer vision tasks [90] that

consists of multiple blocks. Each block has an alternat-

ing multi-headed self-attention block and a feed-forward
layer, both preceded by a normalization step and a resid-

ual connection. We now describe the different embedding

steps in detail in the following paragraphs. In the ex-

perimental evaluation, we consider the SiT architecture

with the four embeddings as four different methods.

[SiT-conv] This embedding uses a single convolutional

layer to map the time series into the latent space. The

convolutional layer has a kernel and stride of the same

length (we use a length of 16 throughout the rest of the

paper), essentially taking non-overlapping steps over the

time series. Finally, the convolutional layer has D filters

to match the input dimension of the SiT encoder.

[SiT-linear] The linear embedding [32] splits the input

time series into non-overlapping subsequences of length

lSiT (we use lSiT = 16 in the rest of the paper). Then,

each patch is linearly projected into D dimensions to

match the input dimension of the SiT encoder.

[SiT-stem] The stem embedding [94] consists of 3 con-

volutional layers with a kernel length of 3, a stride length

of 2, and a number of filters equal to 3, 5, and 7, respec-

tively. These three convolutional layers are then followed

by a last convolutional layer with D dimensions and a

kernel and stride length equal to 1. This embedding was

initially proposed to overcome unstable behavior while

training because of its early visual processing step.

[SiT-stem-ReLU] Similarly to the previous embedding,
the stem-ReLU embedding [91] consists of 4 convolu-

tional layers with kernel lengths of 7, 3, 3, 8, stride

lengths of 2, 1, 1, 8, and padding of 3, 1, 1, 0. The

number of filters for each convolutional layer is 3, except

the last one with D filters to match the SiT encoder’s

dimension.

4.3 Combining Anomaly Scores

Unlike selecting a single detector, which limits anomaly

detection to a single detector’s perspective, combining

detectors allows us to leverage complementary strengths

across multiple subsequences and anomaly types. This

combination process begins by using the model selector

to generate probability distributions over the detectors

12 Emmanouil Sylligardos1 et al.

Fig. 4 Taxonomy of time series classification approaches used
as model selection methods. We use the same color code for
each class in all figures in the paper.

for each subsequence of a time series (as shown in Fig-

ure 3 (c)). These distributions reflect the model’s pre-

diction of each detector’s relevance to each subsequence.

To combine these distributions into a final set of weights

for the entire time series, we employ two methods:

Average Strategy (Figure 3 (d.1)): We compute

the average probability distribution over all subsequences.

This results in a single average probability distribution

that reflects the overall likelihood of each detector being

the best choice. Formally, the aggregated probability

of a given detector Dj , noted P̄Dj , using the Average

strategy is defined as follows:

P̄Dj =
1

n

n∑
i=1

P
(i)
Dj

,where n =
⌈ |T |
ℓ

⌉
(2)

The final weights are computed by selecting the top-k

detectors and re-normalizing their probabilities.

Vote Strategy (Figure 3 (d.2)): For each subse-

quence, we extract the detector with the highest prob-

ability, effectively casting a vote for that detector. We

aggregate these votes across all subsequences. Formally,

the aggregated vote for a given detector Dj , noted V̄Dj
,

using the Voting strategy is defined as follows:

V̄Dj
=

n∑
i=1

1[
P

(i)
Dj

=maxk∈[1,m]P
(i)
Dk

],where n =
⌈ |T |
ℓ

⌉
(3)

As in the average method, we compute the final weights

by selecting the top-k detectors and converting their

votes to probabilities such that their sum is equal to 1.

Algorithm 1 summarizes the inference phase of our

proposed pipeline MSAD. Overall, our pipeline takes

four inputs: the time series data T , the model selector

M trained in advance, the number of detectors k to

be combined, and the combination method c (either

average or vote).

Algorithm 1 MSAD inference

1: function Run Inference(T , M , k, c)
2: Input:
3: T - Input time series
4: M - Model selector
5: k - Number of detectors to combine
6: c - Combination method
7: Output: Final anomaly score

▷ Model prediction per window
8: W ← Segment(T , M .input size)
9: P ← Predict(M , W)

▷ Average Strategy
10: if c = “average” then
11: P̄ ← Mean(P)
12: Keep Top K(P̄ , k)
13: w ← Normalize(P̄)

▷ Vote Strategy
14: else if c = “vote” then
15: V̄ ← Count Votes(P)
16: Keep Top K(V̄ , k)
17: w ← normalize(V̄)
18: end if

▷ Score computation
19: detectors← Select Detectors(w)
20: ST ← Run Detectors(T , detectors)
21: S̄T ← Weighted Average(ST , w)
22: return final score
23: end function

Initially, the input time series T is segmented into

non-overlapping windows W based on the input size ℓ of

the model selector M , as described in Section 4.1. Sub-

sequently, the model selector generates the probabilities

P for each segment in W . Depending on the chosen com-

bination method c, the algorithm computes the weights

for the detectors. The final combined anomaly score S̄T

for the time series is computed as S̄T =
∑k

i=1 wi ·ST,Di
.

This approach ensures that the final score integrates

information from multiple detectors, weighted according

to their relevance, as predicted by the model selector.

5 Experimental Evaluation

We now describe in detail our experimental analysis.

For additional information, we make all our material

publicly available online [22] and provide an interactive

WebApp [23] for navigating and exploring the experi-

mental results.

5.1 Experimental Setup and Settings

Technical setup: We implemented the deep learning-

based model selection methods in Python 3.5 using the

PyTorch library [76]. For the feature-based approach,

we used the TSFresh [28] and scikit-learn [77] libraries.

MSAD: A Deep Dive into Model Selection for Time series Anomaly Detection 13

We then used sktime [62] for the Rocket algorithm im-

plementation. For the AD methods, we used the imple-

mentation provided in the TSB-UAD benchmark [75].

The evaluation was conducted on a server with Intel

Core i7-8750H CPU 2.20GHz x 12, with 31.3GB RAM,

and Quadro P1000/PCIe/SSE2 GPU with 4.2GB RAM,

and on Jean Zay cluster with Nvidia Tesla V100 SXM2

GPU with 32 GB RAM.

Datasets: For our evaluation purposes, we use the pub-

lic datasets identified in the TSB-UAD benchmark [75].

The benchmark comprises 16 datasets from various do-

mains as described in Table 1. Each dataset contains

multiple time series with point-level anomaly labels, re-

sulting in over 1980 distinct time series in total that we

use in our experiments.

For our in-distribution experiments, we divide the

benchmark into training, validation, and test sets. The

results presented in this section come exclusively from

the test set, which contains 497 time series that the
models have not seen during training.

For our out-of-distribution (OOD) experiments,

we use the leave-one-out approach. Each model is trained

on all datasets except one, which we later use for evalu-
ation (repeated for all datasets). This ensures that the

entire domain of the held-out dataset is unknown to the

model, simulating out-of-distribution scenarios that test

the transfer learning capabilities of the models.

Anomaly Detection Methods: For the experimental

evaluation, we select 12 different AD methods, summa-

rized in Table 1. Out of these, 8 are fully unsupervised

(i.e., they require no prior information on the anomalies

to be detected): IForest, IForest1, LOF, MP, NormA,

PCA, HBOS, and POLY. The remaining 4 methods

are semi-supervised (i.e., they require some informa-

tion related to normal behaviors), namely, OCSVM,

AE, LSTM-AD, and CNN. For all these anomaly detec-

tion baselines, we set the parameter as described in the

TSB-UAD benchmark [75].

