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ABSTRACT
Subsequence anomaly detection in long sequences is an im-
portant problem with applications in a wide range of do-
mains. However, the approaches that have been proposed
so far in the literature have severe limitations: they ei-
ther require prior domain knowledge that is used to de-
sign the anomaly discovery algorithms, or become cum-
bersome and expensive to use in situations with recurrent
anomalies of the same type. In this work, we address these
problems, and propose an unsupervised method suitable
for domain agnostic subsequence anomaly detection. Our
method, Series2Graph, is based on a graph representation of
a novel low-dimensionality embedding of subsequences. Se-
ries2Graph needs neither labeled instances (like supervised
techniques), nor anomaly-free data (like zero-positive learn-
ing techniques), and identifies anomalies of varying lengths.
The experimental results, on the largest set of synthetic and
real datasets used to date, demonstrate that the proposed
approach correctly identifies single and recurrent anomalies
without any prior knowledge of their characteristics, outper-
forming by a large margin several competing approaches in
accuracy, while being up to orders of magnitude faster.
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1. INTRODUCTION
Data series1 anomaly detection is a crucial problem with

application in a wide range of domains [44, 6]. Examples of

1A data series is an ordered sequence of real-valued points.
If the dimension that imposes the ordering of the sequence
is time then we talk about time series, but it could also be
mass (e.g., mass spectrometry), angle (e.g., astronomy), or
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such applications can be found in manufacturing, astronomy,
engineering, and other domains [43, 44], including detection
of abnormal heartbeats in cardiology [26], wear and tear in
bearings of rotating machines [5], machine degradation in
manufacturing [40], hardware and software failures in data
center monitoring [45], mechanical faults in vehicle opera-
tion monitoring [17] and identification of transient noise in
gravitational wave detectors [7]. This implies a real need
by relevant applications for developing methods that can
accurately and efficiently achieve this goal.
[Anomaly Detection in Sequences] Anomaly detection
is a well studied task [8, 51, 58, 35] that can be tackled by
either examining single values, or sequences of points. In the
specific context of sequences, which is the focus of this paper,
we are interested in identifying anomalous subsequences [58,
49], which are not single abnormal values, but rather an ab-
normal sequence of values. In real-world applications, this
distinction becomes crucial: in certain cases, even though
each individual point may be normal, the trend exhibited
by the sequence of these same values may be anomalous.
Failing to identify such situations could lead to severe prob-
lems that may only be detected when it is too late [5].
[Limitations of Previous Approaches] Some existing
techniques explicitly look for a set of pre-determined types
of anomalies [26, 2]. These are techniques that have been
specifically designed to operate in a particular setting, they
require domain expertise, and cannot generalize.

Other techniques identify as anomalies the subsequences
with the largest distances to their nearest neighbors (termed
discords) [58, 49]. The assumption is that the most distant
subsequence is completely isolated from the ”normal” sub-
sequences. However, this definition fails when an anomaly
repeats itself (approximately the same) [53]. In this situa-
tion, anomalies will have other anomalies as close neighbors,
and will not be identified as discords. In order to remedy this
situation, the mthdiscord approach has been proposed [57],
which takes into account the multiplicitym of the anomalous
subsequences that are similar to one another, and marks as
anomalies all the subsequences in the same group. However,
this approach assumes the cardinality of the anomalies to be
known, which is not true in practice (otherwise, we need to
try several different m values, increasing execution time).
Furthermore, the majority of the previous approaches re-
quire prior knowledge of the anomaly length, and their per-
formance deteriorates significantly when the correct length
value is not used.

position (e.g., biology). In this paper, we will use the terms
time series, data series, and sequence interchangeably.



[Proposed Approach] In this work, we address the afore-
mentioned issues, and we propose Series2Graph, an unsu-
pervised method suitable for domain agnostic subsequence
anomaly detection. Our approach does not need labeled in-
stances (like supervised techniques do), or clean data that
do not contain anomalies (like zero-positive learning tech-
niques require). It also allows the same model to be used
for the detection of anomalies of different lengths.

Series2Graph is based on a graph representation of a novel
low-dimensionality embedding of subsequences. It starts by
embedding subsequences into a vector space, where informa-
tion related to their shapes is preserved. This space is then
used to extract overlapping trajectories that correspond to
recurrent patterns in the data series. Subsequently, we con-
struct a graph, whose nodes are derived from the overlapping
trajectories, and edges represent transitions (among subse-
quences in different nodes) that exist in the original series.

Intuitively, this graph encodes all the subsequences of a
(single, or collection of) data series, and encodes the recur-
ring patterns in these subsequences. This allows us then to
differentiate between normal behavior, i.e., frequently occur-
ring patterns, and anomalies, i.e., subsequences that rarely
occur in the data series.

Overall, the experimental results (that include compar-
isons to several state of the art approaches, using a super-
set of the publicly available datasets used in the literature
for subsequence anomaly detection) demonstrate that Se-
ries2Graph dominates by a large margin the competitors in
accuracy, versatility, and execution time.
[Contributions] Our contributions are the following.
• We propose a new formalization for the subsequence
anomaly detection problem, which overcomes the shortcom-
ings of existing models. Our formalization is based on the
intuitive idea that anomalous are the subsequences that are
not similar to the common behavior, which we call normal.
•We describe a novel low-dimensionality embedding for sub-
sequences, and use a graph representation for these embed-
dings. This representation leads to a natural distinction
between recurring subsequences that constitute normal be-
havior, and rarely occurring subsequences that correspond
to anomalies.
• Based on this representation, we develop Se-
ries2Graph [11], an unsupervised method for domain
agnostic subsequence anomaly detection. Series2Graph
supports the identification of previously unseen single and
recurring anomalies, and can be used to find anomalies of
different lengths.
• Finally, we conduct an extensive evaluation using several
large and diverse datasets from various domains that demon-
strates the effectiveness and efficiency of Series2Graph.

2. PRELIMINARIES
[Data Series] We begin by introducing some formal nota-
tions useful for the rest of the paper.

A data series T ∈ Rn is a sequence of real-valued numbers
Ti ∈ R [T1, T2, ..., Tn], where n = |T | is the length of T ,
and Ti is the ith point of T . We are typically interested
in local regions of the data series, known as subsequences.
A subsequence Ti,` ∈ R` of a data series T is a continuous
subset of the values from T of length ` starting at position
i. Formally, Ti,` = [Ti, Ti+1, ..., Ti+`−1].

Given two sequences, A and B, of the same length,
`, we can calculate their Z-normalized Euclidean dis-

tance, dist, as follows [16, 42, 52, 54, 55]: dist =√∑`
i=1(Ai−µA

σA
− Bi−µB

σB
)2, where µ and σ represent the

mean and standard deviation, respectively, of the sequences.
In the following, we will simply use the term distance.

Given a subsequence Ti,`, we say that its mth Nearest
Neighbor (mth NN) is Tj,` if Tj,` has the mth shortest dis-
tance to Ti,` among all the subsequences of length ` in T ,
excluding trivial matches [21]; a trivial match of Ti,` is a sub-
sequence Ta,`, where |i−a| < `/2 (i.e., the two subsequences
overlap by more than half their length).
[Discords and their Shortcomings] We now define the
data series discord, which is the most prevalent subesquence
anomaly definition in the literature.

