
Indexing for Interactive Exploration of Big Data Series

Kostas Zoumpatianos
University of Trento

zoumpatianos@disi.unitn.it

Stratos Idreos
Harvard University

stratos@seas.harvard.edu

Themis Palpanas
Paris Descartes University

themis@mi.parisdescartes.fr

ABSTRACT
Numerous applications continuously produce big amounts of data
series, and in several time critical scenarios analysts need to be
able to query these data as soon as they become available, which
is not currently possible with the state-of-the-art indexing methods
and for very large data series collections. In this paper, we present
the first adaptive indexing mechanism, specifically tailored to solve
the problem of indexing and querying very large data series col-
lections. The main idea is that instead of building the complete
index over the complete data set up-front and querying only later,
we interactively and adaptively build parts of the index, only for
the parts of the data on which the users pose queries. The net ef-
fect is that instead of waiting for extended periods of time for the
index creation, users can immediately start exploring the data se-
ries. We present a detailed design and evaluation of adaptive data
series indexing over both synthetic data and real-world workloads.
The results show that our approach can gracefully handle large data
series collections, while drastically reducing the data to query de-
lay: by the time state-of-the-art indexing techniques finish index-
ing 1 billion data series (and before answering even a single query),
adaptive data series indexing has already answered 3∗105 queries.

1. INTRODUCTION
Big Data Series. Recent advances in sensing, networking, data

processing and storage technologies have significantly eased the
process of generating and collecting tremendous amounts of data
series at extremely high rates and volumes. Formally, a data series
T = (p1, ...pn) is defined as a sequence of points pi = (vi, ti) where
each point is associated with a value vi and a time ti in which this
recording was made. A common characteristic is that analysts need
to examine the sequence of values (i.e., the data series) rather than
the individual points independently. Such data can be network-
ing information, web usage data, scientific data (e.g., electrocar-
diograms, weather data, etc.) as well as financial data (e.g., stock
market data), to practically any kind of data series. In this way,
there has been a significant interest in the data management com-
munity towards analyzing data series in real time with the minimum
possible processing and storage overhead.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2610498 .

0	

5	

10	

15	

20	

25	

30	

35	

0	
 250M	
 500M	
 750M	
 1B	

To

ta
l	
 c
os
t	
 f
or
	
 in
de

x	

bu

ild
in
g	

an

d	

qu

er
y	

pr
oc
es
si
ng
	
 (H

ou
rs
)	

Dataset	
 Size	
 (#	
 of	
 data	
 series)	

Indexing	
 (Input)	
 Indexing	
 (Output)	
 Indexing	
 (CPU)	
 Querying	
 (Total)	

Figure 1: The data to query gap: building a state-of-the-art
index and answering 105 queries for big data series collections.

The Data to Query Gap. For big data exploration, it is pro-
hibitive to rely to full sequential scans for every single query, and
therefore, indexing is required. The target of indexing techniques
is to make query processing efficient enough, such that the analysts
can repeatedly fire several exploratory queries with quick response
times. However, we show in this paper that the amount of time re-
quired to build a data series index can be a significant bottleneck;
Figure 1 shows that it takes more than a full day to build a state-of-
the-art index (iSAX 2.0 [6]) over a data set of 1 billion data series
in a modern server machine. The main cost components of index-
ing are reading the data to be indexed, spilling the indexed data
and structures to disk, as well as incurring the computation costs
of figuring out where each new data entry belongs to (in the index
structure). As the data size grows, the total indexing cost increases
dramatically, to a degree where it creates a big and disruptive gap
between the time when the data is available and the time when one
can actually have access to the data. In fact, as the data grows,
the query processing cost (105 queries in the case of Figure 1) in-
creasingly becomes a smaller fraction of the total cost (indexing +
querying). We will discuss this experiment and its set-up in more
detail later on, but for now it is interesting to note that the perfor-
mance shown in Figure 1 is actually the optimal one as we have
chosen a leaf size which enables a quick index build time. As Fig-
ure 2 shows (for a 500 million data series set), the smaller the leaf
size is the harder it becomes to build an index, while the bigger
the leaf size is, the more we penalize query answering times (105

queries in this case). Thus, simply choosing a large leaf size does
not resolve the data to query problem.

Data Exploration. As data sizes grow even bigger, waiting for
several days before posing the first queries can be a major show-
stopper for many applications both in businesses and in sciences.
In addition, firing exploratory queries, i.e., queries which are not
known a priori, is becoming quickly a common scenario. That is, in

many cases, analysts and scientists need to explore the data before
they can figure out what the next query is, or even which experi-
ment to perform next; the output of one query inspires the formula-
tion of the next query, and drives the experimental process. In such
cases, performing tuning and initialization actions up-front suffers
from the fact that we do not have enough knowledge about which
data parts are of interest, e.g., [15, 19]. Similarly, in many applica-
tions, predefined queries are beneficial only if they can track data
patterns or events within a given time limit; e.g., traffic monitor-
ing applications for advertisement need to quickly determine user
positions and interests.

Adaptive Data Series Indexing. We propose an adaptive in-
dexing solution which minimizes the index creation time allowing
users to query the data soon after its generation and several times
faster compared to state-of-the-art indexing approaches. As more
queries are posed, the index is continuously refined and subsequent
queries enjoy even better execution times. Although the concept of
adaptive indexing has been studied in the context of column-store
databases, there the main goal is to incrementally sort individual
arrays (i.e., columns) for point or range queries over 1-dimensional
points. In contrast, a data series index is a tree-based index that is
tailored to answer similarity search queries over data series collec-
tions, thus requiring very different techniques, able to simultane-
ously index multiple arrays (i.e., data series).

Contributions. Our contributions are summarized as follows.
• We demonstrate the inability of state-of-the-art indexing to

cope with exploratory analysis of very large data series col-
lections. We show that the index creation time is a major bot-
tleneck which becomes exponentially worse as data grows.
• We introduce the first adaptive data series index. Adaptive

data series indexing minimizes the data to query gap by de-
laying actions until they are absolutely necessary. Initial-
ization cost is kept at very low levels; only a minimal tree
structure based on a summary of the data is built initially.
Then, the index structure is continuously enriched as more
data and queries arrive and only for the hot part of the data.
Each query that is not covered by the current contents of the
index, triggers a sequence of actions that have as a side-effect
more data to be brought inside the index.
• Furthermore, we demonstrate that no special set-up is re-

quired regarding critical low-level details such as leaf size
and tree depth. We propose adaptive data series indexing al-
gorithms that start with a rather big leaf size and a shallow
tree in order to minimize initialization costs for new data,
but then as queries arrive and focus to specific data areas,
they adaptively and automatically expand hot subtrees and
adjust leaf sizes in the hot branches of the index to minimize
querying costs.
• Through a detailed experimental evaluation with both syn-

thetic and diverse real-world workloads, we show that it is
possible to drastically reduce the data to query time, being
able to handle several hundreds of thousands of queries by
the time that state-of-the-art data series (iSAX 2.0 [6]) and
multi-dimensional (R-trees [13], X-trees [4], KD-Trees [3])
techniques are still in the index creation phase.

2. RELATED WORK
In this section, we briefly discuss related work and we introduce

the necessary background knowledge on adaptive indexing and on
state-of-the-art data series indexing.

Similarity Search in Data Series. One of the most basic data
mining tasks is that of finding similar data series in a database [1].
The query comes in the form of a data series X and it says “find me

0	

5	

10	

15	

20	

25	

30	

35	

2K	
 5K	
 10K	
 20K	
 40K	

To
ta
l	
 c
os
t	
 f
or
	
 in
de

x	

bu

ild
in
g	

an

d	

qu

er
y	

pr
oc
es
si
ng
	
 (H

ou
rs
)	

Leaf	
 Size	
 (#	
 data	
 series)	

Indexing	
 (Input)	
 Indexing	
 (Output)	
 Indexing	
 (CPU)	
 Querying	
 (Total)	

Figure 2: The indexing to querying trade-off: bigger leaf sizes
improve indexing speed, but penalize query answering times.
the data series in the database which is most similar to X". Sim-
ilarity search is an integral part of most data mining procedures,
such as clustering [33], classification and deviation detection [5,
9]. A common approach for answering such queries is to per-
form a dimensionality reduction technique (the particular choice
is of small importance [24]) such as Discrete Fourier Transforms
(DFT) [1], Discrete Wavelet Transforms (DWT) [8], Discrete Haar
Wavelet Transforms (DHWT), Piecewise Aggregate Approximation
(PAA) [22, 34], or Symbolic Aggregate approXimation (SAX) [23]
and then use this representation for indexing. At the same time, a
large set of indexing methods have been proposed for this kind of
representations, including traditional multidimensional [13, 4] and
specialized [29, 30, 6, 2, 32, 7] indices. Moreover, various distance
measures have been presented that work on top of such indexes,
e.g., Discrete Time Warping (DTW) and Euclidean Distance (ED).

Our work follows the same high level principles, but it is the
first to introduce an adaptive indexing mechanism for data series
in order to assist exploratory similarity search in big data sets. In
all previous work, the data series index is built in one step a pri-
ori and no queries may be processed until the index is ready. On
the contrary, in our work, query processing and index building are
interleaved, resulting in a drastically reduced data to query time.

Adaptive Indexing. The concept of adaptive indexing was re-
cently introduced in the context of column-store databases [17, 16,
18, 20, 14, 28, 11, 12]. The intuition is that instead of building
database indexes up-front, indexes are built during query process-
ing, adapting to the workload. In particular, the algorithms are
focused on how to incrementally sort columns in main-memory
column-stores. The query predicates are used as pivots during the
index refinement steps. Each index refinement step performed dur-
ing a single query can be seen as a single step of an incremental
quick-sort action. As more queries touch a column, this given col-
umn reaches closer to a sorted state. The benefit is that adaptive in-
dexing avoids fully sorting columns up front at a high initialization
cost, especially when there is no idle time to do so, or no reliable
workload knowledge that this is indeed needed. These ideas have
also been extended lately for Hadoop-based environments [27].