Method Selection baselines: We then consider the

method selection baseline described in Section 4 and

summarized in Table 1. We first consider feature-based

methods, that extract features using TSFresh [28] li-

brary to select the correct AD method. We then con-

sider Rocket, state-of-the-art time series classifier. We

also include two types of deep learning classifiers; (i)

Convolutional-based neural networks and (ii) Transformer-

based neural networks. Table 1 summarizes the different

model selection methods (i.e., classifiers). In total, we

consider 16 methods, trained with window lengths ℓ

equal to 16, 32, 64, 128, 256, 512, 768, and 1024. In

total, we trained 128 models. In the following section,

we refer to a model M trained using a window length ℓ

as M -ℓ.

Parameter settings: We use the same 70/30 split of

the benchmark for all the classification models. There-

fore, we can compare models trained on the same train-

ing set and evaluated on the same set of time series.

Then, for the feature-based methods, we set the hyperpa-

rameters of the models based on the default parameters

of scikit-learn. Moreover, for Rocket, we use 10000 ker-

nels to extract the features and the logistic regression

with stochastic gradient descent (computed in batches)

for the classification step. Finally, for Convolutional and

Transformer-based methods, we use a learning rate of
10−5, with a batch size of 256 and an early stopping

strategy with a maximum of 50 epochs without improve-

ment. Moreover, we use the weighted cross-entropy loss

and set the maximum number of epochs to 10,000 (with

a training time limit of 20 hours). We use the default

hyperparameters for all classifiers to ensure fairness and

scalability, as hyperparameter tuning 128 different model

configurations would not be computationally feasible.

While these settings may not provide the best possible

results for every classifier, they allow for a reasonable

baseline. Our goal in this study is to assess the relative

performance across model families and input settings

rather than to optimize individual models.

Evaluation measures: We finally use four evaluation

measures, summarized in Table 1. For model selection

accuracy, we use the classification accuracy (i.e., the

number of anomaly detectors correctly selected divided

by the total number of time series). For anomaly de-

tection accuracy, we use both AUC-PR [30] and VUS-

PR [72] (with a buffer length equal to 10 points). For

execution time, we measure the training time (i.e., the

time required to train a model selection algorithm),

the selection time (i.e., the time a model selection ap-
proach needs to predict which detector to use), and

the detection time (i.e., the time required to predict

which detector to use, and to execute it). We focus on

threshold-independent evaluation measures (AUC-PR

and VUS-PR), as they provide a more robust assessment

of performance, but we also compute 14 evaluation mea-

sures in total, including threshold-dependent ones, in

our public repository to support practical applications.

5.2 Overall Evaluation

We first evaluate accuracy (classification and anomaly

detection) and execution time for all model selection

methods over the entire benchmark. We split the bench-

mark into a train and test set with 1404 and 497 time

series, respectively. Both sets contain time series from all

datasets. Thus, the models have examples of all available

domains. In Section 5.7, we evaluate the performance

14 Emmanouil Sylligardos1 et al.

Fig. 5 VUS-PR and Detection time (seconds) for all model selection approaches (showing only the window length and k that
maximize VUS-PR for each model) over a test set of 497 series from TSB-UAD. The methods are sorted: the most accurate
methods are at the top (a); the fastest methods are at the top (b)

.

MSAD: A Deep Dive into Model Selection for Time series Anomaly Detection 15

of the models when applied to unseen (i.e., not used in

the training set) datasets.

5.2.1 Accuracy Evaluation

We first analyze the accuracy of all model selection meth-

ods (using all window lengths) and compare them to the

Oracle, the Averaging Ensemble method (Avg Ensem-

ble), and the AD methods in the TSB-UAD benchmark.

Figure 5 (a) depicts the overall VUS-PR over the

entire TSB-UAD benchmark (i.e., each box-plot corre-

sponds to 497 accuracy values for the 497 time series

into the test set). The Convolutional-based approaches

are in dark blue, the Transformer-based approaches are

in yellow, the Feature-based approaches are in light blue,

Rocket models are in violet, and the AD methods of

the TSB-UAD benchmark are in light grey. The oracle

is the top box plot (in white), and the Avg Ensemble is

the orange box plot. The box plots are sorted based on

the median value (the mean accuracy of each model is

also displayed as a white circle). In total, we compare

234 models on 497 time series, comprising 128 model

selectors that were trained from scratch, 12 individual

AD methods from the TSB-UAD benchmark, and 2

baselines, namely the Oracle and Averaging Ensemble.

Out of the 128 trained models, the 4 top-performing

model selectors were further tested for combining mul-

tiple detectors. In Figure 5, we depict only the models

with the window length that leads to the best VUS-PR

for visual clarity. The method used to combine proba-

bilities and obtain the final weights is denoted by ’V’

for vote and ’Av’ for average. The subsequent number

represents the value of k, i.e., the number of detectors

whose scores were combined for the final result. For

example, the model at the top of Figure 5 (a) named

ConvNet-128-V 4 refers to a Convolutional-based model

selector that takes as input subsequences of length 128,

and uses the vote method to combine the probabilities

of the top 4 predicted detectors.

First, almost all model selection methods outper-

form the existing AD methods. We also see that most

model selection methods outperform the Avg Ensemble

approach. Thus, we can conclude that model selection

using time series classifiers significantly improves the

state-of-the-art methods.

First, almost all model selection methods outper-

form the existing AD methods. We also see that most

model selection methods outperform the Avg Ensemble

approach. Thus, we can conclude that model selection

using time series classifiers significantly improves the

state-of-the-art methods. However, we also observe that

model selectors exhibit higher variance than individual

anomaly detectors. We further discuss this at the end

of this section.

More interestingly, we observe a partition in the rank-

ing of the methods. First, Convolutional and Transformer-

based approaches produce equivalent accuracy values

and represent the top-48 methods (Note that not all

models are shown here; in total, we evaluated 234 mod-

els). However, whereas all the Convolutional-based meth-

ods are in the top-48, a few of the Transformer-based

approaches are further away in the ranking. Moreover,

the first non-deep learning method is Rocket-128-V 1

(ranked 49), followed closely by kNN models. We also

observe that the Rocket approaches are very spread

across the ranking (Rocket-128-V 1 is ranked 50, and
Rocket-16-V 1 is ranked 124). This implies that the

choice of window length strongly impacts accuracy. Over-

all, the best selection model is over 2 times more accurate

than the best AD method in TSB-UAD.

Additionally, we discover that combining detectors

(i.e., model selectors with k > 1) yields slightly bet-

ter results in the in-distribution setting (we will later

demonstrate that the results are greatly improved in the

out-of-distribution (OOD) setting). Almost all models

that combine multiple detectors outperform their single-

detector equivalents. Overall, the best selection model

that combines detectors, i.e. ConvNet-128-V 4 is 7.5%
more accurate than the best selection model with k = 1,

i.e., ResNet-1024-V 1.

Then, we also note that all model selection methods

are significantly less accurate than the Oracle. For ex-

ample, in Figure 5(a), there is a gap of 0.12 VUS-PR

between the Oracle and the best model selection method,

indicating substantial room for improvement. Moreover,

all model selection methods exhibit high variance in

accuracy, as shown by the box plots in Figure 5(a), in-

cluding the Oracle, which is the theoretically perfect

selector. This is primarily due to the presence of particu-

larly difficult time series for which none of the available

detectors perform well. As a result, even perfect model

selectors cannot guarantee high performance across all

cases. Making model selection more stable and robust

remains an important challenge for future work. Despite

this, model selectors consistently achieve strong perfor-

mance on a large subset of time series, making them

a more effective and flexible solution overall compared

to individual detectors that often underperform consis-

tently. That said, this trend does not hold in the OOD

setting, as discussed in Section 5.7. There, the SiT -512

model selector, when combining multiple detectors, al-

most guarantees equal to or better performance than

the best individual AD method.