Definition 1 (Discord). [57, 49, 58, 35] A subse-
quence Ti,` is a discord if the distance between its NN,
namely Tj,`, is the largest among all the NN distances com-
puted between subsequences of length ` in T . We require that
Tj,` is not a trivial match of Ti,`.

Definition 2 (mth-Discord). [57] A subsequence Ti,`
is an mth-discord if the distance between its mth NN, namely
Ti,`, is the largest among all the mth NN distances computed
between subsequences of length ` in T . We require that Ti,`
is not a trivial match of Ti,`.

Subsequence anomaly detection based on discords has at-
tracted a lot of interest in the past years. There exist several
works that have proposed fast and scalable discord discov-
ery algorithms in various settings [49, 31, 37, 22, 58, 15,
56, 38], including simple and mth-discords2, in-memory and
disk-aware techniques, exact and approximate algorithms.

The strength of this definition is its mathematical sim-
plicity. Nevertheless, we observe that it fails to address
some challenges of real use cases. The reason is that large
datasets may contain several anomalies that repeat them-
selves (approximately the same). In other words, it is likely
that an anomaly has another anomaly as its close neighbor,
and thus, does not correspond to a discord anymore.

Even though the mth-discord definition [57] tried to ad-
dress these problems, the parameter m that refers to the
multiplicity of some anomaly in the dataset remains a user-
defined parameter, and is not easy to set correctly. Choosing
an m value that is smaller, or larger, than the correct one,
will lead to both false negatives and false positives.
[Graphs] We introduce some basic definitions for graphs,
which we will use in this paper.

We define a Node Set N as a set of unique integers. Given
a Node SetN , an Edge Set E is then a set composed of tuples
(xi, xj), where xi, xj ∈ N . w(xi, xj) is the weight of that
edge.

Given a Node Set N , an Edge Set E (pairs of nodes in
N ), a Graph G is an ordered pair G = (N , E). A directed
graph or digraph G is an ordered pair G = (N , E) where N
is a Node Set, and E is an ordered Edge Set.

In the rest of this paper, we will only use directed graphs,
denoted as G.

3. PROBLEM FORMULATION
2The authors of these papers define the problem as kth-
discord discovery.
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Figure 1: 3-Normality, 2-Normality, 1-Normality, and 3-Anomaly, 2-Anomaly for two given graphs ((a),(b)
and (c),(d)) representing the simplified model of two data series. Edge weights and node degrees are used to
define the θ-Normality and θ-Anomaly subgraphs.

We now provide a new formulation for subsequence
anomaly detection. The idea is that a data series is trans-
formed into a sequence of abstract states (corresponding to
different subsequence patterns), represented by nodes N in
a directed graph, G(N , E), where the edges E encode the
number of times one state occurred after another. Thus,
normality can be characterized by the (i) the edge weight,
which indicates the number of times two subsequences oc-
curred one after the other in the original sequence, and (ii)
the node degree, the number of edges adjacent to the node,
which indicates the proximity of the subsequences in that
node to other subsequences. Note that G is a connected
graph (there exists a path between every pair of nodes),
and thus, the degree of each node is at least equal to 1.

Under this formulation, paths in the graph composed of
high-weight edges and high-degree nodes correspond to nor-
mal behavior. As a consequence, the Normality of a data
series can be defined as follows.

Definition 3 (θ-Normality). Let a node set be de-
fined as N = {N1, N2, ..., Nm}. Let also a data series T

be represented as a sequence of nodes 〈N (1), N (2), ..., N (n)〉
with ∀i ∈ [0, n], N (i) ∈ N and m ≤ n. The θ-
Normality of T is the subgraph Gνθ (Nν , Eν) of G(N , E) with

E = {(N (i), N (i+1))}i∈[0,n−1], such that: Nν ⊂ N and

∀(N (i), N (i+1)) ∈ Eν , w((N (i), N (i+1))).(deg(N (i)) − 1) ≥ θ.

An example of θ-Normality subgraph is shown in Fig-
ures 1(a) and (c). In Figure 1(a), the subgraph composed of
nodes N1, N2, N5, has edges with weights larger than 3, and
a minimum node degree of 2. Therefore, it is a 3-Normality
subgraph. In Figure 1(c), the subgraph composed of nodes
N1, N2, N5, has edges of weight 1, but does not have any
node with a degree under 4. Therefore, it is a 3-Normality
subgraph. Similarly, we define an anomaly as follows.

Definition 4 (θ-Anomaly). Let a node set be de-
fined as N = {N1, N2, ..., Nm}. Let a data series T be

represented as a sequence of nodes 〈N (1), N (2), ..., N (n)〉
with ∀i ∈ [0, n], N (i) ∈ N and m ≤ n. The θ-
Anomaly of T is the subgraph Gαθ (Nα, Eα) of G(N , E)with

E = {(N (i), N (i+1))}i∈[0,n−1], such that: Gνθ (Nν , Eν) ∩
Gαθ (Nα, Eα) = ∅.

An example of θ-Anomaly subgraph is outlined in Fig-
ures 1(b) and (d). In Figure 1(b), the nodes that do
not belong to the 3-Normality subgraph constitute the 3-
Anomaly subgraph. The 2-Anomaly subgraph is included
in the 3-Anomaly subgraph, and the intersection of the 2-
Anomaly and 2-Normality subgraphs is empty. Similar ob-
servations hold for Figure 1(d). We now define the member-
ship criteria of a subsequence to a θ-Normality subgraph.

Definition 5 (θ-Normality Membership). Given a
data series T represented as a sequence of abstract states
〈N (1), N (2), ..., N (n)〉, a subsequence Ti,`, represented by

〈N (i), N (i+1), ..., N (i+`)〉, belongs to the θ-Normality of T if

and only if ∀j ∈ [i, i+ `], (N (j), N (j+1)) ∈ θ-Normality(T ).
On the contrary, Ti,` belongs to the θ-Anomaly of T if and

only if ∃j ∈ [i, i+ `], (N (j), N (j+1)) /∈ θ-Normality(T ).

Based on the above definitions, using θ-Normality sub-
graphs naturally leads to a ranking of subsequences based
on their ”normality”. For practical reasons, this ranking can
be transformed into a score, where each rank can be seen as
a threshold in that score. We elaborate on this equivalence
in the following section. Observe also that the subsequence
length is not involved in the definition of normal/abnormal,
which renders this approach more general and flexible.

Note that given the existence of graph G, the above def-
initions imply a way for identifying the anomalous subse-
quences. The problem is now how to construct this graph.
Therefore, the problem we want to solve is the following.

Problem 1 (Pattern graph construction).
Given a data series T , we want to automatically construct
the graph G(N , E).

Following common practice, we assume that anomalies
correspond to rare events.

Table 1 summarizes the symbols we use in this paper.

4. PROPOSED APPROACH
In this section, we describe Series2Graph, our unsuper-

vised solution to the subsequence anomaly detection prob-
lem. For a given data series T , the overall Series2Graph
process is divided into four main steps as follows (video ex-
amples of this process are available online [1]).