Even though in this paper we follow the same philosophy, our
work is the first to design an adaptive index for data series process-
ing and similarity search queries. Contrary to working with arrays
as in column-store relational databases in the case of cracking, our
work is based on tree-structures, which are suited for data series
indexing, where we index more than one columns at a time (since
each data series can be considered an array) via reduced resolu-
tions. One could also consider storing a data series as a row in a
column-store, i.e., each point being a separate attribute and then
use adaptive indexing. However, then we lose the locality prop-
erty as accessing one data series would require accessing several

different files. Sideways cracking [18] has been proposed in order
to handle multiple columns in a column-store, but this is a com-
pletely different paradigm, indexing a single relational table across
one dimension at a time, and essentially relying in replication to
align columns. In addition, contrary to indexing relational data
where a global ordering can be imposed, i.e., incrementally creat-
ing a range index, in our case a global ordering is not possible and
we are answering nearest neighbor queries. Our index introduces
several novel techniques for adaptive data series indexing such as
creating only a partial tree structure deep enough to not penalize
the first queries with a lot of splits, and filling it on demand, as well
as adapting leaf sizes on-the-fly and with varying leaf sizes across
the index. Some concepts that have appeared in past adaptive in-
dexing work apply here as well, but only as concepts, as the design
of the algorithms and data structures is tailored for data series. For
example, like in [20, 28] we start with a lightweight preparatory
step, but without having a global unique ordering of the data. In
addition, the notion of adaptively bringing the data inside the index
is conceptually similar to partial sideways cracking [18].

Data Series Representations and the iSAX Index. We now
discuss the state-of-art data series indexing schemes. In 2000, Yi
and Faloutsos [34], as well as Keogh et al. [22], both indepen-
dently presented the idea of segmented means [34] or Piecewise
Aggregate Approximation (PAA) representation [22]. This repre-
sentation allows for dimensionality reduction in the time domain,
by segmenting the data series in equal parts and calculating the av-
erage value for each segment. An example of PAA representations
can be seen in Figure 3; in this case the original data series is di-
vided into 4 equal parts. Based on PAA, Lin et al. [23] introduced
the Symbolic Aggregate approXimation (SAX) representation. It
works by partitioning the value space in segments of sizes that fol-
low the normal distribution. Each PAA value can then be repre-
sented by a character (or a small number of bits) that corresponds
to the segment that it falls into. This leads to a representation with
a very small memory footprint, an important requirement for man-
aging very large data series collections. A segmentation of size 3
can be seen in Figure 3, where the data series is represented with
the SAX word “10 10 11".

The SAX representation was later extended to indexable SAX
(iSAX) [29]; it considers variable cardinality for each character of
a SAX representation, and as a result variable degrees of preci-
sion. An iSAX representation is composed of a set of characters
that form a word. Each word represents a data series available in
the dataset. Each character in a word is accompanied by a num-
ber that denotes its cardinality (the number of bits that describe this
character). In the case of a binary alphabet, with a word size of 3
characters and a maximum cardinality of 2 bits, we could have a
set of data series (two in the following example) represented with
the following words: 002102012, 002112012, where each character
has a full cardinality of 2 bits and each word corresponds to one
data series. If we now reduce the cardinality of the second char-
acter in each word, we could represent both of them with a single
iSAX representation: 00211012. That is because 11 corresponds to
both 10 and 11, since the last bit is trailed when the cardinality is
reduced. By starting with a cardinality of 1 for each character in
the root node and by gradually performing splits by increasing the
cardinality by one character at a time, one can build a tree index
[29, 30]. Such cardinality reductions can be efficiently calculated
with bit mask operations.

The state-of-the-art iSAX 2.0 index is also based on this prop-
erty [6]; it is a data series index that implements fast bulk loading.
Figure 3 depicts an example where each iSAX word has 3 seg-
ments and each segment a maximum cardinality of 4 (2 bits). The

11 0 0

1 0 0

PAA points ∈ R3

Intermediate node
Leaf node

d1

00 01

01

00

11

10

00 01

0 1

0

1

0
1

d2

d3

ROOT

10 0 0

0 0 0

11 00 0

11 01 0

00

01
10

11
11

N
(0

, 1
)10 10

1 1 1

Figure 3: An example of iSAX and SAX representations.
root node has 2w children (23 in Figure 3) while each child node
forms a binary sub-tree. Each leaf node corresponds to a split in
one dimension and points to a single area of the domain.

Our contributions build on top of this line of work by enabling
adaptive indexing using the state-of-the-art iSAX representations.
Contrary to past work, our new adaptive index allows for incremen-
tal, continuous and adaptive index creation during query time. Ini-
tialization cost is kept low, bringing the ability to query the data set
much sooner than in past work. We show both the significant bot-
tleneck faced by state-of-the-art indexing as we grow to large data,
as well as the drastic improvement that adaptive indexing brings.

Scans Vs Indexing. Even though recent studies have shown
that in certain cases sequential scans can be performed very effi-
ciently [26], such techniques are only applicable when the database
consists of a single, long data series, and queries are looking for po-
tential matches in small subsequences of this long data series. Such
approaches, however, do not bring benefit to the general case of
querying a mixed database of several data series, which is the focus
of this study. Therefore, indexing is required in order to efficiently
support data exploration tasks, which involve ad-hoc queries, i.e.,
the query workload is not known in advance.

3. THE ADAPTIVE DATA SERIES INDEX
In this section, we present adaptive data series indexing in detail,

and describe how it can reduce the data to query gap by shifting
costly index creation steps from the initialization time to the query
processing time. For ease of presentation, we discuss adaptive data
series indexing in two steps; initially we present ADS, a design
which introduces the concept of adaptively and incrementally load-
ing data series in the index. Then, we discuss ADS+ which intro-
duces the concept of adaptive splits and adaptive leaf sizes. Finally,
we present PADS+, an aggressive variation of ADS+, which is tai-
lored for even better performance in skewed workloads.

3.1 The ADS Index
In order to increase the exploration ability we need to decrease

the data to query time. That is, we need to decrease the amount of
time needed until a user can access and query new data with good
response time. The main bottleneck is the index construction over-
head. ADS attacks the index construction bottleneck by shifting the
construction of the leaf nodes of the index (the only nodes that can
carry raw values for the data series, and have to be stored on disk)
to query time. During the index creation phase, ADS creates a tree
which contains only the iSAX representation for each data series;
the actual data series remain in the raw files and are only loaded in
an adaptive way if a relevant query arrives. On the contrary, state-
of-the-art indexes, such as iSAX 2.0, a priori load all raw data series
in the index at the leaves of the tree (in order to reduce random I/O
during query processing). The analysis of the performance of iSAX

Hard Disk

ptr SAX

PARTIAL
0* 10 01

 00 00 10 01
 01 00 10 01

Main Memory

0 10 0

ROOT

 . . .

0 0 1 0 1 0

 . . .

0 10 00 0 10 01

01
02
03
04
05

Raw file

00

PARTIAL
0* 0* 1*

PARTIAL
0* 10 00

ptr SAX

Buffer

00 00 10
00 00 11
00 01 10

 04 00 10 10
ptr SAX

(a) Initial state

Main Memory

0 10 0

ROOT

 . . .

0 0 1 0 1 0

 . . .

0 10 00 0 10 01

Hard Disk

ptr SAX

PARTIAL
0* 10 01

 00 00 10 01
 01 00 10 01

01
02
03
04
05

Raw file

00

PARTIAL
0* 0* 1*

PARTIAL
0* 10 00

ptr SAX

Buffer

00 00 10
00 00 11
00 01 10

 04 00 10 10
ptr SAX

05
03

02

Lo
ad

(b) Buffered leaf state

Main Memory

0 10 0

ROOT

 . . .

0 0 1 0 1 0

 . . .

0 10 00 0 10 01

Hard Disk

ptr SAX

PARTIAL
0* 10 01

 00 00 10 01
 01 00 10 01

01
02
03
04
05

Raw file

00

PARTIAL
0* 10 00

ptr SAX
 04 00 10 10

FULL
0* 0* 1*

ptr SAX

05
03
02 00 00 10

00 00 11
00 01 10

TS

Flush

Buffer

(c) Flushed leaf state
Figure 4: The ADS index states.

2.0 in Figure 1 motivates our design choice for ADS; it shows that
reading from and writing to disk is the main cost component during
the indexing phase of iSAX 2.0. The results show that a big part of
these read and write costs is due to reading the raw data series from
disk and to writing the leaves of the index tree back to disk (after
insertions). Motivated by data exploration scenarios where we do
not know a priori which data series are interesting and relevant for
our analysis, ADS avoids these costs completely at initialization
time; it pays such costs at query time, only when absolutely neces-
sary, and only for the data parts which are relevant to the workload.
Below we describe ADS in detail.