16 Emmanouil Sylligardos1 et al.

Fig. 6 Distribution of the selected models for five models (the best for each category) compared to the distribution of the labels
(in black). Comparisons for time series containing (b) sequence vs. point anomalies, and (c) unique vs. multiple anomalies.

Fig. 7 Execution time vs. length of model selection methods.

5.2.2 Model selected distribution

We then examine the predictions, i.e. the detectors,

selected by the model selection approaches. In this

section, we consider only ResNet-1024-V 1, ConvNet-

128-V 1, SiT -stem-512-V 1 (or SiT -512-V 1 for brevity),

kNN -1024-V 1, and Rocket-128-V 1. These are the top-

performing, single-detector models (evaluated using ei-

ther AUC-PR or VUS-PR), based on the analysis con-

ducted in Section 5.2. Additional information on AUC-

PR evaluation is available on our website [23]. The

corresponding Av1 models yield nearly identical results

and are therefore not displayed here, but they can be

reviewed in the project’s repository.

Figure 6 (a) depicts the distribution of the chosen

detectors by the model selection approaches mentioned

above for the entire TSB-UAD benchmark. The black

bar corresponds to the true labels (i.e., the best detec-

tors). This analysis provides insight into how well model

selectors capture the underlying time series characteris-

tics and the types of anomalies they are most suited to

detect. We observe from Figure 6 (a) that kNN -1024-

V 1 and Rocket-128-V 1 are significantly overestimating

the detector NormA (as well as LOF for Rocket-128-V 1

and HBOS for kNN -1024-V 1), whereas ResNet-1024-

V 1, ConvNet-128-V 1, and SiT -512-V 1 are matching

the correct distribution of detectors (we observe a slight
underestimation of LOF, IForest1 and an overestimation

for POLY). Overall, the deep learning-based model selec-

tors show significantly better alignment with the ground

truth, compared to the kNN and Rocket models, which

tend to over-predict the majority class.

Moreover, we measure the prediction distribution

differences for time series containing sequence anomalies

(Figure 6 (b.1)) and point anomalies (Figure 6 (b.2)),

and for time series containing only one anomaly (Fig-

ure 6 (b.3)) and multiple anomalies (Figure 6 (b.4)).

This breakdown allows us to evaluate how each classi-

fier generalizes across different types of anomalies and

structural variations in the data. We first observe that

predictions of model selection methods are significantly

different for time series with sequence and point anoma-

lies. More specifically, ResNet-1024-V 1, ConvNet-128-

V 1, and SiT -512-V 1 are correctly selecting the method

CNN, whereas kNN -1024-V 1 and Rocket-128-V 1 are

over selecting LOF and NormA for time series con-

taining point anomalies. CNN and Transformer-based

selectors are more sensitive to local spike-like patterns

typical of point anomalies, while kNN and Rocket are

not able to accurately identify them. However, for se-

quence anomaly, as it represents most of the TSB-UAD

benchmark, the prediction distribution is similar to the

one over the entire benchmark. Moreover, the correct

predictions of ResNet-1024-V 1, ConvNet-128-V 1, and

SiT -512-V 1 for time series containing point anomalies

are interesting, as this information is not provided in

the training step. Therefore, the deep learning-based

MSAD: A Deep Dive into Model Selection for Time series Anomaly Detection 17

model selectors found discriminant features in the time

series that indicate whether it might contain a point or

a sequence anomaly.

Finally, we measure the differences between the pre-

diction distributions of model selection methods between

time series containing unique and multiple anomalies.

The true labels (black bars in Figure 6 (b.3) and (b.4))

indicate that, for unique anomalies, the best detectors

are LOF, NormA, and HBOS, and for multiple anoma-

lies, the best detector is NormA. We observe that all

model selection approaches tend to prefer LOF, NormA,

and HBOS for time series containing a unique anomaly.

The latter shows that model selection methods can ex-
tract discriminant features that indicate if one time

series is more likely to have multiple anomalies, with-

out explicit supervision. However, in cases of multiple

anomalies, ResNet, ConvNet, and SiT correctly iden-

tify that HBOS and LOF do not perform as well as

NormA, and adjust their predictions accordingly. This

adaptive behavior is not observed in the kNN and

Rocket models.

5.2.3 Execution Time Evaluation

We now discuss the execution time of model selection

methods. In this section, we focus only on the detection

time (i.e., the number of seconds required by a method

to predict which detectors to use and to run them). Fig-

ure 5 (b) depicts the detection time (on a log scale) for
each method and detector in the TSB-UAD benchmark.

We first observe that the Avg Ensemble, which requires

running all detectors, is significantly slower than the

rest. Then, all model selection methods are of the same

order of magnitude as the detectors. Even models with

k > 1 remain within the same order of magnitude as

the anomaly detectors, although, as expected, they are

noticeably slower than single-detector models. We also

observe that all the deep learning methods are slower

than the feature-based approaches, except for kNN -

1024-V 3 and kNN -1024-Av8 which are slower due to

selecting more than one detector. This is surprising, as

detection time mainly depends on the chosen detector.

Overall, we conclude that method selection is the only

viable solution that outperforms the existing AD meth-

ods and can be executed in the same order of magnitude

of time.

Finally, in Figure 7, we depict the scalability of

single-detector model selection methods versus individ-

ual detectors and the Avg Ensemble approach as the

time series length increases (the average equivalents of

the model selectors shown, yield identical results and are

thus not depicted here). We observe that, on average, the

execution time of model selection approaches increases

Fig. 8 (a) Accuracy ((a.1) classification accuracy, (a.2) VUS-
PR and (a.3) AUC-PR) and (b) execution time ((b.1) training
time, (b.2) selection time and (b.3) detection time) versus
window length ℓ.

similarly to the execution time of individual detectors

when the time series length increases. We also observe

that the time series length significantly impacts the Avg
Ensemble approach execution time. The latter shows

the scalability issue of the Avg Ensemble approach for

very large time series.

5.3 Influence of the Window Length

In this section, we analyze the influence of the win-

dow length on classification accuracy (Figure 8 (a.1)),

anomaly detection accuracy (Figure 8 (a.2) and (a.3))

and execution time (Figure 8 (b)). We perform the analy-

sis per group of methods (i.e., averages for Convolutional,

Transformer, Rocket, and Feature-based methods), fo-

cusing exclusively on single-detector models that use

the vote combination method.

We first observe in Figure 8 (a) that Convolutional-

based and Transformer-based methods outperform the

best AD methods (green dashed line in Figure 8 (a.2)

and (a.3)), the Avg Ensemble approach (orange dotted

line in Figure 8 (a.2) and (a.3)), Rocket and Feature-

based methods, whatever the length used with regard

to the classification accuracy, VUS-PR, and AUC-PR.

Deep learning-based model selectors are more effective at

18 Emmanouil Sylligardos1 et al.

Fig. 9 Correlation between accuracy and time series characteristics vs. the window length used to train the model selection.

capturing time series characteristics that are relevant for

model selection, especially with longer windows lengths

that allow them to better observe structure and trends.

We also note that Transformer-based approaches are

less accurate for shorter lengths (less than 100 points),

whereas the accuracy of Convolutional-based approaches

is stable regardless of the window length. This difference

likely reflects that Transformer models require more con-

text to build meaningful representations, while Convolu-

tional models can extract local patterns even from short

windows. Overall, Transformer and Convolutional-based

approaches converge to the same anomaly detection

accuracy (both for VUS-PR and AUC-PR) when the

window length increases.