Symbol Description
T a data series
|T | cardinality of T
λ convolution size
` input subsequence length
`q query subsequence length
`A anomaly length
N set of nodes
E set of edges

G(N , E) directed graph corresponding to T
θ density layer (for normality/anomaly)

θ-Normality subgraph of G (also called Gνθ )
θ-Anomaly subgraph of G (also called Gαθ )
Nν set of nodes of θ-Normality
Eν set of edges of θ-Normality
Nα set of nodes of θ-Anomaly
Eα set of edges of θ-Anomaly
w(e) weight of edge e ∈ E

deg(Ni) degree of node Ni ∈ N
Proj set of all embedded subsequences
Projr reduced set Proj of three dimensions
SProj rotated Projr
ψ angle
Ψ angle set
Iψ radius set of angle ψ
Nψ node set in Iψ

Table 1: Table of symbols

1. Subsequence Embedding: Project all the subse-
quences (of a given length `) of T in a two-dimensional
space, where shape similarity is preserved.

2. Node Creation: Create a node for each one of
the densest parts of the above two-dimensional space.
These nodes can be seen as a summarization of all the
major patterns of length ` that occurred in T .

3. Edge Creation: Retrieve all transitions between
pairs of subsequences represented by two different
nodes: each transition corresponds to a pair of subse-
quences, where one occurs immediately after the other
in the input data series T . We represent transitions
with an edge between the corresponding nodes. The
weights of the edges are set to the number of times the
corresponding pair of subsequences was observed in T .

4. Subsequence Scoring: Compute the normality (or
anomaly) score of a subsequence of length `q ≥ `
(within or outside of T ), based on the previously com-
puted edges/nodes and their weights/degrees.

We note that length ` required in the first step of the
method is user defined, but is independent of the length of
the subsequences that we want to detect as anomalies, which
can have different lengths. Moreover, the proposed approach
is robust to the choice of `, especially when the ` value is
larger than the length of the targeted anomalies. In contrast,
existing methods require prior knowledge of the anomaly
length and can only discover anomalies of that length. We
demonstrate these points in the experimental evaluation.

Below, we describe in detail each one of the above steps.

4.1 Subsequence Embedding
We first describe our approach for projecting a data series

into a two-dimensional space. We propose a new shape-
based embedding, such that two subsequences similar in
shape will be geometrically close in the transformed space

after the embedding. In order to achieve this, we (i) extract
all the subsequences and represent them as vectors, (ii) re-
duce the dimensionality of these vectors to three dimensions
(that we can visualize in a three-dimensional space), (iii) ro-
tate the space of these vectors (i.e., subsequences) such that
two of the components contain the shape related character-
istic, and the last one the average value. As a result, two
subsequences with similar shape, but very different mean
value (i.e., small Z-normalized Euclidean distance, but large
Euclidean distance) will have very close values for the first
two components, but very different for the third one.

We start by extracting subsequences using a sliding win-
dow that we slide by one point at a time3, and then applying
a local convolution (of size4 λ = `/3) to each subsequence,
in order to reduce noise and highlight the important shape
information. Formally, for a given subsequence length ` and
local convolution size λ = `/3, we transform subsequence
Ti,` into a vector (of size `− λ):[ i+λ∑

k=i

Tk,

i+1+λ∑
k=i+1

Tk, ...,

i+∑̀
k=i+`−λ

Tk

]
We insert the vectors corresponding to all subsequences

Ti,` in matrix Proj(T, `, λ) ∈ M|T |,`−λ(R), where M is the
set of real-valued matrices with |T | rows and `−λ columns.

In order to reduce the dimensionality of matrix
Proj(T, `, λ), we apply a Principal Component Analysis
(PCA) transform. For the sake of simplicity, we keep only
the first three components (PCA3), and denote the reduced
three-column matrix as Projr(T, `, λ).

We note that using the first three components was suffi-
cient for our study. Consider that for the 25 datasets used
in our experimental evaluation, the three most important
components explain on average 95% of the total variance.
Generalizing our solution to a larger number of important
components is part of our current work.

Since we are interested in subsequence anomalies, which
correspond to anomalous shapes (trends), we need to em-
phasize (out of the three components obtained by the afore-
mentioned reduced projection) the components that ex-
plain the most the shape of the subsequences. Let min(T )
and max(T ) be the minimum and maximum values of the

data series T . We extract the vector ~vref =
−−−−−−→
OmnOmx,

where Omn = PCA3(min(T ) ∗ λ ∗ 1`−λ) and Omx =
PCA3(max(T ) ∗ λ ∗ 1`−λ) (PCA3 returns the three most
important components using the trained PCA applied on
Proj(T, `, λ)). Intuitively, the vector ~vref describes the
time dimension along which the values change (bounded
by λ ∗ min(T ) and λ ∗ max(T ), where the multiplication
with λ corresponds to a local convolution). The other di-
mensions (orthogonal vectors of ~vref ) describe how the val-
ues change. Thus, overlapping points/sequences in these
other dimensions indicate recurrent behaviors and isolated
points/sequences indicate possible anomalies. Given the
unit vectors (~ux, ~uy, ~uz) that represent the axes of the
cartesian coordinate system of the PCA, the angle φx =
∠~ux~vref , φy = ∠~uy~vref , φz = ∠~uz~vref and their corre-
sponding rotation matrices Rux(φx),Ruy (φy) and Ruz (φz),

3This is equivalent to using a time delay embedding [29] with
a delay τ = 1.
4We use λ = `/3 in all our experiments. Varying λ between
`/10 and `/2 does not affect the results (we omit this graph
for brevity).
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Figure 2: (a) Projr(T, `, λ) and (b) SProj(T, `, λ) of a data series T corresponding to the movement of an actor’s
hand that (c) takes a gun out of the holster and points to a target (normal behavior); (d) the anomaly (red
subsequence) corresponds to a moment when the actor missed the holster [30]. We rotate (a) into (b) such
that ~vref is invariant in two dimensions.

we define SProj(T, `, λ) as follows: SProj(T, `, λ) =
Rux(φx)Ruy (φy)Ruz (φz)Projr(T, `, λ)T . The matrix
SProj(T, `, λ) is the reduced projection Projr(T, `, λ) ro-
tated in order to have the unit vector ~ux aligned to the
offset vector ~vref .

Figure 2 depicts the rotation procedure to transform
Projr into SProj for an example data series T that cor-
responds to the movement of an actor’s hand that takes a
gun out of the holster and points to a target (normal be-
havior). This rotation is using vector ~vref , defined by the
minimal and maximal constant sequences mentioned earlier
(marked with the red dots in Figure 2(a)). The unit vectors

of the rotated space are (
~vref
||~vref ||

, ~ry, ~rz), where ~ry and ~rz are

the rotated vectors ~uy and ~uz.
What this rotation achieves is that (similarly to Z-

normalization) subsequences with a different mean but the
same shape in the space before the rotation (e.g., subse-
quences T1 and T2 in Figure 2(c)) will have very close ~ry
and ~rz components in the new coordinate system (as shown
in Figures 2(a) and (b)). Therefore, subsequences with sim-
ilar shapes will appear close together, shapes that repeat
often in the dataset will form dense clusters in the space
(like subsequences T1 and T2), and rare shapes (anomalies)
will appear relatively isolated (like subsequence T3). Fig-
ures 2(c) and (d) depict the normal (T1 and T2) and abnor-
mal (T3) subsequences. The anomaly (T3) corresponds to a
case when the actor missed the holster [30].

We observe that in the rotated space (see Figure 2(b)), the
shape differences are easy to distinguish, and the identifica-
tion of normal behavior (dense clusters of repeated patterns)
and anomalies (isolated patterns) is visually obvious.