3.1.1 Index Creation
The index creation phase takes place before queries can be pro-

cessed but it is kept very lightweight. The process can be seen in
Algorithm 1. The input is a raw file which contains all data series
in ASCII form. ADS builds a minimal tree during this phase, i.e., a
tree which does not contain any data series. The tree contains only
iSAX representations. The process starts with a full scan on the
raw file to create an iSAX representation for each data series entry.
This can be seen in lines 2-5 of Algorithm 1. For data series we
also record its offset in the raw data file so future queries can easily
retrieve the raw values. To minimize random memory access and
random I/O we use a set of buffers in main memory (line 6) to tem-
porarily hold data to be added in the index. When these buffers are
full (line 7), we move the data to the appropriate leaf buffer in the
index (see discussion in Buffering later on). If necessary, we per-
form split operations on the way (lines 12-15). The split operation
is described in detail in Algorithm 2. Then we sequentially flush
each leaf buffer to the disk (Algorithm 1, line 19), set each leaf to
be in PARTIAL mode which means that we do not store any raw
data series in this leaf (line 20). This process continues until we
have indexed all raw data series. We will discuss how we handle
new data (updates) later on.

Delaying Leaf Construction. The actual data series are only
necessary during query time, i.e., in order to give a complete and
correct answer. During the index creation time, the iSAX represen-
tations are sufficient to build the index tree. In addition, not all data
series are needed to answer a particular set of queries. In this way,
ADS first creates all necessary iSAX representations and builds the
index tree without inserting any data series and only adaptively in-
serts data series during query processing (to be discussed later on).
There are numerous benefits that come with such a design decision,
the most important being the significantly reduced cost to build the
index. While it is clear that materializing leaves on demand will

Algorithm 1: createIndex(file, index, n)
1 while not reached end of file do
2 position = current file position;
3 dataSeries = read data series of size n from file;
4 isax = convert dataSeries to iSAX;
5 Move file pointer n points;
6 Add the (isax, position) pair in the index’s FBL buffer;
7 if the main memory is full then
8 // Move data from the First Buffers (FBL layer)
9 // to the appropriate Leaf Buffer (LBL layer)

10 for every (isax, position) pair ∈ FBL buffer do
11 targetLeaf = Leaf of index for putting (isax, position);
12 while targetLeaf is full do
13 Split(targetLeaf, isax);
14 targetLeaf = New leaf for putting (isax, position);
15 Insert (isax, position) in targetLeaf’s LBL buffer;

16 // Flush all Leaf Buffers containing (isax, position) pairs to
17 // the disk, and set them in PARTIAL mode (no raw data)
18 for every leaf in index do
19 Flush the LBL buffer of this leaf to the disk;
20 Set leaf to be in PARTIAL mode;
21 clear buffers;

incur a large random I/O cost, the main benefit comes from the fact
that (a) ADS avoids dealing with the raw data series (i.e., other than
the single scan on the raw file to create the iSAX representations),
(b) it does not move the raw data series through the tree, and it (c)
it does not place the raw data series into the leaf nodes. The data
series simply stay in the raw file. This brings benefits in terms of
I/O and memory bandwidth used during indexing. Especially when
ADS comes to the point of spilling leaf nodes to disk (i.e., all leaves
when there is no more free memory), it has a big advantage in that
its leaf nodes are very lightweight, containing only iSAX repre-
sentations, which can be orders of magnitude smaller than the data
series themselves. For example, a data series of 256 points with a
float precision of 4 bytes, can be efficiently summarized with 16
characters of 1 byte each. Moreover, by not inserting the data se-
ries in the index, we significantly reduce the cost of splits at the
leaf level during the indexing phase; the I/O cost is minimized as
only iSAX representations are shuffled between index nodes. All
ADS variations maintain the main index tree in memory, while leaf
nodes are kept on disk.

Buffering. ADS improves locality when inserting data by buffer-
ing data at two levels of the index. Buffering amortizes random
access (both in memory and on disk) and is a common practice

Algorithm 2: Split(leaf)
1 diskData = get data from leaf’s disk pages;
2 Insert diskData in leaf’s buffer (LBL buffer);
3 Split leaf in the best point and create two new children leaves;
4 Set leaf as an intermediate node;
5 Set leaf.leftChild in PARTIAL mode;
6 Set leaf.right in PARTIAL mode;
7 for every (isax, position) pair ∈ leaf’s LBL buffer do
8 Insert (isax, position) pair in the appropriate child leaf;

to improve locality in tree-based indexes, e.g., [35, 6], or even
in database query plans (which typically have a tree shape) [36].
During index creation, instead of pushing iSAX representations
through the index one at a time, ADS initially keeps those in the
First Buffer Layer (FBL), a set of buffers corresponding to the
children nodes of the index root. Once the FBL is full (i.e., all
free memory is consumed), these representations are then passed
through the tree and moved to the second layer of buffers corre-
sponding to the leaf nodes of the index, called Leaf Buffer Layer
(LBL). Data is then flushed to disk one leaf at a time, ensuring se-
quential writes. Additionally, every time that a leaf needs to be split
and iSAX representations need to be read from disk, we keep them
in the LBL, until we run out of space (Algorithm 2, lines 1-2). The
leaves are flushed again when there is no more free memory.

Mapping on the Raw File. ADS reduces the index creation
costs by not keeping around the data series. However, the raw data
series is needed when queries arrive. For this reason, ADS needs an
efficient way to quickly access a given data series entry. To achieve
this, ADS maintains a single pointer for each data series entry X in
the leaf node where data series X would normally reside. This is
a pointer to the raw data file that provides direct access to the raw
data series. (As we will discuss later on, the first time the leaf is
accessed by a query all pointers are dropped and the corresponding
raw data series are loaded.)

Example. An example of ADS is shown in Figure 4; the figure
depicts the state of the index after certain events. An index is built
on top of a set of iSAX words with a word size of 3 characters and
a maximum cardinality for each character of 2 bits. The leaf nodes
are depicted as oval shapes with border lines and the intermediate
nodes without any border lines. Each intermediate node is split on
a single character; the one surrounded by a bold cycle. Each leaf
node is connected to a file on disk, where the full cardinality iSAX
representations and the corresponding pointers to the raw file are
stored. Figure 4(a) shows how the index looks like immediately
after the initialization phase and before any query has been pro-
cessed. In this case, all leaf nodes are in PARTIAL mode, i.e., they
do not contain any data series, since no query has been executed
yet. Figure 4(b) and Figure 4(c) show what happens when a query
arrives and we discuss that in the next subsection.

3.1.2 Querying and Refining ADS
We continue our discussion by describing the process of query

answering using ADS. Contrary to static indexes, the querying pro-
cess in ADS contains a few extra steps. In addition to answering a
query q, the query process refines the index during the processing
steps of q. These extra index refinement steps do not take place af-
ter the query is answered; they develop completely on-the-fly and
are necessary in order to answer q. At any given time, ADS con-
tains just enough information in order to handle the current work-
load. Thus, when new queries arrive, which do not follow the pat-
terns in previous requests, ADS needs to enrich the index with more
information.

Searching the Index. When a query arrives (in the form of a
data series), it is first converted to an iSAX representation. Then,

the index tree is traversed searching for a leaf with an iSAX repre-
sentation similar to that of the query. Whether such a leaf exists al-
ready or not, depends not only on the data, but also on past queries.
In the case that the leaf node where the search ends is in PARTIAL
mode, i.e., it contains only iSAX representations but not any data
series, then all missing data series are fetched from the raw file.

Enriching the Index. To enrich a partial leaf, ADS fetches the
partial leaf from disk and reads all the positions in the raw file of
the data series that belong in this leaf. (A partial leaf holds the
iSAX representation for each data series and also its position in
the raw file.) Then, it sorts those positions (to ensure sequential
access to the raw file) and fetches the raw data series. The new
data series are assigned to leaf nodes and kept in memory in the
LBL buffers (Figure 4(b)). The corresponding leaf node contains
pointers to the buffered data. When there is no more free memory,
the LBL buffers are flushed to disk (as seen in Figure 4(c)). The
corresponding leaf is then marked as FULL. At this point the leaf
data is fully materialized and future queries that need to access the
data series for this leaf node, need to fetch the binary leaf data from
disk or from the LBL buffer.

Creating the Answer. Once the data series that match the cur-
rent query are available (either being fetched from the raw file, from
the buffer, or from disk) then the real distance from the query is cal-
culated. The minimum distance found in the leaf is used as the Best
So Far (BSF) answer. If the BSF is not 0, which means that we did
not get an exact match, then the node with potentially the best pos-
sible answer has to be identified. This is done in a recursive way
as in the original iSAX index using the MinDistPaaToiSAX as de-
scribed in [29] and until we are not able to improve BSF anymore.
The difference is that if a new leaf is needed which is in partial
mode, ADS will enrich this leaf on-the-fly.

Example. Continuing the example of Figure 4, Figure 4(b) and
Figure 4(c) show what happens when a query arrives. Figure 4(b)
depicts the case when a query reaches a non materialized leaf. The
raw data series are fetched in main memory buffers, and the leaf
now points to them. If the buffers become full, the raw data series
for each leaf are flushed to disk, thus converting them into fully
materialized leaves. This can be seen in Figure 4(c); the full leaf
contains both the iSAX representations and the raw data series.

3.2 The ADS+ Index (Adaptive Leaf Size)
ADS drastically reduces the index creation time by avoiding the

insertion of raw data series in the index until a relevant query ar-
rives. However, there is opportunity for significant further op-
timizations; by studying the operations that get executed during
adaptive index building and refinement we found that the time spent
during split operations in the index tree is a major cost component.

Leaf Size and Splits. Splits are expensive as they cause data
transfer to and from disk (to update node data). The main parameter
that affects split costs is the leaf size, i.e., a tree with a big leaf size
has a smaller number of nodes overall, causing less splits. Thus,
a big leaf size reduces index creation time. However, as we have
shown in Figure 2, big leaves also penalize query costs and vice
versa: when reaching a big leaf during a search, we have to scan
more data series than with a small leaf. State-of-the-art indexes
rely on a fixed leaf size which needs to be set up front, during in-
dex creation time, and typically represents a compromise between
index creation cost and query cost.