Furthermore, we observe that Rocket and Feature-

based approaches are both significantly faster to be

trained than Convolutional and Transformer-based ap-

proaches (Figure 8 (b.1)). We make the same observation

for selection time (Figure 8 (b.2)). For the detection

time, we observe that Rocket execution time is very

unstable when compared to the other approaches. The

latter means that the choice of length strongly impacts

the model selection performed by Rocket, leading to

very diverse selection and execution times. Rocket may

be more sensitive to how much context is available, and

that its selection decisions vary more depending on the

windowed input size.

In the general case, we can make the following two

statements: (i) A large window length results in faster

selection time for the model selection process and better

accuracy for Convolutional and Transformer-based ap-

proaches. Deep architectures benefit from having more

input information, making them better suited to long,

structured time series. (ii) Feature-based approaches are

significantly faster but less accurate than Convolutional-

based and Transformer-based approaches, regardless of

the window length used.

5.4 Influence of Datasets and Anomaly Types

In this section, we evaluate the influence of datasets and

anomaly characteristics on model selection accuracy. We

perform the analysis per group of methods (i.e., average

performances for Convolutional, Transformer, Rocket,

and Feature-based methods), focusing exclusively on
single-detector models that use the vote combination

method.

For this experiment, we evaluate the dataset and

anomaly characteristics (i.e., the number of time se-

ries, the average length of the time series, the average

number of anomalies and the average anomaly length).

Figure 9 depicts these characteristics (x-axis) versus

the average increase of accuracy (VUS-PR of the model
selection method subtracted by VUS-PR of the best

AD method for each dataset) for each model selection

method using a given window length. For instance, if a

point (one model selection method on one dataset) is

positive (above the black dotted line), then this model

is more accurate on the corresponding dataset than
the best AD method selected on this same dataset. We

observe low correlations between dataset and anomaly

characteristics (i.e., −0.6 < r < 0.6). Thus, we cannot

conclude any statement on the impact of these charac-

teristics and the model selection methods’ performances.

However, we can make the following observations.

First, Figure 9 (a) shows that the number of time

series is impacting more substantially Convolutional

and Transformer-based approaches with large window

lengths. For the average time series length, only Feature-

based approaches are positively impacted. On the con-

trary, Convolutional and Transformer-based approaches

are less accurate when the average time series length is

increasing. These observations imply that deep learning-

based selectors (ConvNet, SiT) benefit more from hav-

ing a larger number of training examples rather than

longer sequences. This is likely because additional time

series provide more diverse information, whereas longer

sequences may contain more repetitive patterns rather

MSAD: A Deep Dive into Model Selection for Time series Anomaly Detection 19

Fig. 10 VUS-PR vs k, i.e. detectors selected (the 4 plots on the left), and Execution time vs k (the 4 plots on the right). The
analysis is performed per model. The yellow rectangle highlights the k maximizing accuracy.

than new information. In contrast, Feature-based ap-

proaches benefit from both more and large instances.

Then, Figure 9 (b) shows that Feature-based ap-

proach accuracy is increasing with the anomaly charac-

teristics, whereas these characteristics negatively impact

(or not at all) Convolutional and Transformer-based

methods. More specifically, we observe that Feature-
based approaches (regardless of the window length) are

more accurate with time series containing large anoma-

lies, and Convolutional-based approaches are less ac-

curate (irrespective of the window length) when the
number of anomalies increases. This may suggest that

more and larger anomalies have a stronger impact on
the statistical features that Feature-based model selec-

tors rely on, thereby aiding their performance. Time

series with such anomalies are likely to stand out more

in terms of statistical features that are being extracted,

making them easier to classify correctly.

We note that Rocket’s correlation with the dataset

and the anomaly characteristics is unstable. The latter

is explained by the fact that the model prediction of

Rocket is sensitive to the window length (as described

in Section 5.3). Thus, it is impossible to conclude on

Rocket’s performances, datasets, and anomalies.

5.5 Influence of k and Combination Methods

In this section, we analyze the relationship between the

anomaly detection accuracy of model selection methods

(Figure 10 (a)) and their execution time (Figure 10 (b))

in relation to k, i.e. the number of detectors combined

to produce the final anomaly score.

First, in Figure 10 (a), we observe that all models

surpass the Avg Ensemble in anomaly detection accu-

racy, and that there is a consistent improvement when

combining more than one detector (i.e., k > 1). However,

this improvement is not constant, as the gains plateau

after a certain point. More specifically, ConvNet-128,

ResNet-1024, and SiT -512 achieve peak performance

at k = 5, while kNN -1024 peaks at k = 8. Further-

more, for every model, the average combination method
yields better results than the vote method. Although the

difference between the two methods is not substantial,

it is sufficient to prioritize the average method when

considering only the accuracy as main criteria.

Furthermore, not all models exhibit the same im-

provement in anomaly detection accuracy when combin-

ing multiple detectors. Specifically, ConvNet-128 shows

an increase of 6.9%, ResNet-1024 4.5%, SiT -512 4.3%

and kNN -1024 11.5%. Interestingly, kNN -1024 bene-

fits the most when combining detectors, while overall

ConvNet-128 achieves the highest VUS-PR. Although

combining detectors is promising, a gap remains when

compared to the performance of the Oracle.

In Figure 10 (b), we observe that the Vote method is

consistently faster as k increases compared to Average.

This occurs because, although the model is instructed

to use, for example, k = 9, the Vote method frequently

selects fewer detectors (i.e., k < 9). This happens be-

cause some detectors are simply never selected across

the windows of a time series, and thus can not con-

20 Emmanouil Sylligardos1 et al.

tribute to the final result. In simple terms, the actual k

in the Vote method is often smaller than the predefined

k. This presents an opportunity to design a model selec-

tion approach that combines multiple detectors without

requiring the parameter k, as the Vote method naturally

converges to a value of k. Importantly, while there is a

difference in anomaly detection accuracy between the

two combination methods, it is not substantial enough

to disregard this concept from future research.

Finally, we observe a consistent increase in detec-

tion time across models as k increases. However, the

highest-performing models (highlighted in yellow boxes

in Figure 10 (b)) remain significantly faster than the Avg

Ensemble, highlighting the value of running a subset of

detectors for anomaly detection rather than all of them.

As a rule of thumb, and based on the results described

above, k = 5 can be set as a default parameter.

5.6 Detection vs Classification Accuracy

In this section, we analyze the relationship between

the model selection methods’ classification accuracy

and the resulting anomaly detection accuracy. In this

experiment, we consider VUS-PR as anomaly detection

measure. For this experiment, we extend the definition

of Oracle (introduced in Section 3) as follows:

Definition 3 We define Oraclek,j as a hypothetical

model selection method that has a classification accuracy

of k ∈ [0, 1] and selects the jth best detector (among m

detectors) in cases of misclassification. Thus, Oracle1,1
always selects the best detector, and Oracle0,m always

selects the worst detector. Finally, we define Oraclek,R
as the model selection method with a classification ac-

curacy of k ∈ [0, 1] and that randomly selects a detector

in misclassification cases.

Figure 11 depicts the latter comparison for all datasets

(Figure 11 (a)), and two specific datasets (Figure 11 (b)).

We first observe a strong correlation between classifica-

tion accuracy and anomaly detection accuracy for each

specific dataset and, on average, all datasets. However,

methods belonging to different families (e.g., Feature-

based or Transformer-based) are not performing the

same. For instance, Figure 11 (a) shows that Feature-

based approaches are not accurate for YAHOO but are

the best models for KDD21. Overall, we observe that

Convolutional and Transformer-based are more accurate

in classification and anomaly detection (Figure 11(b)).