In the rest of the paper, SProj(T, `, λ) will refer to the
2-dimensions matrix keeping only the ry and rz components.

Algorithm 1 describes the computation of the pattern em-
beddings. A naive solution is to compute all the convolu-
tions for all the subsequences of T , which leads to a com-
plexity of magnitude O(|T |`λ). Nevertheless, by using the
previously computed convolutions (Line 4), the complexity
is reduced to O(|T |λ). The PCA step of Algorithm 1 is
implemented with a randomized truncated Singular Value
Decomposition (SVD), using the method of Halko et al. [27]
with a time complexity of O(|T |(` − λ)|component|). The
last step consists of matrix multiplications, and therefore

Algorithm 1: Pattern Embedding

input : Data series T , input length `, λ
output: 3-dimension points sequence SProj

// Transform first subsequence

1 P ←
(∑j+λ

k=j Tk

)
j∈[0,`−λ]

;

2 add P in Proj;
// Transform every other subsequences in T

3 foreach i ∈ [1, |T | − `] do
4 P [0 : `− λ− 1] ← P [1 : `− λ];

5 P [`− λ] ←
∑i+`
k=i+`−λ Tk;

6 add P in Proj;
7 end
// Reduce to three dimensions

8 pca ← PCA3.fit(Proj);
9 Proj ← pca.transform(Proj);
// Get rotation characteristics

10 vref ← pca.transform((max(T )−min(T )) ∗ λ ∗ 1`−λ);
11 φx,φy ,φz ← getAngle((ux, uy , uz), vref );
12 Rux ,Ruy ,Ruz ← GetRotationMatrices(φx, φy , φz);

// Rotate SProj

13 SProj ← Rux .Ruy .Ruz .P roj
T

has a complexity of O(|T ||Rux |2). In our case, the size of
the rotation matrices are much smaller than λ, which leads
to a global complexity of O(3|T |(`− λ)).

4.2 Node Creation
At this point, we are ready to extract shape related infor-

mation, as in Figure 2, where recurrent and isolated trajec-
tories can be distinguished. The idea is to extract the most
crossed sections of the 2-dimensional space defined by the
unit vector (~ry, ~rz). These sections will be the nodes in the
graph we want to construct.

First, we define the radius subset.

Definition 6 (Radius Set). Given a data series T
and its projection matrix P = SProj(T, `, λ), the radius
set Iψ is the set of intersection points between the vector
~uψ = cos(ψ)~ry + sin(ψ)~rz and every segment [xi−1, xi],
where xi−1, xi are two consecutive rows of P: Iψ =

{
x
∣∣(~uψ×

~x = ~0)∧(−−−→xi−1x×−−−−→xi−1xi = ~0)
}

, where × operator is the cross
product.
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Figure 3 (a) displays two radius subsets (marked with the
red points). We can now define the Pattern Node Set as
follows.

Definition 7 (Pattern Node Set). Given a data
series T , its projection P = SProj(T, `, λ) and a set of Iψ
(ψ ∈ Ψ), the Pattern Node Set of T is:

N = ∪ψ∈ΨNψ
Nψ =

{
x
∣∣∃ε, ∀y, |x− y| > ε =⇒ fh(x, Iψ) > fh(y, Iψ)

}
with fh(x, Iψ) =

1

nh
√

2πσ(Iψ)2

∑
xi∈Iψ

e

(x−xi−hµ(Iψ))2

2hσ(Iψ)2

In the above definition, f is a kernel density estimation func-
tion, applied on a radius subset using a Gaussian distribu-
tion. Then, nodes become the areas in the 2-dimensional
space, where the trajectories of the patterns are the most
likely to pass through. In other words, each node corre-
sponds to a set of very similar patterns. The bandwidth
parameter h affects the granularity of the extraction: the
smaller the h value is, the more local maxima, and there-
fore the more nodes we will end up with; the larger the h
value is, the less nodes the graph will have, and therefore
the more general it will be. We define parameter r = |Ψ| as
the number of angles ψ that we use in order to extract the
pattern node set. In other words, this parameter is sampling
the space (refer to Algorithm 2, Line 1). Once again, a big
number of angles will lead to high precision, but at the cost
of increased computation time.

In practice, we observed that parameter r is not critical,
and we thus set r = 50 for the rest of this paper. Regarding
the bandwidth parameter of the density estimation, we set

it following the Scott’s rule [48]: hscott = σ(Iψ).|Iψ|−
1
5 .

Algorithm 2 outlines the above process for extracting the
node set from SProj. In Lines 6-8, we compute for each
radius subset Iψ all intersection points between a radius
vector and the possible segments composed of two consec-
utive points in SProj. The complexity of this operation
is bounded by O(|SProj|r) ' O(|T |r). The time com-
plexity of the kernel density estimation is O(|Iψ|) (since
|Iψ| ≤ |SProj|). Actually, we experimentally observed that
|Iψ| << |SProj|. Therefore, the overall time complexity
is bounded by O(|T |r). We can improve this complexity

Algorithm 2: Node Extraction

input : 2-dimensional point sequence SProj, rate r,
bandwidth h

output: Node Set N
// Set the number of radius

1 Ψ ←
(
i 2π
r

)
i∈[0,r];

2 N ← {};
3 foreach ψ ∈ Ψ do
4 Iψ ← [];
5 foreach i ∈ [0, |SProj| − 1] do

// Find intersected points
6 radius ← maxx,y(SProji, SProji+1);
7 Pψ ← (radiusx.cos(ψ), radiusy .sin(ψ));
8 add Intersect((Ω, Pψ), (SProji, SProji+1)) in Iψ
9 end

// Extract Nodes
10 Nψ ← argmaxx∈Iψfh(x, Iψ);

11 add Nψ in N ;

12 end

using the following observation. Instead of checking the in-
tersection with every possible radius, we can select those
that bound the position of the points i and i + 1 in SProj
(only the radius with ψ between ψi = ∠ ~ux. ~SProji and

ψi+1 = ∠ ~ux. ~SProji+1). Therefore, the worst case com-
plexity becomes O(|T |r), and the best case complexity is
reduced to O(|T |).

4.3 Edge Creation
Once we identify the nodes, we need to compute

the edges among them. Recall that the set of ex-
tracted nodes corresponds to all the possible states,
where subsequences of the data series T can be. In
order to compute the transitions among these nodes,
we loop through the entire projection SProj(T, `, λ)

and we extract the sequence 〈N (0), N (1), ..., N (n)〉 of
the nodes Ni in N that the embedded subsequences
(SProj(T, `, λ)0, SProj(T, `, λ)1, ..., SProj(T, `, λ)n) be-
long to. Intuitively, the above node sequence involves
all the nodes in N (some of them more than once) and
represents the entire input data series. We use this sequence
to identify the edges of the graph G` we want to construct.
In practice, we extract the edges (all the pairs of successive
nodes in the above sequence) and set their weights to the
number of times the edge is observed in the sequence.
Formally, the edges set E is defined as follows.

Definition 8 (Pattern Edges Set). Given a data
series T , its projection P = SProj(T, `, λ) and its Pat-
tern Node Set N , the edges set E is equal to: E ={(
S(Pi), S(Pi+1)

)}
i∈[1,|P |−1]

, where function S finds for a

given projection point, the closest node in N . Formally:
S(x) = argminn∈Nd(x, n), where x ∈ P and d is the geo-
metrical Euclidean distance.