Adaptive Leaf Size. To further optimize the data to query time,
we introduce a lightweight variation of ADS, ADS+, with a more
transparent initialization step. The main intuition is that one can
quickly build the index tree using a large leaf size, saving time from
very expensive split operations, and rely on queries that are then go-

Algorithm 3: SplitADS+(leaf, targetLeafSize)
1 /* If the leaf size is bigger than the target leaf size, split node. */
2 if leaf’s leaf size > targetLeafSize then
3 Split(node);
4 SplitADS+(node.leftChild, targetLeafSize);
5 SplitADS+(node.rightChild, targetLeafSize);

Algorithm 4: approxSearchADS+(dataSeries, isax, index,
queryTimeLeafSize)

1 targetLeaf = leaf of index where this isax should be inserted;
2 if targetLeaf’s leaf size > queryTimeLeafSize then
3 // It can be additionally split
4 SplitADS+(targetLeaf, queryTimeLeafSize);
5 targetLeaf = targetLeaf’s descendant where this isax should be

inserted;
6 // Calculate the real leaf distance between the dataSeries
7 // and the raw data series that this leaf refers to or contains.
8 bsf = calculateRealLeafDistance(targetLeaf, dataSeries);
9 return bsf ;

ing to force splits in order to reduce the leaf sizes in the hot areas of
the index. ADS+ uses two different leaf sizes: a big build-time leaf
size for optimal index construction, and a small query-time leaf size
for optimal access costs. This allows us to make future queries ben-
efit from every split operation performed, finding the relevant data
by traversing the tree, and not by scanning larger leaves. Initially,
the index tree is built as in plain ADS (Algorithm 1), with a con-
stant leaf size, equal to build-time leaf size. In traditional indexes,
this leaf size remains the same across the life-time of the index. In
our case, when a query that needs to search a partial leaf arrives,
ADS+ refines its index structure on-the-fly by recursively splitting
the target leaf, until the target sub-leaf becomes smaller or equal to
the query-time leaf size. This can be seen in Algorithm 3. Addi-
tionally both Approximate and Exact search have been modified to
use this policy, a shown in Algorithm 4 (lines 2-5) and Algorithm 5
(lines 7-10), respectively.

Intuitively what happens is that the target leaf is split until it
becomes small enough, while all leaves created due to split actions
but are not needed for this query are then left untouched and thus
with a leaf size which is between the big construction-time leaf
size and the small query-time leaf size. If and only if the workload
shifts and future queries need to query those leaves, then ADS+
automatically splits those leaves even further to reach a leaf size
that gives good query processing times.

Example. An example of this process is shown in Figures 5(a)
and 5(b). Figure 5(a) depicts the state of ADS+ after initialization
and before any query has arrived, while Figure 5(b) shows how a
single query results in adaptive splits of the right sub-tree until the
target leaf node is fully materialized; intermediate nodes remain in
partial mode and with a variable leaf size.

Adaptive and on demand leaf splitting allow ADS+ to have both
fast index building and fast query processing. It does not waste
time on creating fine-grained versions of each sub-tree of the index,
but rather concentrates on the parts that are related to the current
workload. When queries focus to a subset of the dataset, ADS+
does not need to exhaustively index and optimize all data; it rather
concentrates on the most related sub-trees of the index. When the
workload shifts and a new area of the index becomes relevant, then
the first few queries adaptively optimize the index for the new area
as well by expanding the proper sub-trees and adjusting leaf sizes.

Delaying Leaf Materialization. Another optimization that gives
ADS+ a lightweight behavior is that it delays leaf materialization
even further. In particular, when traversing the tree for query pro-

Algorithm 5: exactSearchADS+(dataSeries, index, query-
TimeLeafSize)

1 isax = convert dataSeries to iSAX;
2 bsf = approxSearchADS+(dataSeries, isax, index,

queryTimeLeafSize);
3 bsfDist = Infinite;
4 queue = Initialize a priority queue with the root nodes of the index;
5 while node = pop next node from queue do
6 if node is a leaf and MinDist(dataSeries, node) < bsfDist then
7 if node’s leaf size > queryTimeLeafSize then
8 // Need to split this leaf more
9 SplitADS+(node, queryTimeLeafSize);

10 Re-Insert node in queue;
11 else
12 // No need to split any more
13 dist = calculateRealLeafDistance(dataSeries, node);
14 if dist < bsfDist then
15 bsf = node;
16 bsfDist = dist;
17 else if MinDist(dataSeries, node) >= bsfDist then
18 // Found the nearest neighbor, break the loop
19 break;
20 else
21 // It is an intermediate node: push children to the queue.
22 minDLeft = MinDist+(dataSeries, node.leftChild);
23 minDRight = MinDist+(dataSeries, node.rightChild);
24 if minDLeft < bsfDist then
25 Put node.leftChild in queue with priority minDLeft;
26 if minDRight < bsfDist then
27 Put node.rightChild in queue with priority minDRight;
28 return bsf ;

Algorithm 6: MinDist+(dataSeries, leaf)
1 if leaf is in FULL mode then
2 /* Use the coarse SAX representation of all the data series and

calculate the minimum distance .*/
3 return MinDist(dataSeries, leaf);
4 else
5 /* The node is not materialized yet. We can load the small iSAX

representations file and calculate a tighter minimum distance
using the iSAX representations of all the data series. */

6 isaxValues = Get all isax representations from disk and LBL;
7 maxMinDist = 0;
8 for isax ∈ isaxValues do
9 minDist = MinDist(dataSeries, isax);

10 if minDist > maxMinDist then
11 maxMinDist = minDist;
12 return maxMinDist;

cessing, which leads to adaptive leaf splitting, ADS+ does not ma-
terialize the initial big leaf, nor all the leaves it creates on its way to
the target small leaf. For example, when ADS+ needs to split big
leaf X and this results in X being split recursively into n new nodes
until we reach the target leaf Z with a small leaf size, ADS+ fully
materializes only leaf Z. For the rest of the leaves it uses the par-
tial information contained in the leaves to perform the splits, i.e.,
the iSAX representations. This results in (a) less computation as
opposed to having to split based on raw data, (b) less I/O as SAX
representations are much smaller, and (c) it enhances the adaptive
behavior of ADS+ as it materializes only the truly interesting data
that the queries are targeting.

3.3 Partial ADS+ (PADS+)
Although the ADS variations described above help to reduce the

indexing cost by omitting the raw data from the index creation pro-
cess, ADS and ADS+ still need to spend time for creating the basic
index structure. This means that users still have to wait until this

Main Memory

Hard Disk

ROOT

 . . .
0 1 0

0 10 0

0 0 1

iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX

PARTIALiSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX

PARTIAL

 . . .

0 11 0

iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX

PARTIAL

(a) ADS+ after index building.

Main Memory

Hard Disk Adaptively Split Region

ROOT

 . . .

0 1 0

0 10 0

0 0 1

iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX

PARTIALiSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX

PARTIAL

 . . .

0 11 0

0 11 00 0 11 01

11 010111 0100

Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series

iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX

FULLiSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX

PARTIALiSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX

PARTIAL

(b) ADS+ index after a query.

Main Memory

Hard Disk Adaptively Split Region

0 0 0

.

.

.

ROOT

 . . .

0 1 0

0 11 00 10 0

0 0 0

.

.

.

FBL
0 0 0

FBL
0 0 1 iSAX iSAX

iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX

PARTIAL
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series

iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX

FULL

(c) PADS+ index after a query.
Figure 5: Examples of ADS+ and PADS+.

process finishes, and even though it is a much faster process than
full indexing, still certain applications may want even faster access
to their data. To further optimize the data to query time, we intro-
duce a more lightweight technique which extends ADS+ with an
even more transparent initialization step. It is tailored for scenar-
ios where users may want to fire just a few approximate queries,
as well as for scenarios with high query workload skew. The new
approach is named Partial ADS+ (PADS+) and its main intuition is
to gradually build parts of the index tree, and only for small subsets
of the data as queries arrive. The concept is similar to the idea of
partial indexes [31] with the difference that the index is not static,
i.e., it is not defined for a pre-decided set of the data; instead it
continuously evolves to fit the workload.

Index Initialization. The initialization step of PADS+ is kept as
lightweight as possible. PADS+ does not build an index tree at all;
there is only a root node with a set of FBL buffers that contain only
the iSAX representations. The only step which takes place during
the initialization phase is that PADS+ creates the iSAX representa-
tions based on the raw data (as in ADS+). This requires a complete
scan of the raw data. But then, instead of spending a significant
effort using the SAX representations to create a tree as ADS+ does,
PADS+ stops at this point and is ready to process queries. The
iSAX representations are first kept in in-memory FBL buffers and
then (contrary to ADS and ADS+) spilled to disk when the buffers
are full. All these steps are similar to a subset of the initialization
effort that takes place for ADS+. This approach allows PADS+ to
significantly reduce the data-to-query time.

Adapting to Queries. PADS+ continuously and incrementally
is refined as queries arrive. As the workload shifts and requires new
data areas, the nodes in the index tree are adaptively and recursively
split to smaller nodes that contain the required data. It follows the
same procedure as with ADS+ with the difference that the starting
point is an index with a just single root node with no children nodes.
In this way, only the parts of the index which are truly relevant for
the workload are further developed as queries arrive.

Skewed Workloads. Such an adaptive design favors scenarios
where there is high skew in the workload, i.e., only part of the
dataset is interesting, or when there is periodical skew in the sense
that queries focus on a single area of the domain for a given time
before the focus shifts to another area.