We also depict in Figure 11 (a) the lines corre-

sponding to Oraclek,2, Oraclek,3, Oraclek,4, Oraclek,R,

and Oraclek,m. For a given classification accuracy, k,

Oraclek,2, and Oraclek,m correspond to the upper and

Fig. 11 Classification vs. anomaly detection accuracy (VUS-
PR) for (a) all datasets and (b) two specific datasets.

lower bounds. The latter means that model selection

approaches with a given classification accuracy will be
within the previously mentioned upper and lower bounds

for VUS-PR (i.e., in the gray zone in Figure 11 (a)).

Thus, any model selection method that has a classifi-

cation accuracy above 0.53 (intersection between the

two dashed red lines) is better than the current best

AD method in TSB-UAD (i.e., red dashed line in Fig-

ure 11 (b)). This is true only for a few Convolutional-

and Transformer-based methods in our experiments.

Moreover, we compare the positions of the model

selection methods with regard the Oraclek,3, Oraclek,4,

and Oraclek,R. We observe in Figure 11 (b) that almost

all methods are above Oraclek,R. The latter means that

the model selection methods do not randomly select

detectors when the wrong detector is selected. Moreover,

most models follow the Oraclek,4 line. The latter indi-

cates that the models averagely select the third-best in

case of misclassification. Finally, the observations dis-

cussed above demonstrate three important statements:

(i) classification accuracy can be used as a proxy for

anomaly detection accuracy, and without computing the

MSAD: A Deep Dive into Model Selection for Time series Anomaly Detection 21

Fig. 12 Out-of-distribution anomaly detection accuracy (nor-
malized VUS-PR) versus k per model selection method for
Average and Vote combination methods.

anomaly detection accuracy, we can provide an anomaly

detection accuracy lower and upper bounds; (ii) the

gap between the best model selection and the top right

corner of the gray zone shows that there is a signifi-

cant margin for improvement for future work; (iii) the

vertical gap between the models and the upper bound

(Oraclek,2) shows that there is an important margin of

improvement in the prediction rank: a model with the

same classification accuracy can gain up to 0.1 VUS-PR
if it better selects models.

5.7 Out-of-Distribution Experiments

Up to this point, we tested the performances of the

model selection methods when trained on a subset of

the benchmark with examples from all 16 datasets avail-

able. These results are interesting when we suppose that

a user wants to analyze datasets similar to the one con-

sidered in the benchmark. In some cases, though, we

may want to analyze time series that are not similar

to any of those in the benchmark. Therefore, in this

section, we measure the ability of the model selection

methods to be used in an OOD manner (i.e., used for

datasets that are not similar to the one used in the train-

ing set). We run the following experiment. We train the

model selection methods on 15 datasets (70% of the

time series for training and the other 30% for valida-

tion), and we test on the remaining one. We try all 16

possible test partitions, and (for brevity) report 8 of

these tests in Figure 13 (a). We only show the results for

the best-performing model selection methods, namely,

ResNet-1024, ConvNet-128, SiT -512, kNN -1024 and

the Averaging ensemble for comparison.

Fig. 13 Out-of-distribution experiment. Comparison of model
selection approaches (a) on average, and (b) per dataset, with
(left) k = 1 and (right) k = 8

22 Emmanouil Sylligardos1 et al.

Figure 12 shows the normalized VUS-PR, denoted

V US-PR, for each model selection approach, across all

values of k, and both combination methods, namely

Average and Vote. A V US-PR value of 1 corresponds

to the Oracle’s performance on each test, while 0 cor-

responds to the worst AD method. First, as in the

in-distribution setting, we observe that the Average com-

bination method consistently outperforms Vote when

combining detectors. Unlike the in-distribution setting,

the anomaly detection accuracy does not plateau af-

ter a certain k, but instead continuous to improve as
k increases. Notably, ConvNet and ResNet reach the

performance of the Avg Ensemble at k = 5. Thus, com-

bining detectors allows for a significant reduction in exe-

cution time, as models can achieve similar performance

to the Avg Ensemble by running only 5 detectors in-

stead of 12. Finally, we observe that the best-performing

model is ConvNet-128, and that SiT -512 shows remark-

able improvement, gaining more than 0.1 VUS-PR after

combining only 4 detectors.

Figure 13 (a) illustrates the normalized VUS-PR

for all 16 tests. The figure shows that when using only

single-detector models, we fail to match the performance

of the Avg Ensemble in the OOD setting and barely sur-

pass the accuracy of the best AD method, as measured

on the train set (dotted green line in Figure 13 (a)).

However, by combining detectors, we can both achieve

the performance and reduce the execution time of the

Avg Ensemble. As with the in-distribution setting, we

observe that anomaly detection benefits from multiple-

detector model selection in the OOD setting. Another

observation is that while SiT -512 does not achieve the

highest performance, its box plot skewers suggest that

it is the only model that can almost guarantee equal to

or better performance than the best AD method on the
train set.

Figure 13 (b) depicts the average accuracy for 8

out of the 16 tests (datasets excluded from the train-

ing set and used for testing). We observe very different

results. First, for Electrocardiograms (SVDB), neither

the model selection methods nor the Avg Ensemble out-

performs the best AD method (selected on the training

set). However, for various kinds of sensor data (GHL

and Occupancy), model selection methods and the Avg

Ensemble do outperform the best AD method. This dif-

ference can be explained by the fact that ECGs exhibit

less diverse behaviors (i.e., repetitive normal patterns

and similar anomalies) than other sensor data. Con-

sequently, it is more likely to have one method that

performs well on all ECG time series. This observation

is supported by the fact that the performance of the

best AD method closely matches that of the Oracle for

SVDB. Interestingly, in the GHL dataset, combining

detectors, i.e., k > 1, reduces the performance. This

indicates the poor ranking produced by model selectors

for this specific dataset, confirming the need for future

research towards rank-based training and prediction for

model selection (i.e., conclusion of Section 5.6). Finally,

the use of k > 1 is critical to ensure performance similar

to or better than Avg Ensemble, as seen in the Occu-

pancy and Genesis datasets. Combining detectors to

produce the final anomaly score is noticeably beneficial.

Overall, we observe that: (i) combining multiple de-

tectors (i.e., k > 1) is crucial in the out-of-distribution

setting to achieve performance comparable to the Avg

Ensemble; (ii) the performance of model selection meth-

ods varies significantly across different types of time

series data; (iii) classifiers as model selection can be

used for TSAD, even though similar time series are not

in the training set.

6 Conclusion

TSAD is a challenging problem and an important area

of research with applications in many scientific, societal,

and industrial domains. Despite the multitude of solu-

tions proposed in the literature, we observe that there

exists no method that outperforms all others when mea-

sured on large heterogeneous benchmarks. Based on

our experimental evaluation, we answer the questions

of Section 3.5 as follows:

1. Classification as Model selection: We observe

that time series classification methods accurately se-

lect anomaly detection models. Overall, Transformer

and Convolutional-based model selection methods

outperform each individual detector. Nevertheless,

there is a large gap between the best method and

the Oracle, motivating future work toward that di-

rection. An interesting next step could involve incor-

porating detector diversity into the model selection

process. We observe that certain detectors exhibit

strong correlations in their anomaly score patterns,

while others are largely uncorrelated. This suggests

that combining diverse (i.e., less correlated) but accu-

rate detectors could yield more informative anomaly

scores than combining similar ones. Integrating such

diversity-aware strategies while still preserving com-

putational efficiency remains an open and promising

challenge for future work.

2. Single vs. multiple detectors: We find that com-

bining even a few detectors significantly improves

performance. In the OOD case, combining detectors

(k > 1) is necessary to outperform the Avg Ens.