Since the weight of each edge is equal to the cardinality of
this edge in the edge set E , this weight is proportional to the
number of times two subsequences follow each other in the
input data series. For efficiency, S(x) is computed as follows:
for a given projection point, we first find the node subset Nψ
of N (with ψ ∈ Ψ), such that |∠~x ~uψ| is minimal. We then
compute S(x) such as S(x) = argminn∈Nψ |x. ~uψ−n|, where
~x. ~uψ is the scalar product between ~x and ~uψ. As depicted in



Algorithm 3: Edge Extraction

input : 2-dimension points sequence SProj, and a node
set N

output: a Edge Set E
1 Ψ ←

(
i 2π
r

)
i∈[0,r];

2 NodeSeq ← [];
3 foreach i ∈ [0, |SProj| − 1] do

// Get the radius that bound SProji and SProji+1

4 ψi ← getAngle( ~ux, SProji);
5 ψi+1 ← getAngle( ~ux, SProji+1);
6 foreach (ψ ∈ Ψ) ∧ (ψ ∈ [ψi, ψi+1]) do

// Fill the sequence of node NodeSeq
7 radius ← maxx,y(SProji, SProji+1);
8 Pψ ← (radiusx.cos(ψ), radiusy .sin(ψ));
9 xint ← Intersect((Ω, Pψ), (SProji, SProji+1));

10 nint ← argminn∈Nψ (|xint − n|);
11 add nint in NodeSeq

12 end
// Extract edges from NodeSeq

13 E ←
{

(NodeSeqi, NodeSeqi+1)
}
i∈[0,|fullPath|];

14 end

Figures 3(a) and (b), a total of n1 +n2 subsequences are in-
tersected by Iψ and represented by node N0

ψ. At Iψ+1, these

subsequences are divided between nodes N0
ψ+1 (n1 subse-

quences) and N1
ψ+1 (n2 subsequences). Therefore, we have

w(N0
ψ, N

0
ψ+1) = n1 and w(N0

ψ, N
1
ψ+1) = n2.

Algorithm 3 outlines the steps we follow to extract the
edges among the nodes in N . For each point in the in-
put data series T , we identify the radius it belongs to and
we choose the closest node. Therefore, the complexity is
bounded by O(|T |) and varies based on the number of ra-
dius we have to check and the number of nodes in each Nψ.
The former is bounded by parameter r: on average, we have
no more than |T |/r points per Nψ. The overall complexity
is in the worst case O(|T |2), and in the best case O(|T |). We
note that this worst case corresponds to the situation where
each subsequence in T belongs to a different node. This is
not what we observe in practice: for all our datasets, the
overall complexity is close to the best case.

4.4 Subsequence Scoring
We now describe how we can use the information in the

graph to identify the normal and anomalous behaviors.
[Subsequence to Path Conversion] We start with the
conversion of a subsequence to a path in a given graph. For
an already computed graph G`(N , E), we define function
T ime2Path(G`, Ti,`q ) that converts a subsequence Ti,`q into
a path (i.e., a sequence of nodes) in G`, by (i) computing
the pattern embedding SP of Ti,`q (using the PCA transfor-
mation and rotation matrices, computed in Lines 8 and 12,
respectively, of Algorithm 1), and (ii) extracting the edges
using EdgeExtraction(SP,N ) (output of Algorithm 3) on
the node set N of graph G`.
[Normality Score] We are now ready to measure normal-
ity. As mentioned earlier, modeling a data series using a
cyclic graph results in the graph encoding information con-
cerning the recurrence of subsequences. Then, the path nor-
mality score function can be defined as follows.

Definition 9 (Path Normality Score). Given a
data series T and its graph G`(N , E), and a subsequence
Ti,`q of length `q ≥ `, the normality of a path Pth =

T ime2Path(G`(N , E), Ti,`q ) = 〈N (i), N (i+1), ..., N (i+`q)〉 is

equal to: Norm(Pth) =
∑i+`q−1
j=i

w(N(j),N(j+1))(deg(N(j))−1)
`q

We can thus infer a normality score for subsequences in T
using the T ime2Path function defined earlier (the opposite
of this normality score is the anomaly score). Formally, the
normality score is defined as follows.

Definition 10 (Subsequence Normality Score).
Given a data series T , its graph G`(N , E) and a subsequence
Ti,`q of length `q ≥ `, the Normality score Ti,`q is equal to:
Normality(Ti,`q ) = Norm(T ime2Path(G`(N , E), Ti,`q ))

Observe that the two previous definitions are consistent
with the definition of θ-Normality, such that every Pth in θ-
Normal subgraph will have N(Pth) ≥ θ, and every Pth that
is exclusively in a lower normality level will haveN(Pth) ≤ θ.
As a matter of fact, the rank generated by the normality
score is similar to the θ-Normality rank, and in both rank-
ings, the anomalies are found at the bottom of the ranking.
The following lemma formalizes this statement.

Lemma 1. Given a data series T , its graph
G`(N , E), a subsequence Ti,`q , and its path Pth =
T ime2Path(G`(N , E), Ti,`q ), we have: ∀θ ∈ N>0, N(Pth) <
θ =⇒ Pth ∈ θ-Anomaly(T )

Proof. Consider a subsequence Ti,`q corresponding to

Pth = 〈N (i), N (i+1), ..., N (i+`q)〉. If Pth ∈ θ-Normality(T ),
then according to Definition 5, we have:

∀j ∈ [i, i+ `q − 1], (N (j), N (j+1)) ∈ θ-Normality(T )

=⇒ ∀j ∈ [i, i+ `q − 1], w(N (j), N (j+1)).(deg(N (j))− 1) ≥ θ

=⇒
i+`q−1∑
j=i

w(N (j), N (j+1)).(deg(N (j))− 1)

`q
≥ θ

As a consequence, Pth /∈ θ-Normality(T ) and according to
Definition 5, Pth ∈ θ-Anomaly(T ).

Therefore, the subsequences of T with a low score are
those that compose the θ-Anomaly subgraph, where the
value of θ is low (close to one for the discords). We note
that this process identifies both single anomalies (discords)
and recurrent anomalies.

4.5 Series2Graph Summary
Algorithm 4 summarizes all the steps of our approach. In

Lines 1-3, we compute the subsequence embedding, the node
set N and then the edge set E in order to build the graph G`.
Line 7 computes the Normality score for all subsequences of
the input data series: we use a sliding window over the input
data series to extract all subsequences, we score each one of
them and store the result in the vector NormalityScore =
[Normality(T0,`q ), ..., Normality(Tn−`q,`q )], initialized in
Line 5. Finally, we apply a moving average filter on the
NormalityScore vector (Line 9). This filter tries to rectify
possible small inaccuracies of the scoring function, by en-
suring that two highly overlapping subsequences will have
similar Normality scores (as we would normally expect).

5. EXPERIMENTAL EVALUATION
We now present the results of the experimental evaluation

with several real datasets from different domains, including



Algorithm 4: Series2Graph

input : data series T , input length `, query length `q
output: a data series AnomScore

1 SProj ← PatternEmbedding(T, `, λ);
2 N ← NodeExtraction(SProj, r = 50, h = hopt);
3 E ← EdgeExtraction(SProj,N );
4 G` ← Graph(N , E);

// vector of Normality scores
5 NormalityScore ← [0]0,|T |−`q ;

// compute Normality score for all subsequences of
length `q in T

6 foreach i ∈ [1, |T | − `q ] do
7 NormalityScore[i] ← Norm(T ime2Path(G`, Ti,`q ));

8 end
9 NormalityScore ← movingAverage(NormalityScore, `);

all the annotated datasets that have been used in the discord
discovery literature. In order to ensure the reproducibility of
our experiments, we created a web page [1] with the source
code, datasets, and other supporting material.