Querying. When a query is issued, PADS+ converts the query
to its iSAX representation and finds the corresponding FBL buffer
stored on disk. It then loads the iSAX representations found in
this bucket and adaptively splits it, until the query-time leaf size

is reached. It loads the raw time series for the corresponding leaf
and answers the query using the approximate search of iSAX [29,
30, 6]. If an approximate answer is not good enough, it follows the
regular ADS+ Exact Search algorithm, performing adaptive splits
every time that the distance to a leaf node that has not yet been split
to the query-time leaf size has to be calculated.

Every time that a query needs data which might be missing from
the tree, it needs to scan the appropriate FBL buffer iSAX file and
perform an adaptive split operation on it. To optimize this, the ini-
tial leaf size is set to infinite; thus adaptive split operations can
be performed by splitting the large buffers and creating large leaf
files, which are split again, only if there is a query that asks for
them. Further on, using 16 PAA segments (which is common in
practice), we initially have 216 FBL buffers. As a result, given a
dataset of 1 billion data series, each one of the 65536 FBL buffers
will on average contain around 15 thousand iSAX representations.
Using a 1 byte representation for each iSAX character (i.e., cardi-
nality 256), and given the fact that we have 16 segments, we would
need 16 bytes for representing each data-series. This means that the
average FBL size would be around 235 KB: a file size that makes
it trivial to perform split operations on.

Example. An illustration of the PADS+ index can be seen in
Figure 5(c). It represents a random instance after a few queries have
arrived. The index is not fully built; only a small part of the index is
created and only some of the leaves are materialized, following the
workload. For example, the two leftmost children of the root point
directly to FBL buffers on disk; no query has gone through this
path. On the contrary, the rightmost child of the root is split, leading
to a subtree which reaches down to two leaf nodes. This subtree is
created as a side-effect of a query requesting for data series that
belong in the leaf that is now marked as FULL in Figure 5(c).

3.4 Updates
Updates are also handled in an adaptive way.
Inserts. Insertions is the main scenario of interest in data explo-

ration environments, i.e., in a scientific database new data is contin-
uously created, but past data is not discarded. Handling inserts in
all ADS variations is done by simply appending the new data series
in the raw file, while only its iSAX representation and its position
in the raw file is pushed through the index tree. If the new data
series belongs in a leaf which is already in FULL mode, then we
simply flip a bit in this leaf so that future queries know that more
data exists. In either case, no further actions are needed for partial
leaves. If a future query reaches a FULL leave with pending in-

serts, then it fetches the new inserts on-the-fly and it merges them
in the leaf in the same way it is done for PARTIAL leaves (as we
discussed earlier).

Deletes. When a data series needs to be deleted, we simply
mark the data series as deleted in its corresponding leaf (via an
in-memory per-leaf bit-vector). Whether the leaf is partial or full
does not make a difference. Future queries ignore deleted data se-
ries, while future insertions can exploit the space created in this leaf
by these ghost entries.

4. EXPERIMENTAL EVALUATION
In this section, we present a detailed experimental evaluation.

We demonstrate that adaptive data series indexing for an initializa-
tion time that is significantly lower than state-of-the-art approaches,
drastically reducing the data-to-query time by one order of magni-
tude. We show that our algorithms enable users to perform hun-
dreds of thousands of queries faster, while the index creation cost
is spread across multiple queries.

Algorithms. We benchmark all indexing methods presented in
this paper and we compare all our adaptive indexing variations
against the state-of-the-art iSAX 2.0 index [6] that supports bulk
loading, as well as against sequential scans and state-of-the-art multi-
dimensional indexes such as R-Trees [13] and X-Trees [4]. In addi-
tion, we performed certain memory usage optimizations for iSAX
2.0; we use an LRU buffer for recently queried nodes and also after
loading we maintain its last loading buffer in memory.

Infrastructure. All the data structures and algorithms presented,
as well as an optimized version of iSAX 2.0, are built from scratch
in C and compiled with GCC 4.6.3 under Ubuntu Linux 12.04.2.
We used an Intel Xeon machine with 64GB of RAM and 4x 2TB,
SATA, 7.2K RPM Hard Drives in RAID0. All algorithms are set
such as they make maximum use of all available memory.

Benchmarks. We use synthetic benchmarks for a fine grained
analysis as well as real-life benchmarks to demonstrate the use-
fulness of adaptive data series indexing. We generate synthetic
datasets using a random walk data series generator. This is a gener-
ator, where a random number is drawn from a Gaussian distribution
N(0,1), then at each time point a new number is drawn from this
distribution and added to the value of the last number. This kind
of data generation has been extensively used in the past [1, 10, 25,
2, 29, 30, 6], and has been shown to effectively model real-world
financial data [10]. Each dataset is z-normalized before being in-
dexed. Unless mentioned otherwise, each data series consists of
256 points and each point has a float precision of 4 bytes, while
the query workload is random. Each query is given in the form of
a data series q and the index is trying to locate if this data series
or a similar one exist in the database. We study both query inten-
sive workloads as well as updates and various workload patterns
including skewed workloads.

4.1 Reducing the Data to Query Time
Motivation. In our motivation discussion in the introduction

section of the paper, we discussed Figure 1 as an example that
demonstrates the limits of state-of-the-art indexing techniques. For
this experiment, we used a synthetic data set of up to 1 billion data
series and 105 random queries (73% of which need to fetch new
data from the raw file). The main observation is that as we try to
index more and more data, the initialization time to build a state-
of-the-art data series index becomes a prohibitive factor. With 1
billion data series it takes more than a full day in order to index all
data using the state-of-the-art iSAX 2.0 index even when a prefer-
able leaf size is used (Figure 1).

0	

5	

10	

15	

20	

25	

30	

2K	
 5K	
 10K	
 20K	
 40K	
 2K	
 5K	
 10K	
 20K	
 40K	

iSAX	
 2.0	
 ADS	
 Leaf	
 Size	

Indexing	
 (Input)	

Indexing	
 (Output)	

Indexing	
 (CPU)	

To
ta
l	
 c
os
t	
 f
or
	
 in
de

x	

bu

ild
in
g	

(H
ou

rs
)	

Figure 6: Reducing indexing costs.
Minimizing Indexing Costs. Let us now see how the adaptive

data series indexing ideas can help in reducing the index building
costs. In this experiment, we use the same set-up as before, but we
now use a constant data size of 500 million data series and we vary
the leaf size. We test iSAX 2.0 against ADS.

Figure 6 depicts the results, where we show the total time needed
to index all data. ADS drastically reduces the index build time
compared to iSAX 2.0 regardless of the leaf size. For example, for
the case of a leaf size of 20K data series, which is the best case for
iSAX 2.0 (we elaborate on this choice in the following paragraphs),
ADS builds the index in only half an hour, while iSAX 2.0 needs 8
hours.

The breakdown of the indexing costs in Figure 6 explains this
behavior. Input is the time spent reading data from disk. Out put is
the time spent writing data to disk. CPU is the time spent doing any
kind of computation during indexing. ADS avoids the expensive
steps of placing each data series in its corresponding leaf node. The
net result is that the Input and Output costs, i.e., the I/O costs, drop
drastically compared to iSAX 2.0. At the same time, also the CPU
cost drops as ADS does not have to go through the index to place
each data series. Overall, reducing the I/O and CPU costs results in
a major benefit for ADS during the indexing phase.

The Query Processing Bottleneck of Plain ADS. Having seen
that ADS can reduce the indexing costs, let us now see the effect on
query processing. Figure 7 shows the results. Using the same set-
up as in the previous experiment, it depicts the total time to build
the index and to process all 105 queries. There are two observations
from the behavior seen in Figure 7. First, ADS allows its first few
queries to access the data faster than iSAX 2.0. For example, if we
take the best leaf size case for ADS (2K) and the best leaf size case
for iSAX 2.0 (20K), we see (marked with the red arrow) that ADS
can answer 12,700 queries by the time iSAX 2.0 is still indexing
and has not answered a single query (9 hours). In this way, ADS
provides a quick gateway to the data as it was the original intention
and motivation. However, as we process more and more queries
and regardless of the leaf size, ADS looses its initial advantage;
queries take too long to process and overall ADS does not present
a feasible solution.

The main reason why ADS suffers is that even a single query
might result in fetching a significant amount of raw data series. For
example, if a query reaches a leaf which is not yet materialized and
the leaf size is set to 2K, then ADS needs to fetch 2K raw data series
in order to materialize the leaf. Such costs, significantly penalize
queries and in the case of random workloads, as in the example of
Figure 7, where each query may hit a completely different area of
the index, this brings a significant overall cost. In a more focused
workload, i.e., where queries focus on a given part of the index, the
overall performance is drastically different as we do not reach the
point where we need to fetch extra raw data very often. We discuss
such examples later on.

0	

10	

20	

30	

40	

2K	
 5K	
 10K	
 20K	
 40K	
 2K	
 5K	
 10K	
 20K	
 40K	

iSAX	
 2.0	
 ADS	
 Leaf	
 Size	

Indexing	
 (Input)	

Indexing	
 (Output)	

Indexing	
 (CPU)	

Querying	
 (Total)	

217	
 511	
 958	

1986	

3518	

In
de

xi
ng
	
 a
nd

	
 q
ue

ry
in
g	

co
st
	
 (H

ou
rs
)	

Figure 7: The query processing bottleneck.

0	

5	

10	

15	

20	

25	

30	

2K	
 5K	
 10K	
 20K	
 40K	
 2K	
 5K	
 10K	
 20K	
 40K	

iSAX	
 2.0	
 ADS+	

Leaf	
 Size	

Indexing	
 (Input)	

Indexing	
 (Output)	

Indexing	
 (CPU)	

Querying	
 (Total)	

In
de

xi
ng
	
 a
nd

	
 q
ue

ry
in
g	

co
st
	
 (H

ou
rs
)	

Figure 8: Reducing the data-to-query time with ADS+.
Still though, ADS does not represent a robust solution, i.e., a

solution that would be globally applicable in arbitrary workloads.
Robustness with ADS+. This is exactly the motivation for ADS+.