3. Ensembling or selecting: We observe that model

selection is significantly more accurate than the En-

MSAD: A Deep Dive into Model Selection for Time series Anomaly Detection 23

sembling method. Moreover, in the in-distribution

setting, k = 1 is sufficient to significantly outperform

Ensembling.

4. Features or Raw values: We observe that raw-

based methods are more accurate on average than

feature-based approaches.

5. Out-Of-Distribution: (1) and (3) hold. However,

for (2), we observe that model selection with k = 1

is not enough to reach the performance of the en-

sembling method when applied to time series very

different from those in the training benchmark. Nev-
ertheless, k = 5 enables model selection to reach the

accuracy of ensembling while reducing significantly

the overall execution time. Finally, model selection

with larger values of k > 5 outperforms ensembling

in the out-of-distribution setting, however the benefit

in terms of execution time is rather limited.

The above observations point to promising directions for
future work in AutoML frameworks that rely on model

selection. As mentioned in Section 5.6, improving the

rank prediction could significantly improve the anomaly
detection accuracy. Moreover, model selection could be

trained to choose the best compromise between accu-

racy and execution time, improving the overall inference

time of model selection. Finally, to support real-world

adoption, we provide the following recommendations:

1. Based on our experiments, we recommend using

window sizes of at least 128. Values like 512 or 1024

are both effective, so users may choose based on the

expected size of the patterns in their data.

2. Deep learning model selectors, such as ConvNet-
128 and SiT -512, perform consistently well in both

in-distribution and OOD scenarios, making them

reliable default choices.

3. For combining predicted detectors, both voting and

averaging are accurate in-distribution. However, in

the OOD setting, voting provides a better trade-off

between performance and efficiency.

4. In the in-distribution case, selecting a single detector

is often sufficient. In contrast, combining multiple

detectors is crucial for OOD robustness, where even

k = 5 enables strong performance gains, while re-

maining computationally efficient.

These insights aim to help practitioners apply model

selection techniques effectively in practice and high-

light the need for more robust strategies in time series

anomaly detection. All our code is made available at

https://github.com/sylligardos/MSADv2.

Acknowledgements Supported by EU Horizon projects
AI4Europe (101070000), TwinODIS (101160009), DataGEMS
(101188416) and RECITALS (101168490), by Y ΠAIΘA &

NextGenerationEU project HARSH (Y Π3TA−0560901) that
is carried out within the framework of the National Recovery
and Resilience Plan “Greece 2.0” with funding from the Euro-
pean Union – NextGenerationEU, and Cyberté (BPI-funded
project). This work was granted access to the HPC resources
of IDRIS under the allocation 2025-A0191012641 made by
GENCI.

References

1. http://iops.ai/dataset_detail/?id=10
2. Aggarwal, C.C.: An introduction to outlier analysis. In:

Outlier analysis, pp. 1–34. Springer (2017)
3. Aggarwal, C.C.: Outlier Analysis, 2 edn. Springer Inter-

national Publishing (2017)
4. Aggarwal, C.C., Sathe, S.: Theoretical foundations and

algorithms for outlier ensembles. SIGKDD Explor. Newsl.
17(1), 24–47 (2015)

5. Ahmad, S., Lavin, A., Purdy, S., Agha, Z.: Unsuper-
vised real-time anomaly detection for streaming data.
Neurocomputing 262, 134–147 (2017)

6. Antoni, J., Borghesani, P.: A statistical methodology for
the design of condition indicators. Mechanical Systems
and Signal Processing 114, 290–327 (2019)

7. Bach-Andersen, M., Rømer-Odgaard, B., Winther, O.:
Flexible non-linear predictive models for large-scale wind
turbine diagnostics. Wind Energy 20(5), 753–764 (2017)

8. Bachlin, M., Plotnik, M., Roggen, D., Maidan, I., Haus-
dorff, J.M., Giladi, N., Troster, G.: Wearable assistant
for parkinson’s disease patients with the freezing of gait
symptom. IEEE Transactions on Information Technology
in Biomedicine 14(2), 436–446 (2010)

9. Bar-Joseph, Z., Gerber, G.K., Gifford, D.K., Jaakkola,
T.S., Simon, I.: Continuous representations of time-series
gene expression data. Journal of Computational Biology
10(3-4), 341–356 (2003)

10. Bariya, M., von Meier, A., Paparrizos, J., Franklin, M.J.:
k-shapestream: Probabilistic streaming clustering for
electric grid events. In: 2021 IEEE Madrid PowerTech,
pp. 1–6 (2021)

11. Barnet, V., Lewis, T.: Outliers in Statistical Data. John
Wiley and Sons, Inc. (1994)

12. von Birgelen, A., Niggemann, O.: Anomaly detection and
localization for cyber-physical production systems with
self-organizing maps. IMPROVE-Innovative Modelling
Approaches for Production Systems to Raise Validatable
Efficiency: Intelligent Methods for the Factory of the
Future pp. 55–71 (2018)

13. Biswal, B.B., Mennes, M., Zuo, X.N., Gohel, S., Kelly, C.,
Smith, S.M., Beckmann, C.F., Adelstein, J.S., Buckner,
R.L., Colcombe, S., et al.: Toward discovery science
of human brain function. Proceedings of the National
Academy of Sciences 107(10), 4734–4739 (2010)

14. Blázquez-Garćıa, A., Conde, A., Mori, U., Lozano, J.A.:
A review on outlier/anomaly detection in time series
data. ACM Computing Surveys 54(3), 1–33 (2021)

15. Boniol, P., Linardi, M., Roncallo, F., Palpanas, T.: Auto-
mated anomaly detection in large sequences. In: ICDE,
pp. 1834–1837 (2020)

16. Boniol, P., Linardi, M., Roncallo, F., Palpanas, T., Mef-
tah, M., Remy, E.: Unsupervised and scalable subse-
quence anomaly detection in large data series. The
VLDB Journal (2021)

17. Boniol, P., Liu, Q., Huang, M., Palpanas, T., Paparrizos,
J.: Dive into time-series anomaly detection: A decade re-
view (2024). URL https://arxiv.org/abs/2412.20512

24 Emmanouil Sylligardos1 et al.

18. Boniol, P., Meftah, M., Remy, E., Palpanas, T.: dcam:
Dimension-wise class activation map for explaining mul-
tivariate data series classification. In: Z. Ives, A. Bonifati,
A.E. Abbadi (eds.) SIGMOD ’22, pp. 1175–1189. ACM
(2022)

19. Boniol, P., Palpanas, T.: Series2graph: Graph-based sub-
sequence anomaly detection for time series. Proc. VLDB
Endow. 13(12), 1821–1834 (2020)

20. Boniol, P., Paparrizos, J., Kang, Y., Palpanas, T., Tsay,
R.S., Elmore, A.J., Franklin, M.J.: Theseus: navigating
the labyrinth of time-series anomaly detection. Proc.
VLDB Endow. 15(12), 3702–3705 (2022)

21. Boniol, P., Paparrizos, J., Palpanas, T., Franklin, M.J.:
Sand: streaming subsequence anomaly detection. Proc.
VLDB Endow. 14(10), 1717–1729 (2021)

22. Boniol, P., Sylligardos, E.: Our open-source code for this
paper. https://github.com/boniolp/MSAD (2023)

23. Boniol, P., Sylligardos, E., Paparrizos, J., Trahanias, P.,
Palpanas, T.: Adecimo: Model selection for time series
anomaly detection. In: ICDE, pp. 5441–5444 (2024)

24. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training al-
gorithm for optimal margin classifiers. COLT ’92, p.
144–152 (1992)

25. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof:
Identifying density-based local outliers. In: Proceedings
of the 2000 ACM SIGMOD, pp. 93–104 (2000)

26. Brockwell, P.J., Davis, R.A.: Introduction to time series
and forecasting. springer (2016)

27. Candanedo, L.M., Feldheim, V.: Accurate occupancy
detection of an office room from light, temperature, hu-
midity and co2 measurements using statistical learning
models. Energy and Buildings 112, 28–39 (2016)

28. Christ, M., Braun, N., Neuffer, J., Kempa-Liehr, A.W.:
Time series feature extraction on basis of scalable hypoth-
esis tests (tsfresh – a python package). Neurocomputing
307, 72–77 (2018)

29. Christ, M., Kempa-Liehr, A.W., Feindt, M.: Distributed
and parallel time series feature extraction for industrial
big data applications. ArXiv (2016)

30. Davis, J., Goadrich, M.: The relationship between
precision-recall and roc curves. In: Proceedings of the
23rd International Conference on Machine Learning,
ICML ’06, p. 233–240 (2006)

31. Dempster, A., Schmidt, D.F., Webb, G.I.: Minirocket: A
very fast (almost) deterministic transform for time series
classification. In: ACM SIGKDD, pp. 248–257 (2021)

32. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., et al.: An image is worth
16x16 words: Transformers for image recognition at scale.
ArXiv (2020)

33. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L.,
Muller, P.A.: Deep learning for time series classification:
a review. DMKD 33(4), 917–963 (2019)

34. Fawaz, H.I., Lucas, B., Forestier, G., Pelletier, C.,
Schmidt, D.F., Weber, J., Webb, G.I., Idoumghar,
L., Muller, P.A., Petitjean, F.: Inceptiontime: Finding
alexnet for time series classification. DMKD 34(6), 1936–
1962 (2020)

35. Filonov, P., Lavrentyev, A., Vorontsov, A.: Multivariate
industrial time series with cyber-attack simulation: Fault
detection using an lstm-based predictive data model
(2016)

36. Fix, E., Hodges, J.L.: Discriminatory analysis - nonpara-
metric discrimination: Consistency properties. Interna-
tional Statistical Review 57, 238 (1989)

37. Fox, A.J.: Outliers in time series. Journal of the Royal
Statistical Society: Series B (Methodological) 34(3), 350–
363 (1972)

38. Freund, Y., Schapire, R.E.: A decision-theoretic general-
ization of on-line learning and an application to boosting.
EuroCOLT ’95, p. 23–37. Springer-Verlag, Berlin, Hei-
delberg (1995)

39. Geisser, S.: Posterior odds for multivariate normal clas-
sifications. Journal of the royal statistical society series
b-methodological 26, 69–76 (1964)

40. Goddard, S., Harms, S.K., Reichenbach, S.E., Tadesse,
T., Waltman, W.J.: Geospatial decision support for
drought risk management. Communications of the ACM
46(1), 35–37 (2003)

41. Goldstein, M., Dengel, A.: Histogram-based outlier score
(hbos): A fast unsupervised anomaly detection algorithm.
KI-2012: poster and demo track 9 (2012)

42. Goswami, M., Challu, C., Callot, L., Minorics, L., Kan,
A.: Unsupervised model selection for time-series anomaly
detection (2022)

43. Greenwald, S.D.: Improved detection and classification of
arrhythmias in noise-corrupted electrocardiograms using
contextual information. Thesis, Massachusetts Institute
of Technology (1990)

44. Hadjem, M., Näıt-Abdesselam, F., Khokhar, A.: St-
segment and t-wave anomalies prediction in an ecg data
using rusboost. In: 2016 IEEE 18th International Confer-
ence on e-Health Networking, Applications and Services
(Healthcom), pp. 1–6 (2016)

45. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning
for image recognition (2015)

46. Hinton, G.E.: Connectionist learning procedures. Artif.
Intell. 40, 185–234 (1989)

47. Ho, T.K.: Random decision forests. In: Proceedings of
3rd International Conference on Document Analysis and
Recognition, vol. 1, pp. 278–282 vol.1 (1995)

48. Huijse, P., Estevez, P.A., Protopapas, P., Principe,
J.C., Zegers, P.: Computational intelligence challenges
and applications on large-scale astronomical time series
databases. IEEE Computational Intelligence Magazine
9(3), 27–39 (2014)

49. Hunt, E.B., Marin, J., Stone, P.J.: Experiments in in-
duction (1966)

50. Ihler, A., Hutchins, J., Smyth, P.: Adaptive event de-
tection with time-varying poisson processes. In: ACM
SIGKDD, p. 207–216 (2006)

51. Jacob, V., Song, F., Stiegler, A., Rad, B., Diao, Y., Tat-
bul, N.: Exathlon: A benchmark for explainable anomaly
detection over time series. ArXiv (2020)

52. Jacob, V., Song, F., Stiegler, A., Rad, B., Diao, Y., Tat-
bul, N.: Exathlon: A benchmark for explainable anomaly
detection over time series. Proc. VLDB Endow. 14(11),
2613–2626 (2021)

53. Keogh, E., Dutta Roy, T., Naik, U., Agrawal, A.: Multi-
dataset Time-Series Anomaly Detection Competition
2021. https://compete.hexagon-ml.com/practice/

competition/39/ (2021)
54. Keogh, E.J., Lonardi, S., Ratanamahatana, C., Wei, L.,

Lee, S., Handley, J.C.: Compression-based data mining
of sequential data. DMKD 14, 99–129 (2006)

55. Kim, S., Choi, K., Choi, H.S., Lee, B., Yoon, S.: Towards
a rigorous evaluation of time-series anomaly detection.
In: AAAI (2021)

56. Laptev, N., Amizadeh, S., Billawala, Y.: S5 - A Labeled
Anomaly Detection Dataset, version 1.0(16M) (2015)

57. Lavin, A., Ahmad, S.: Evaluating real-time anomaly
detection algorithms – the numenta anomaly benchmark.
In: IEEE ICMLA, pp. 38–44 (2015)

MSAD: A Deep Dive into Model Selection for Time series Anomaly Detection 25

58. Li, Z., Ma, H., Mei, Y.: A Unifying Method for Outlier
and Change Detection from Data Streams Based on Lo-
cal Polynomial Fitting. In: Z.H. Zhou, H. Li, Q. Yang
(eds.) Advances in Knowledge Discovery and Data Min-
ing, Lecture Notes in Computer Science, pp. 150–161.
Springer, Berlin, Heidelberg (2007)

59. Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.J.: Matrix
profile goes MAD: variable-length motif and discord
discovery in data series. DMKD 34(4), 1022–1071 (2020)

60. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation Forest. In:
ICDM, pp. 413–422 (2008)

61. Liu, S., Mangla, T., Shaowang, T., Zhao, J., Paparrizos,
J., Krishnan, S., Feamster, N.: Amir: Active multimodal
interaction recognition from video and network traffic in
connected environments. Proceedings of the ACM on In-
teractive, Mobile, Wearable and Ubiquitous Technologies
7(1), 1–26 (2023)

62. Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines,
J., Király, F.J.: sktime: A unified interface for machine
learning with time series. ArXiv (2019)

63. Lütkepohl, H., Krätzig, M., Phillips, P.C.: Applied time
series econometrics. Cambridge university press (2004)

64. Ma, H., Ghojogh, B., Samad, M.N., Zheng, D., Crow-
ley, M.: Isolation mondrian forest for batch and online
anomaly detection. In: 2020 IEEE International Con-
ference on Systems, Man, and Cybernetics (SMC), pp.
3051–3058 (2020)