5.1 Experimental setup and Datasets
We have implemented our algorithms [11] in C (compiled

with gcc 5.4.0). The evaluation was conducted on a server
with Intel Xeon CPU E5-2650 v4 2.20GHz, and 250GB of
RAM.

We benchmark our approach using different annotated
real and synthetic datasets, listed in Table 2. Following
previous work [50], we use several synthetic datasets that
contain sinusoid patterns at fixed frequency, on top of a
random walk trend. We then inject different numbers of
anomalies, in the form of sinusoid waveforms with different
phases and higher than normal frequencies, and add various
levels of Gaussian noise on top. We refer to those datasets
using the label SRW-[# of anomalies]-[% of noise]-[length of
anomaly] and use them in order to test the performance of
the algorithms under different, controlled conditions.

Our real datasets are: (i) Simulated engine disks data
(SED) collected by the Rotary Dynamics Laboratory at
NASA [3, 4]. This data series represents disk revolutions
recorded over several runs. (ii) MIT-BIH Supraventricular
Arrhythmia Database (MBA) [20, 41], which are electro-
cardiogram recordings from 5 different patients, containing
multiple instances of two different kinds of anomalies. (iii)
Five additional real datasets from various domains that have
been studied in earlier works [32, 49, 49], and their anoma-
lies are simple discords (usually only 1): aerospace engineer-
ing (Space Shuttle Marotta Valve [32]), gesture recognition
(Ann’s Gun dataset [49]) and medicine (patient’s respiration
measured by the thorax extension [32], and the record 15 of
the BIDMC Congestive Heart Failure Database [32]).

We measure Top-k accuracy (i.e., the correctly identified
anomalies among the k retrieved by the algorithm, divided
by k) and execution time.

5.2 Length Flexibility
We first evaluate the influence of the subsequence length

parameters ` and `q. Ideally, we would like the method
to be robust to variations in these parameters. This will
ensure that the constructed model can accurately identify
anomalies, even if these anomalies are of several lengths,
significantly different than what was originally expected by

Datasets Length `A NA Domain

SED 100K 75 50 Electronic
MBA (803) 100K 75 62 Cardiology
MBA (804) 100K 75 30 Cardiology
MBA (805) 100K 75 133 Cardiology
MBA (806) 100K 75 27 Cardiology
MBA (820) 100K 75 76 Cardiology

MBA (14046) 100K 75 142 Cardiology

Marotta Valve 20K 1K 1
Aerospace
engineering

Ann Gun 11K 800 1
Gesture

recognition
Patient Respiration 24K 800 1 Medicine

BIDMC CHF 15K 256 1 Cardiology
SRW-[20-100]-[0%]-[200] 100K 200 var. Synthetic
SRW-[60]-[5%-25%]-[200] 100K 200 60 Synthetic
SRW-[60]-[0%]-[100-1600] 100K var. 60 Synthetic

Table 2: List of dataset characteristics: data series
length, anomaly length (`A), number of annotated
anomalies (NA) and domain.
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Figure 4: (a) MBA ECG recording (4000 points
snippet from patient 803), with one annotated
Supraventricular contraction (V). (b) Euclidean dis-
tances of each subsequence (for the entire MBA
ECG recording) of length 80 (green) and 90 (red).
In this two cases, the subsequences with the high-
est distances are not the same (length 90 : Normal
Beat, length 80 : Anomaly Type V).

the users. We stress that, in contrast, all previous tech-
niques [49, 58, 56, 14, 39] require knowledge of the exact
anomaly length, and are very brittle otherwise.

Previous approaches developed for discord discovery, like
STOMP [58], are very sensitive to even slight variations
of the subsequence length parameter (for the identifica-
tion of the anomalous subsequences). Figure 4 displays
the Euclidean distances of each subsequence of the MBA
ECG records 803 to its nearest neighbor (computed using
STOMP), using lengths 80 and 90, given the length of the
anomaly `A = 80. The results demonstrate that a small
variation in the input length can lead to very different out-
comes (using a length equal to 90, the discord is a normal
heart beat, and therefore a false positive).

On the other hand, Series2Graph is robust to variations in
the query subsequence length. Figure 5 depicts the G`(N , E)
graphs for ` equals to 80, 100, 120, while the anomalies
length is 75 for Type S anomalies, and 120 for type V anoma-
lies. The results show that in all cases, irrespective of the
length ` used to construct the graph, the anomaly trajec-
tories (Type V highlighted in red and Type S highlighted
in blue) are distinct from the highly-weighted trajectories
(thick black) that correspond to normal behavior.
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Figure 5: G`(N , E) of the MBA(820) electrocardio-
gram data series for ` of 80, 100 and 120. In the three
cases, the different kinds of anomalies (S: blue, V:
red) are well separable with lower edges weights.

In order to confirm this observation, we conduct several
experiments. First, we measure the Top-k accuracy as the
input length ` and the query length `q vary (using a query
length 2`q/3 = `, with the anomaly length `A = 80). Fig-
ure 6(a) demonstrates the stable behavior of Series2Graph.
Even though the Top-k accuracy varies for small lengths,
the performance remains relatively stable when the input
lengths ` we use to construct the graph are larger than the
anomaly length `A. This means that simply selecting an `
value larger than the expected anomaly length `A will lead
to good performance.

In contrast, as Figure 6(b) demonstrates, the performance
of STOMP (a discord-based approach) varies widely. Thus,
such approaches need careful tuning, requiring domain ex-
pertise and good knowledge of the possible anomaly lengths.
Furthermore, even though STOMP accuracy seems to con-
verge to a stable value as the length is increasing, the Se-
ries2Graph accuracy stays significantly higher and much
more stable in average, as shown in Figure 6(c).

5.3 Optimal Bandwidth
We now evaluate the effectiveness of the kernel bandwidth

hscott in fh(x, I) in the node extraction step. We set a con-
stant value for ` and `q (` = 80, `q = 160), and we measure
the accuracy for different bandwidths. Figure 7(a) displays
the Top-k accuracy on the MBA and SED datasets as a func-
tion of h/σ(Iθ) (logarithmic scale). As expected, a small
bandwidth ratio breaks down too much the normal pat-
tern, and therefore reduces its Normality score, while a large
bandwidth ratio (above 0.7) hinders some key nodes to de-
tect anomalies in two of the six datasets, namely MBA(806)
and MBA(820). The anomalies in these two datasets are
close to the normal behavior, thus the abnormal trajectories
can be easily missed. In contrast, using the Scott bandwidth
ratio hscott (marked with the dotted line) leads to very good
accuracy for all the datasets we tested5.

5.4 Convergence of Edge Set
In this section, we evaluate Series2Graph accuracy on pre-

viously unseen data series (i.e., on different data series than
the one used to build the graph G, with potentially different
anomalies). Note that the Normality score of a non-existing

5We used the datasets with the same anomaly and pattern
lengths, so that we can compare Scott bandwidth ratios.

pattern in G will be 0 (see Definitions 9 and 10) and there-
fore close to the score of the anomalies in G.