ADS+ maintains the adaptive properties of ADS but it is also robust
and scalable. To demonstrate this behavior, we repeat the previous
experiment, this time using also ADS+. Figure 8 shows that ADS+
significantly outperforms iSAX 2.0 not only during the index build-
ing phase but also during the query processing phase. For example,
for the best case of iSAX 2.0, i.e., with leaf size 20K, ADS+ can
create the index and process all 105 queries in only 3 hours while
iSAX 2.0 needs roughly 15 hours. In fact, ADS+ can process the
queries even faster as it may use even smaller leaf sizes.

Next, we show that ADS+ is robust even when in inferior set-
up. Using the same set-up (data and queries) as before, we vary
the available memory the algorithms can exploit. In addition, for
iSAX 2.0 we use a buffer pool with an LRU policy so that it can
hold recently visited nodes in memory. In Figure 9, it can be seen
that even if we use 10% of the main memory for ADS+, it can still
answer all of the 105 queries before iSAX 2.0 has finished indexing
using 100% of the main memory.

The main novelty in ADS+ is that it can maintain a lightweight
index-building step due to only partially building the index but also
due to using a large leaf size during this phase. Then, as queries
arrive, it adaptively splits leaves in hot areas of the index such that
queries in this area may be processed at a smaller cost. In this
way, ADS+ solves the robustness and scalability problem of ADS
by introducing adaptive node splits, i.e., by being able to adjust
the shape of the index based on the workload and only for the areas
which are hot and may cause expensive steps for individual queries.

Choosing the Query-Time Leaf Size. The query-time leaf size
indicates the finest granularity in which we will split a node with
ADS+, and consequently it is directly related to the amount of raw
data that we store on disk under each leaf. We have experimented
with various query-time leaf sizes ranging from 1 data-series to
1000 data-series, and measured the average page utilization for 3
different page sizes, as well as the average query answering time.
We did this by running 105 queries on a dataset of 500 million data-

0	

5	

10	

15	

20	

25	

100%	
 75%	
 50%	
 25%	
 10%	
 100%	
 75%	
 50%	
 25%	
 10%	

ADS+	
 Buffered	
 iSAX	
 2.0	

Buffer	
 size	
 (%	
 of	
 total	
 memory)	

Querying	
 (Total)	

Indexing	
 (CPU)	

Indexing	
 (Output)	

Indexing	
 (Input)	

In
de

xi
ng
	
 a
nd

	
 q
ue

ry
in
g	

co
st
	
 (H

ou
rs
)	

Figure 9: Total indexing and query answering cost as we in-
crease the buffer size for ADS+ and iSAX 2.0.

0	

10	

20	

30	

40	

50	

60	

500M	
 750M	
 1B	
 500M	
 750M	
 1B	
 500M	
 750M	
 1B	

iSAX	
 2.0	
 ADS	
 ADS+	

Dataset	
 Size	

Indexing	
 (Input)	

Indexing	
 (Output)	

Indexing	
 (CPU)	

Querying	
 (Total)	

217	

220	

235	

In
de

xi
ng
	
 a
nd

	
 q
ue

ry
in
g	

co
st
	
 (H

ou
rs
)	

Figure 10: Scaling to 1 billion data series.
series. As we can see in Table 1, the smaller the query-time leaf
size is, the less data we have to fetch from the raw data file, and the
faster the materialization of the leaf node is. On the other hand,
very small values of query-time leaf size adversely affect space
utilization, since page occupancy will be small. As a result, it is
important to choose a leaf size that will allow for the maximum
page utilization while at the same time offers an acceptable query
answering time. For the rest of our experiments we use 10, since
when using a page size of 8KB, we maximize page occupancy at
around 89% (Table 1 in bold) and the average query answering time
remains relatively low at 69 milliseconds.

Query-time leaf size 1 10 100 1000
Query time (millisecond) 11.27 67.64 499.95 4031.68
Number of 4KB pages 0.25 1.79 17.23 171.48
Number of 8KB pages 0.12 0.89 8.61 85.74
Number of 16KB pages 0.06 0.45 4.30 42.87

Table 1: Varying query-time leaf size.
Scaling to 1 Billion Data Series. Next, we stress all indexing

strategies to study how they can cope with an increasing data set
size. We study the behavior up to 1 billion data series and with
105 random queries. Regarding leaf sizes, we use the optimal leaf
size observed for each index strategy, i.e., 20K for iSAX 2.0, 2K
for ADS, and for ADS+ 2K build-time and 10 query-time leaf size.
Figure 10 shows the total time to build the index and answer all
queries. Across all data sizes, ADS+ consistently outperforms all
other strategies by a big margin.

For 1 billion data series, ADS+ answers all 105 queries in less
than 5 hours, while iSAX 2.0 needs more than 35 hours.

By adaptively expanding the tree and adjusting leaf sizes only
for the hot workload parts, ADS+ enjoys a 7x gain over full in-
dexing in iSAX 2.0. In addition, ADS+ significantly outperforms
ADS; even though ADS can significantly reduce indexing costs for
all data sizes, as we process more and more queries it suffers due
to the high cost of fetching unindexed data series for large leaves
during query processing. ADS+ avoids this problem by adaptively

0	

50	

100	

150	

200	

250	

300	

500M	
 750M	
 1B	

#	

of
	
 q
ue

rie
s	
 (
Th

ou
sa
nd

s)
	

Dataset	
 Size	

(a) Queries answered by
ADS+ while iSAX 2.0 is
still indexing.

0.0000001

0.00001

0.001

0.1

10

1 10100100010000100000100000010000000100000000

Query sequence

iSAX 2.0
ADS
ADS+

%
 o

f
d

at
a

lo
ad

e
d

102

100

10-2

10-4

10-6

 100 102 104 106 108

1TB

10GB

100MB

1MB

10KB

(b) Percentage of data indexed.

1
10

100
1000

10000
100000

1000000
10000000

1 10 100100010000100000100000010000000
Query sequence

Linear Scan
iSAX 2.0
ADS+

107

105

103

101

100 101 102 103 104 105 106 107

Cu
m

ul
at

iv
e

qu
er

y
co

st
 (H

ou
rs

)

(c) Per query response time.

1	

10	

100	

1000	

10000	

X-­‐Tr
ee	

R-­‐Tr
ee	

KD-­‐
Tree

	

iSAX

	
 2.0
	

ADS
+	

In
de

xi
ng
	
)
m
e	

(M

in
ut
es
)	

Projec6on:	
 stopped	
 at	
 50	
 hours	

(d) ADS+ against spatial indexes.

Figure 11: Reducing the data-to-query time with ADS+ as we scale to big data.

splitting its leaves. Also, the rate at which the cost of ADS+ grows
is significantly smaller than that of iSAX 2.0; For example, going
from 500M to 1B data series, iSAX 2.0 needs more than twice the
time, while ADS+ enjoys a sub-linear cost increase.

Figure 11 provides further insights. Figure 11(a) depicts the
number of queries that ADS+ can answer within the time that iSAX
2.0 is still indexing. The bigger the data set, the more queries ADS+
can answer before iSAX 2.0 answers even a single query; for the
case of 1 Billion data series ADS+ manages to answer nearly 3∗105

queries while iSAX 2.0 is still indexing. this verifies the fact that
ADS+ is more suited towards very large data sets compared to tra-
ditional non-adaptive indexing approaches.

Data Touched. In addition, Figure 11(b) shows the amount of
data actually touched (indexed) as the query sequence evolves. To
see the long term effect, we let a big number of queries run, i.e., 107

queries. For iSAX 2.0 the behavior in Figure 11(b) is a flat curve
as everything is indexed blindly up front. With ADS and ADS+
though, we index a much smaller percentage of the data; as more
queries are processed, more data is indexed and only when needed.
While ADS indexes all data by the time it processes 106 queries,
ADS+ manages to touch even less data; since it splits leaves adap-
tively to much smaller sizes it needs to materialize much smaller
leaves and thus it touches less data overall. In this way, even af-
ter 107 queries it has touched only 10% of the data, while it needs
more than 190M queries in order to touch all the data (i.e., com-
pletely build the index). In fact, since this is a random workload,
this is the worst case for adaptive indexing as most queries lead to
fetching raw data series and enriching the index. This is why ADS
has touched all data by query 106; most queries will need to ma-
terialize a partial leaf and thus they need to fetch 2 ∗ 103 new data
series (its leaf size); 2 ∗ 103 ∗ 106 adds up to well above 109 (the
data set size). On the contrary, ADS+ uses a query-time adjustable
leaf size of only 10 data series; thus even if all queries need to fetch
new data, by query 107 we would have fetched at most 108 data se-
ries which is about the 10% (of the original 109 data set) we see in
Figure 11(b). By doing less work and only when necessary, ADS+
allows users to have quick access to their data.

Per Query Performance. We continue our study with a discus-
sion that focuses on the individual query performance based on the
previous 1 Billion data series experiment and 10 Million random
queries. Here we also include the scan strategy, i.e., when we do
not build an index; instead, every query performs a complete scan
over all data series. We will not use ADS from now on as ADS+
consistently outperforms ADS.