65. Malhotra, P., Vig, L., Shroff, G.M., Agarwal, P.: Long
Short Term Memory Networks for Anomaly Detection
in Time Series. In: ESANN (2015)

66. Middlehurst, M., Schäfer, P., Bagnall, A.: Bake off redux:
a review and experimental evaluation of recent time
series classification algorithms. DMKD 38(4), 1958–2031
(2024)

67. Moody, G., Mark, R.: The impact of the mit-bih ar-
rhythmia database. IEEE Engineering in Medicine and
Biology Magazine 20(3), 45–50 (2001)

68. Munir, M., Siddiqui, S.A., Dengel, A., Ahmed, S.: Deep-
ant: A deep learning approach for unsupervised anomaly
detection in time series. IEEE Access 7, 1991–2005
(2019)

69. O’Shea, K., Nash, R.: An introduction to convolutional
neural networks. CoRR (2015)

70. Page, E.: On problems in which a change in a parameter
occurs at an unknown point. Biometrika 44(1/2), 248–
252 (1957)

71. Palpanas, T., Beckmann, V.: Report on the first and
second interdisciplinary time series analysis workshop
(itisa). SIGMOD Rec. 48(3), 36–40 (2019)

72. Paparrizos, J., Boniol, P., Palpanas, T., Tsay, R.S., El-
more, A., Franklin, M.J.: Volume under the surface: A
new accuracy evaluation measure for time-series anomaly
detection. Proc. VLDB Endow. 15(11) (2022)

73. Paparrizos, J., Edian, I., Liu, C., Elmore, A.J., Franklin,
M.J.: Fast adaptive similarity search through variance-
aware quantization. In: ICDE, pp. 2969–2983 (2022)

74. Paparrizos, J., Gravano, L.: k-shape: Efficient and ac-
curate clustering of time series. In: Proceedings of the
2015 ACM SIGMOD, pp. 1855–1870 (2015)

75. Paparrizos, J., Kang, Y., Boniol, P., Tsay, R.S., Palpanas,
T., Franklin, M.J.: Tsb-uad: An end-to-end benchmark
suite for univariate time-series anomaly detection. Proc.
VLDB Endow. 15(8) (2022)

76. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,

Bai, J., Chintala, S.: Pytorch: An imperative style, high-
performance deep learning library. In: NeurIPS, vol. 32
(2019)

77. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Édouard Duch-
esnay: Scikit-learn: Machine learning in python. JMLR
12(85), 2825–2830 (2011)

78. Richman, J.S., Moorman, J.R.: Physiological time-series
analysis using approximate entropy and sample entropy.
American Journal of Physiology-Heart and Circulatory
Physiology 278(6), H2039–H2049 (2000)

79. Roggen, D., Calatroni, A., Rossi, M., Holleczek, T.,
Förster, K., Tröster, G., Lukowicz, P., Bannach, D.,
Pirkl, G., Ferscha, A., Doppler, J., Holzmann, C., Kurz,
M., Holl, G., Chavarriaga, R., Sagha, H., Bayati, H.,
Creatura, M., Millàn, J.d.R.: Collecting complex activity
datasets in highly rich networked sensor environments.
In: INSS, pp. 233–240 (2010)

80. Sakurada, M., Yairi, T.: Anomaly detection using au-
toencoders with nonlinear dimensionality reduction. In:
Proceedings of the MLSDA 2014 2nd Workshop on Ma-
chine Learning for Sensory Data Analysis, MLSDA’14,
p. 4–11 (2014)

81. Schmidl, S., Wenig, P., Papenbrock, T.: Anomaly detec-
tion in time series: A comprehensive evaluation. Proc.
VLDB Endow. 15(9), 1779–1797 (2022)

82. Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor,
J., Platt, J.: Support vector method for novelty detection.
NIPS’99, pp. 582–588 (1999)

83. Senin, P., Lin, J., Wang, X., Oates, T., Gandhi, S.,
Boedihardjo, A.P., Chen, C., Frankenstein, S.: Time se-
ries anomaly discovery with grammar-based compression.
In: EDBT (2015)

84. Simonyan, K., Zisserman, A.: Very deep convolutional
networks for large-scale image recognition. ArXiv (2014)

85. Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.:
Robust anomaly detection for multivariate time series
through stochastic recurrent neural network. In: ACM
SIGKDD, p. 2828–2837 (2019)

86. Subramaniam, S., Palpanas, T., Papadopoulos, D.,
Kalogeraki, V., Gunopulos, D.: Online outlier detection
in sensor data using non-parametric models. In: Pro-
ceedings of the 32nd International Conference on Very
Large Data Bases, VLDB ’06, p. 187–198 (2006)

87. Sylligardos, E., Boniol, P., Paparrizos, J., Trahanias, P.,
Palpanas, T.: Choose wisely: An extensive evaluation
of model selection for anomaly detection in time series.
Proc. VLDB Endow. 16(11), 3418–3432 (2023)

88. Thill, M., Konen, W., Bäck, T.: MarkusThill/MGAB:
The Mackey-Glass Anomaly Benchmark (2020)

89. Uehara, K., Shimada, M.: Extraction of primitive motion
and discovery of association rules from human motion
data. Progress in Discovery Science: Final Report of the
Japanese Dicsovery Science Project pp. 338–348 (2002)

90. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: At-
tention is all you need. NeurIPS 30 (2017)

91. Wang, P., Wang, X., Luo, H., Zhou, J., Zhou, Z., Wang,
F., Li, H., Jin, R.: Scaled relu matters for training vision
transformers. AAAI 36(3), 2495–2503 (2022)

92. Wang, Z., Yan, W., Oates, T.: Time series classifica-
tion from scratch with deep neural networks: A strong
baseline. IJCNN pp. 1578–1585 (2017)

93. Wu, R., Keogh, E.J.: Current time series anomaly detec-
tion benchmarks are flawed and are creating the illusion
of progress. ArXiv (2020)

26 Emmanouil Sylligardos1 et al.

94. Xiao, T., Singh, M., Mintun, E., Darrell, T., Dollár, P.,
Girshick, R.: Early convolutions help transformers see
better. NeurIPS 34, 30,392–30,400 (2021)

95. Yao, Y., Sharma, A., Golubchik, L., Govindan, R.: Online
anomaly detection for sensor systems: A simple and
efficient approach. Performance Evaluation 67(11), 1059–
1075 (2010). Performance 2010

96. Yeh, C.C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y.,
Dau, H.A., Silva, D.F., Mueen, A., Keogh, E.: Matrix
profile i: All pairs similarity joins for time series: A
unifying view that includes motifs, discords and shapelets.
In: ICDM, pp. 1317–1322 (2016)

97. Yeh, C.C.M., Zhu, Y., Ulanova, L., Begum, N., Ding,
Y., Dau, H.A., Zimmerman, Z., Silva, D.F., Mueen,
A., Keogh, E.: Time series joins, motifs, discords and
shapelets: a unifying view that exploits the matrix profile.
DMKD 32(1), 83–123 (2018)

98. Ying, Y., Duan, J., Wang, C., Wang, Y., Huang, C., Xu,
B.: Automated model selection for time-series anomaly
detection. arXiv (2020)

99. Ying, Y., Duan, J., Wang, C., Wang, Y., Huang, C., Xu,
B.: Automated model selection for time-series anomaly
detection (2020)

100. Zhang, H.: The optimality of naive bayes. In: The Florida
AI Research Society (2004)

101. Zhao, Y., Rossi, R., Akoglu, L.: Automatic unsupervised
outlier model selection. In: NeurIPS, vol. 34, pp. 4489–
4502 (2021)