In the experiment of Figure 7(b), we build the graph us-
ing only a prefix of the input series. We then vary the size
of this prefix and measure the Top-k accuracy for the entire
series. As we can see, the Top-k accuracy usually reaches
its maximum value without having to build the graph using
all the available data. We observe that on average Top-k
accuracy already reaches more than 85% of its maximum
value, when we use as little as 40% of the input data series.
Nevertheless, one can also see that the Top-k accuracy of
MBA(820) and MBA(806) converge slower than the other
datasets. These two datasets contain anomalies of Type S,
which means they are very similar to a normal heartbeat.
Therefore, Series2Graph requires more subsequences in or-
der to build a model that effectively separates the anomalous
behavior from the normal behavior.

Finally, Figure 7(c) demonstrates the stability of Se-
ries2Graph in the anomaly discovery task as we vary the
query subsequence length `q using a fixed input length `.
The results show that we can identify anomalies with very
high accuracy, by scoring candidate subsequences of a wide
range of lengths, provided they are larger than the length of
the anomalies (`q ≥ `A).

5.5 Discord Identification
The next experiments evaluate the capability of Se-

ries2Graph to identify discords. We used the datasets that
have appeared in the discord discovery literature (mentioned
above). Figure 8 shows the graphs obtained for Ann Gun,
Marotta Valve, Patient’s respiration, and Record 15 of the
BIDMC Congestive Heart Failure Database. The thickness
of the lines correspond to the weights of the edges. This
figure shows that the discords of these datasets (red subse-
quences) always correspond to trajectories with low weights
(θ-Anomaly, for a small θ value), whereas the normal sub-
sequences (green subsequences) correspond to trajectories
with high weights (θ-Normality, for a large θ). Therefore,
the anomaly scores of the discords are in every case the
largest, and hence are correctly identified.

5.6 Accuracy Evaluation
In this section, we report the anomaly detection accu-

racy results. We compare Series2Graph to the current state-
of-the-art data series subsequence anomaly detection algo-
rithms, using `q = `A. For Series2Graph, we use the same
` = 50 and latent λ = 16 for all datasets, even though dif-
ferent values would be optimal in every case, thus demon-
strating the robustness of the approach. We also evaluate
Series2Graph’s learning ability by comparing the accuracy
obtained by building the graph using only the first half of
the data series (S2G|T |/2), compared to using the full data
series (S2G|T |). We consider two techniques that enumer-
ate Top-k 1st discords, namely GrammarViz (GV) [49] and
STOMP [58]. Moreover, we compare Series2Graph against
the Disk Aware Discord Discovery algorithm (DAD) [56],
which finds mth discords. We also compare to Local Outlier
Factor (LOF) [14] and Isolation Forest [36]. Note that the
last two methods are not specific to subsequence anomaly
discovery. Finally, we include in our comparison LSTM-
AD [39], a supervised deep learning technique. We stress
that the comparison to LSTM-AD is not fair to all the other
techniques: LSTM-AD has to first train on labeled data,
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Figure 6: On the MBA and SED datasets: (a) Top-k accuracy of Series2Graph varying the input and query
length (2`q/3 = `) to build the graph G`. (b) STOMP Top-k accuracy varying the input length `, (c) STOMP
and Series2Graph in Top-k accuracy average compared to the input length `.
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Figure 7: Top-k accuracy of Series2Graph on the MBA and SED datasets while: (a) varying the bandwidth
ratio h/σ(Iψ) in fh(x, I) (logarithmic scale), (b) varying the length of the prefix snippet used to build the
graph, (c) varying the query length `q (starting from the input length `) to compute the normality score.

which gives it an unfair advantage; all the other techniques
are unsupervised. We include it to get an indication as to
how the unsupervised techniques compare to a state-of-the-
art supervised anomaly detection algorithm.

In Table 3, we show the Top-k accuracy. We set k equal to
the number of anomalies. These experiments test the capa-
bility of each method to correctly retrieve the k anomalous
subsequences in each dataset. For Series2Graph, we simply
have to report the Top-k anomalies that Algorithm 4 pro-
duces. For the discord based techniques, we have to consider
the Top-k 1st discord and the mth discord (with m = k). Fi-
nally, LSTM-AD marks as anomalies the subsequences that
have the largest errors (distances) to the sequences that the
algorithm predicts; we compute accuracy considering the
subsequences with the k largest errors.

In the first section of Table 3, we report the results of
all techniques on the annotated real datasets with multiple
(diverse and similar) anomalies. Series2Graph (both built
on half and full dataset) is clearly the winner, with nearly
perfect accuracy. As expected, Top-k 1st discord techniques
(GV and STOMP) have in most of the cases lower accu-
racy than Series2Graph, since anomalies do not correspond
to rare subsequences (i.e., isolated discords). We also ob-
serve that the mth discord technique (DAD), which is able
to detect groups of m similar anomalous subsequences, does
not perform well. This is due to the many false positives
produced by the algorithm.

In the rest of Table 3, we report the accuracy of the eval-
uated methods on all the synthetic datasets (where we vary
the number of anomalies, the % of Gaussian noise and the

anomaly subsequence length `). We note that the accu-
racy of the discord discovery techniques substantially im-
proves since in this case, most anomalies correspond to rare
and isolated subsequences (i.e., different from one another).
Even in these cases though, Series2Graph is on average sig-
nificantly more accurate than the competitors. Moreover,
in contrast to GV, STOMP and DAD, we observe that Se-
ries2Graph’s performance is stable as the noise increases be-
tween 0%-25%.

Regarding LSTM-AD, we note that, in general, it is
more accurate than the discord based algorithms. However,
LSTM-AD cannot match the performance of Series2Graph,
and in some cases it completely misses the anomalies (i.e.,
for the SED, MBA(806) and MBA(820) datasets). Regard-
ing LOF, we observe that it does not perform well. Isolation
Forest on the other hand achieves a surprisingly good accu-
racy, which makes it a strong competitor.

Overall, we observe that regular Series2Graph (S2G|T |) is
considerably more accurate than all competitors (with rare
exceptions, for which its performance is still very close to
the best one), in all the settings we used in our evaluation.

5.7 Scalability Evaluation
We now present scalability tests (we do not consider

LSTM-AD, since supervised methods have a completely dif-
ferent way of operation and associated costs, e.g., data la-
beling and model training). In Figures 9(a,b,c), we report
the execution time of the algorithms (log scale) versus the
size of the dataset. We use several prefix snippets (50K,
100K, 500K, 1M, 2M points) of the MBA(14046) dataset, a
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Figure 8: (a) G80 for BIDMC Congestive Heart Failure Database: Record 15, (b) G200 for Space Shuttle
Marotta Valve (TEK 16), (c) G50 Patient’s respiration, (d) G150 Ann Gun Datasets. The green subsequences
belong to the θ-Normality subgraph with large θ. The red subsequences belong to the θ-Anomaly subgraph
with small θ.