Figure 11(c) shows the cumulative per query response time as
the query sequence evolves. The scan strategy has a constant but
slow response time; every query adds the same cost to the total
cumulative costs. Eventually, the scan strategy becomes prohibitive
if we want to repeatedly query the same big data; it takes close

to 105 hours to handle all queries. iSAX 2.0 pays a big cost to
build the index (this is included in the cost of Query 1) but then
queries are very fast, i.e., the cumulative cost curve is flat as every
query adds very little cost. Once the index is built, every iSAX 2.0
query incurs a constant cost; still though there is a big bottleneck to
access the data due to the high indexing costs which means that the
first query needs to wait for several hours. On the contrary, ADS+
enjoys quick data access time; it finishes building the index and
answering all queries by the time iSAX 2.0 is still indexing and has
not answered a single query.

In fact, while the crossover point of the scan strategy with iSAX
2.0 is at about 35 queries, for ADS+ it is only at 2 queries. This
means that for iSAX 2.0 to be useful we need to fire at least 35
queries while ADS+ starts bringing gains already after the first 2
queries. Moreover, while the average query answering time for
ADS+ is about 50 milliseconds, that of iSAX 2.0 is 200 millisec-
onds. In other words, iSAX 2.0 is never going to amortize its ini-
tialization overhead over ADS+ and thus it is always beneficial to
use adaptive indexing as opposed to full a priori indexing. This is
because of the larger leaf size that is used by iSAX 2.0, in order
to reduce the index building time by compromising query times a
bit. On the other hand, ADS+ adaptively splits leaves for the hot
part of the data and thus it can reduce access times even further.
Furthermore, the cost of query answering for ADS+ (essentially,
materializing the data of the leaf) increases linearly with leaf uti-
lization. This cost ranges from 20ms when the leaf is already ma-
terialized to 160ms when the leaf contains all 10 data-series that
need to be loaded from the raw file. When ADS+ needs to perform
splits, the query answering times are 129ms for 1-10 splits, 138ms
for 10-20 splits, 148ms for 20-30 splits, and 160ms for 30-40 splits.
All these times are significantly smaller than the required time to
answer a query using serial scan (more than 46min).

4.2 ADS+ Vs. Multi-dimensional Indexes
One interesting question is how indexes which are tailored for

data series search compare against state-of-the-art spatial indexes.
In this experiment, we compare ADS+ and iSAX 2.0 against KD-
Tree [3], R-Tree [13], and X-Tree [4], a state-of-the-art adaptive
version of R-Tree. X-Tree creates a tree with minimal overlap be-
tween nodes and it allows for variable sized nodes in order to ac-
commodate minimum overlapping. Such spatial indexes can be
used for indexing data series and performing similarity search; the
main idea is that we can use the PAA representations of data series
to create a KD-Tree, an R-Tree, or an X-Tree.

Here, we use a set of 100 million data series. In all the cases,
the amount of dimensions for the reduced dimensionality PAA rep-
resentation is set to 16 while the original size of each data series
is 256 points. Figure 11(d) depicts the time needed to complete
the index building phase for each index. Overall, both data series

1	

10	

100	

1000	

10000	

100M	
 inserts	
 	
 	
 	
 	
 	
 	
 	

before	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

100K	
 queries	

10M	
 inserts	
 	
 	
 	
 	
 	
 	
 	
 	
 	

every	
 	
 	
 	
 	
 	
 	
 	
 	
 	

10K	
 queries	

1M	
 inserts	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

every	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1K	
 queries	

100K	
 inserts	
 	
 	
 	
 	
 	
 	
 	
 	
 	

every	
 	
 	
 	
 	
 	
 	
 	
 	
 	

100	
 queries	

10K	
 inserts	
 	
 	
 	
 	
 	
 	
 	
 	
 	

every	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

10	
 queries	

1K	
 inserts	
 	
 	
 	
 	
 	
 	
 	
 	
 	

every	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 query	

Rate	
 and	
 frequency	
 of	
 inser1ons	

ADS+	
 iSAX	
 2.0	

In
de

xi
ng
	
 a
nd

	
 q
ue

ry
in
g	

	
 c
os
t	
 (
M
in
ut
es
)	

Figure 12: Robust ADS+ performance in update workloads.
tailored indexes, iSAX 2.0 and ADS+, significantly outperform the
more generic spatial indexes. For example, iSAX 2.0 is one order
of magnitude faster than R-Tree while ADS+ is two orders of mag-
nitude faster, and more than an order of magnitude faster than KD-
Tree. The raw benefit comes from the fact iSAX 2.0 and ADS+
are tailored to perform efficient comparisons of SAX representa-
tions (with bitwise operations). ADS+ being adaptive enjoys fur-
ther benefits as we discuss in previous experiments as well. X-Tree
is significantly slower as a result of its more expensive index build-
ing phase which focuses on minimizing overlap between nodes.
Naturally, this helps query processing times as less overlap allows
queries to focus faster on data of interest. However, as we scale to
big data, index building is the main bottleneck and thus X-Tree is
prohibitively expensive.

4.3 Adaptive Behavior under Updates
In our next experiment we study the behavior of ADS+ and iSAX

2.0 with updates. We use a synthetic data set of 100 million data
series and 105 random queries. This time, queries are interleaved
with updates. In particular, we perform the experiment in 6 steps.
Each time a varying number of new data series arrive and at dif-
ferent query intervals. Figure 12 shows the results. The first set
of bars represents the case where all data has arrived up front and
all queries run afterwards. The second set of bars (10M inserts ev-
ery 10K queries) represents a scenario where every 104 queries 107

new data series arrive until we reach a total of 108 data series (i.e.,
the complete data set) and a total of 105 queries (i.e, the complete
query workload). Similarly, the rest of the bars vary the frequency
and the rate of incoming data until the extreme case where we get
1000 new insertions after every single query.

In all cases, ADS+ maintains its drastic performance advantage
over iSAX 2.0. When all data arrives up front, the cost is naturally
higher; more data has to be queried. For the rest of the cases where
data arrives incrementally, interleaving with queries, we observe
that when data arrives more frequently the overall cost increases
slightly. This is a result of both the fact that merging of updates
needs to happen more often and of the fact that more queries need to
be processed against more data. However, even in the extreme case
where we receive 1000 new data series after every query, ADS+
maintains its adaptive behavior and good performance being able
to outperform static iSAX 2.0 by 2 orders of magnitude.

The behavior under deletions is similar. For example in exper-
iments with a data set of 100 million data series, ADS+ performs
deletions with an average deletion time of only 0.2 milliseconds.

4.4 Real-life Workloads
Here, we demonstrate the ability of ADS+ to drastically reduce

the data-to-query time in real-life scenarios. In all cases, we use the
optimal settings found in the synthetic benchmarks: for iSAX 2.0
uses a leaf size of 20K data series, while ADS+ uses a build time
leaf size of 2K data series which adaptively drops down to 10.

Texmex Corpus. The first real-life scenario is an image analysis
scenario from the Texmex corpus [21]. This dataset contains 1 Bil-
lion images which are translated into a set of 1 Billion data series

0	

2	

4	

6	

8	

10	

12	

iSAX	
 2.0	
 ADS+	

Algorithm	

Querying	
 (Total)	

Indexing	
 (CPU)	

Indexing	
 (Output)	

Indexing	
 (Input)	

In
de

xi
ng
	
 a
nd

	
 	

qu

er
yi
ng
	
 c
os
t	
 (
Ho

ur
s)
	

(a) Total costs.

0	

2	

4	

6	

8	

10	

12	

#	
 Queries	
 	

iSAX	
 2.0	

ADS+	

1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5K	
 10K	
 2.5K	
 7.5K	

Cu
m
ul
a-

ve
	
 p
er
	
 	

qu
er
y	

co
st
	
 (H

ou
rs
)	

(b) Cumulative per query costs
(Query 1 includes indexing).

Figure 13: Indexing 1 Billion images (SIFT vectors) and an-
swering 104 queries.

0	

1	

2	

3	

iSAX	
 2.0	
 ADS+	

Algorithm	

Querying	
 (Total)	

Indexing	
 (CPU)	

Indexing	
 (Output)	

Indexing	
 (Input)	

In
de

xi
ng
	
 a
nd

	

	
 q
ue

ry
in
g	

co
st
	
 (H

ou
rs
)	

(a) Total costs.

0	

1	

2	

3	

iSAX	
 2.0	

ADS+	

1	
 200K	
 400K	
 300K	
 100K	

#	
 Queries	

Cu
m
ul
a-

ve
	
 p
er
	
 	

qu
er
y	

co
st
	
 (H

ou
rs
)	

(b) Cumulative Per query costs
(Query 1 includes indexing).

Figure 14: Indexing 20 Million DNA subsequences from the
Homo Sapiens genome and answering 4∗105 queries.
(SIFT feature vectors) of 128 points each. The scenario is that a
user is searching the corpus for images similar to an existing image
that they already have. The corpus also contains 104 such example
queries together with information about which image in the corpus
is the nearest neighbor, i.e., the most similar one, for each query.

Figure 13 shows the results. Figure 13(a) shows the total cost to
go through the indexing phase and to process all queries. ADS+
maintains its drastic gains as we have seen in the synthetic bench-
marks study. Overall, ADS+ finishes answering all queries 6 times
faster compared to iSAX 2.0. It is interesting to mention that ADS+
gains not only during the indexing phase but also during the query
processing phase, i.e., the time it takes to answer all 104 queries is
smaller with ADS+. This is because these real-life queries are not
completely random, i.e., the workload focuses in specific areas of
the index. In such cases, ADS+ has the benefit of working on an
index which essentially contains less data; it has loaded only the
data which are relevant for the hot workload set.

Figure 13(b) helps to understand this behavior even more by
demonstrating the evolution of the query processing costs, i.e., the
graph shows how the indexing and query processing costs evolve
through the query sequence for each indexing strategy. For iSAX
2.0 the first query needs to wait until the whole index is built which
takes almost 12 hours. From there on, each query can be processed
quite fast. On the contrary, ADS+ allows the first query to access
the data in less than 2 hours, while by the time we reach the 2 hours
mark all 104 queries have been processed. Overall, ADS+ process
all queries in just 2 hours, while iSAX 2.0 needs more than 11 hours
just for the indexing phase and without processing a single query.

DNA Data. The second real-life scenario comes from the biol-
ogy domain. This dataset contains the full genome of the Homo
Sapiens (human) which is translated into 20 Million data series of
640 points each, obtained using a sliding window of size 16000,
down-sampled by a factor of 25. The scenario is that a user is
trying to identify subsequences of the human genome that match
subsequences in other genomes. In this way, we create our queries
from the genome of the Rhesus Macaque ape which is also trans-
lated into 20 Million data series of 640 points each, obtained in the
same manner, and each one of these data series can be used as a
query against the human genome in search for similar patterns.

Workload Cross-over point (PADS+ over ADS+)
Random 2899 queries

Low skew 2970 queries
Medium skew 3097 queries

High skew 3825 queries

Table 2: Fast access with PADS+ with varying skew.
Figure 14 shows the results. Similarly to previous experiments,

ADS+ brings a significant benefit both in terms of total costs and
in terms of per query costs. With ADS+ we can index the data and
process all queries 3 times faster, i.e., only after one hour, while
with iSAX 2.0 we need to wait for 3 hours. Compared to previous
performance examples, it is interesting to note that in this experi-
ment we have a very different data to queries ratio, i.e., we have a
relatively small data set of 20 Million data series and a relatively
big query set of 4∗105 queries. Thus, the indexing cost is a much
smaller factor of the total cost compared to previous experiments.
Still though, ADS+ brings a major benefit and shows a scalable
behavior, mainly due to its ability to adapt its shape to workload
patterns, by expanding sub-trees and adjusting leaf sizes on-the-fly.

4.5 Providing Fast Insight with PADS+
Having shown that it is possible to reduce the user waiting time,

without excessively penalizing the query answering time, we now
show that we can achieve even faster access to the data for skewed
workloads. In this experiment we analyze the performance of ADS+,
PADS+ and iSAX 2.0 over a dataset of 1 billion data series and a
varying set of query workloads, ranging from completely skewed
to completely random queries. In total, we run 104 queries. For
low skew, 60% of the queries are picked from 40% of the domain.
In the medium skew workload, 80% of the queries are picked from
20% of the domain, while for the high skew workload 99.99% of
the queries are picked from 0.01% of the domain.

For all workloads both ADS+ and PADS+ significantly outper-
form iSAX 2.0 being 10 to 20 times faster. iSAX 2.0 needs about
28 hours to index all data and process all queries with the bulk of
the time spent in indexing (included in the cost of Query 1). Both
ADS+ and PADS+ can do so in less than 1.5 hours for 103 queries,
and less than 3 hours for 104 queries. ADS+ improves slightly as
skew increases; less data has to be fetched from outside the index.
PADS+, though, as seen in Table 2, manages to improve perfor-
mance even more as skew increases, being faster than ADS+ and
iSAX 2.0 for all skewness levels for the first 2000 queries and for
almost 4000 queries in the case of high skewness. When the work-
load is skewed, this means that PADS+ can focus on certain parts
of the index tree and avoid node splits and disk spilling once it op-
timizes the index for the hot part.

While ADS+ provides the best overall solution being both fast
and robust, PADS+ provides an attractive solution when we know
we want to fire only a few thousands of queries.

5. CONCLUSIONS
We show that state-of-the-art data series indexing approaches

cannot cope with the data deluge. The time needed to build a data
series index becomes prohibitive as the data grows, and may take
more than 24 hours to index a collection of 1 billion data series. We
propose an adaptive indexing approach, where the index is built in-
crementally and adaptively. Both the shape of the tree index and the
leaf sizes are tuned adaptively and automatically to fit the workload
on-the-fly. Using both synthetic and diverse real-life data, we show
that our new adaptive indexing approach copes significantly better
with the ever growing data series collections, and can answer sev-
eral thousands of queries in the time that state-of-the-art indexing
approaches are still in the indexing phase.

6. REFERENCES
[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search in

sequence databases. In FODO, pages 69–84, 1993.
[2] I. Assent, R. Krieger, F. Afschari, and T. Seidl. The TS-tree: efficient time

series search and retrieval. In EDBT, pages 252–263, 2008.
[3] J. L. Bentley. Multidimensional Binary Search Trees Used for Associative

Searching. Commun. ACM, 18(9):509–517, Sept. 1975.
[4] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: An index structure

for high-dimensional data. In VLDB, pages 28–39, 1996.
[5] Y. Bu, T. wing Leung, A. W. chee Fu, E. Keogh, J. Pei, and S. Meshkin. Wat:

Finding top-k discords in time series database. In SDM, pages 449–454, 2007.
[6] A. Camerra, T. Palpanas, J. Shieh, and E. Keogh. iSAX 2.0: Indexing and

mining one billion time series. In ICDM, pages 58–67, 2010.
[7] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. Keogh. Beyond

One Billion Time Series: Indexing and Mining Very Large Time Series
Collections with iSAX2+. KAIS, 39(1):123–151, 2014.

[8] K.-P. Chan and A.-C. Fu. Efficient time series matching by wavelets. In ICDE,
pages 126–133, 1999.

[9] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: a survey. ACM
Computing Surveys, 41(3):1–58, 2009.

[10] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence
matching in time-series databases. In SIGMOD, pages 419–429, 1994.

[11] G. Graefe, F. Halim, S. Idreos, H. A. Kuno, and S. Manegold. Concurrency
control for adaptive indexing. PVLDB, 5(7):656–667, 2012.

[12] G. Graefe, F. Halim, S. Idreos, H. A. Kuno, S. Manegold, and B. Seeger.
Transactional support for adaptive indexing. VLDB J., 23(2):303–328, 2014.

[13] A. Guttman. R-Trees A Dynamic Structure for Spatial Searching. In SIGMOD,
pages 47–57, 1984.

[14] F. Halim, S. Idreos, P. Karras, and R. H. C. Yap. Stochastic database cracking:
Towards robust adaptive indexing in main-memory column-stores. PVLDB,
5(6):502–513, 2012.

[15] S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki. Here are my Data Files.
Here are my Queries. Where are my Results? In CIDR, pages 57–68, 2011.

[16] S. Idreos, M. L. Kersten, and S. Manegold. Updating a Cracked Database. In
SIGMOD, pages 413–424, 2007.

[17] S. Idreos, M. L. Kersten, and S. Manegold. Database Cracking. In CIDR,
pages 68–78, 2007.

[18] S. Idreos, M. L. Kersten, and S. Manegold. Self-organizing Tuple
Reconstruction in Column-stores. In SIGMOD, pages 297–308, 2009.

[19] S. Idreos and E. Liarou. dbtouch: Analytics at your fingertips. In CIDR, 2013.
[20] S. Idreos, S. Manegold, H. A. Kuno, and G. Graefe. Merging what’s cracked,

cracking what’s merged: Adaptive indexing in main-memory column-stores.
PVLDB, 4(9):585–597, 2011.

[21] H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest neighbor
search. TPAMI, 33(1):117–128, 2011.

[22] E. Keogh, K. Chakrabarti, and M. Pazzani. Dimensionality reduction for fast
similarity search in large time series databases. KAIS, 3(3):263–286, 2000.

[23] J. Lin, E. Keogh, and S. Lonardi. A symbolic representation of time series,
with implications for streaming algorithms. In DMKD, pages 2–11, 2003.

[24] T. Palpanas, M. Vlachos, E. J. Keogh, and D. Gunopulos. Streaming time
series summarization using user-defined amnesic functions. TKDE,
20(7):992–1006, 2008.

[25] D. Rafiei and A. Mendelzon. Similarity-based queries for time series data. In
SIGMOD, pages 13–25, 1997.

[26] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu,
J. Zakaria, and E. Keogh. Searching and mining trillions of time series
subsequences under dynamic time warping. In SIGKDD, pages 262–270,
2012.

[27] S. Richter, J.-A. Quiane-Ruiz, S. Schuh, and J. Dittrich. Towards
zero-overhead static and adaptive indexing in hadoop. VLDBJ, 2013.

[28] F. M. Schuhknecht, A. Jindal, and J. Dittrich. The Uncracked Pieces in
Database Cracking. PVLDB, 7(2):97–108, 2013.

[29] J. Shieh and E. Keogh. iSAX: Indexing and Mining Terabyte Sized Time
Series. In SIGKDD, pages 623–631, 2008.

[30] J. Shieh and E. Keogh. iSAX: disk-aware mining and indexing of massive time
series datasets. DMKD, 19(1):24–57, 2009.

[31] M. Stonebraker. The case for partial indexes. SIGMOD Rec., 18(4):4–11, 1989.
[32] Y. Wang, P. Wang, J. Pei, W. Wang, and S. Huang. A data-adaptive and

dynamic segmentation index for whole matching on time series. PVLDB,
6(10):793–804, 2013.

[33] T. Warren Liao. Clustering of time series data - a survey. Pattern Recognition,
38(11):1857–1874, 2005.

[34] B. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary lp norms. In
VLDB, pages 385–394, 2000.

[35] J. Zhou and K. A. Ross. Buffering accesses to memory-resident index
structures. In VLDB, pages 405–416, 2003.

[36] J. Zhou and K. A. Ross. Buffering database operations for enhanced
instruction cache performance. In SIGMOD, pages 191–202, 2004.