Datasets GV STOMP DAD LOF Isolation Forest (std) LSTM-AD S2G|T |/2 S2G|T |
SED 0.46 0.73 0.44 0.65 0.65 (0.02) 0.10 1.00 1.00

MBA (803) 0.15 0.60 0.01 0.08 1.00 (0.00) 0.35 1.00 1.00
MBA (805) 0.09 0.10 0.03 0.42 0.99 (0.01) 0.85 0.99 0.99
MBA (806) 0.01 0.59 0.66 0.92 0.75 (0.06) 0.10 0.96 1.00
MBA (820) 0.05 0.92 0.04 0.42 0.92 (0.03) 0.09 0.76 0.96

MBA (14046) 0.09 0.54 0.71 0.64 0.99 (0.01) 1.00 0.95 0.95
SRW-[20]-[0%]-[200] 1.0 0.77 0.55 0.74 0.75 (0.05) 0.94 0.95 1.00
SRW-[40]-[0%]-[200] 0.975 1.0 0.05 0.89 0.92 (0.02) 1.00 1.00 1.00
SRW-[60]-[0%]-[200] 0.96 0.88 0.10 0.76 0.87 (0.02) 0.92 1.00 1.00
SRW-[80]-[0%]-[200] 0.96 0.43 0.14 0.82 0.86 (0.01) 0.95 0.98 1.00
SRW-[100]-[0%]-[200] 0.95 0.99 0.11 0.75 0.92 (0.02) 1.00 1.00 1.00
SRW-[60]-[5%]-[200] 1.0 0.73 0.21 0.88 0.89 (0.01) 0.96 1.00 1.00
SRW-[60]-[10%]-[200] 0.83 0.98 0.01 0.70 0.80 (0.01) 0.94 0.96 0.98
SRW-[60]-[15%]-[200] 0.76 0.62 0.17 0.66 0.82 (0.01) 0.94 0.98 0.98
SRW-[60]-[20%]-[200] 0.73 1.0 0.01 0.73 0.85 (0.02) 0.96 1.00 1.00
SRW-[60]-[25%]-[200] 0.63 0.64 0.09 0.67 0.80 (0.01) 0.83 0.98 0.98
SRW-[60]-[0%]-[100] 0.98 1.0 0.23 0.74 0.88 (0.02) 1.00 0.96 0.96
SRW-[60]-[0%]-[200] 0.96 0.60 0.19 0.85 0.83 (0.01) 1.00 0.98 0.98
SRW-[60]-[0%]-[400] 0.98 1.0 0.63 0.76 0.88 (0.01) 0.88 0.96 0.96
SRW-[60]-[0%]-[800] 0.91 0.86 - 0.69 0.87 (0.01) 0.76 0.95 0.98
SRW-[60]-[0%]-[1600] 1.0 1.0 - 0.52 0.64 (0.02) 0.90 0.91 0.94

Average 0.62 0.73 0.24 0.68 0.85 0.78 0.96 0.98

Table 3: Top-k accuracy for DAD, STOMP, GrammarViz, LSTM-AD, S2G|T |/2 (Series2Graph built using half
of the dataset) and S2G|T | (Series2Graph built using the entire dataset) with k equal to number of anomalies.

2 million points concatenated version of the Marotta Valve
dataset, and a 2 million points concatenated version of SED
dataset. For all three datasets, k is set to be equal to the
number of anomalies in each snippet. We observe that Se-
ries2Graph is faster than the competitors, especially when
both the input series length ` and anomaly subsequence
length `A take large values, as in Figure 9(b), and grace-
fully scales with the dataset size.

We also measure the execution time of the algorithms (log
scale) as we vary the number of anomalies. We use the
MBA(14046) dataset, as well as the synthetic datasets SRW-
[20-100]-[0%]-[200] (Figure 9(e)). As expected, we observe
that the performance of Series2Graph is not influenced by
the number of anomalies. Similarly, STOMP and IF are
not affected either, but GrammarViz, LOF and DAD are
negatively impacted by the number of anomalies.

Finally, Figure 9(f) depicts the time performance results
as we vary the length of the anomalies between 100-1600
points in the synthetic data series SRW-[60]-[0%]-[100-1600].
The performance of STOMP is constant, because its com-
plexity is not affected by the (anomaly) subsequence length.
Moreover, we note that GV, IF, LOF and DAD perform

poorly as the length of the anomalies is increasing. Observe
that the execution time of Series2Graph increases slightly
for larger subsequence lengths. This is due to the scoring
function (last step of the algorithm). This function sums up
all the edge weights of the subsequences we are interested
in. Therefore, if the subsequence is large, the number of
relevant edges is large as well, which slightly affects compu-
tation time. Nevertheless, Series2Graph remains the fastest
algorithm among all competitors.

6. RELATED WORK
[Discord Discovery] The problem of subsequence anomaly
discovery has been studied by several works that use the
discord definition [58, 49, 31, 37, 22, 15, 38, 35]. In these
studies, anomalies are termed the isolated subsequences, i.e.,
the ones that have the highest Euclidean distances to their
nearest neighbors. The proposed solutions either operate
directly on the raw values [58, 37, 22, 38], or on discrete
representations of the data, e.g., Haar wavelets [22, 15], or
SAX [31, 49]. Even though the information that the dis-
cords carry is interesting and useful for some applications,
these approaches (that are based on the discord definition)
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Figure 9: Execution time vs data size (a-c), number of anomalies (d,e), anomaly length (f). Time out: 8h.

fail when the dataset contains multiple anomalies that are
similar to one another.
[Multiple discord Discovery] The notion of mth discord
has been proposed in order to solve the issue of multiple
similar anomalies [57]. The approach described in this study
finds the sequence that has the furthest mth nearest neigh-
bor in Euclidean space. During the search, a space prun-
ing strategy based on the intermediate results of the simple
discord discovery is applied. As we have already discussed,
the mth-discord definition fixes the main problem of simple
discord, but is very sensitive to the m parameter and can
lead to false positives.
[Outlier Detection] Local Outlier Factor [14] is a degree of
being an outlier assigned to a multidimensional data point.
This degree depends on how much the data point is iso-
lated (in terms of distance) to the surrounding neighbor-
hood. Similarly, Isolation Forest [36] is a classical machine
learning technique that isolates anomalies instead of mod-
eling normality. It first builds binary trees with random
splitting nodes to partition the dataset. The anomaly score
is defined as a function of the averaged path lengths between
a particular sample and the roots of the trees. The above
two methods are not specifically targeted to data series sub-
sequences anomaly detection, which is reflected in the low
accuracy they achieve in several of the datasets we tested.
[Deep Learning Approaches] Subsequence anomaly de-
tection has also been studied in the context of supervised
deep learning techniques, with the use of Long Short Term
Memory (LSTM) architectures [28]. The studies that use
this recurrent neural network are based on a forecasting
model [39, 12]. First, the LSTM network is trained using
the data segments that do not contain anomalies. Then,
the sequence is examined and the LSTM network is used
to forecast the subsequent values: when the error between
the forecast and the real value is above some threshold,
the subsequence is classified as an anomaly. The system
learns the threshold using the validation set, picking the
value that maximizes the F1-score of the classification re-
sults. While the aforementioned approach originally used

the annotated anomalies to learn the threshold, the LSTM
model has also been used in a zero positive learning frame-
work, where the annotated anomalies are not necessary for
the training phase [34].
[Phase Space Reconstruction] Phase space reconstruc-
tion is a technique that has been used for pattern embedding
and for non-linear data series analysis [29, 13]. This tech-
nique transforms the data series into a set of vectors and
has been used to visualize the evolution of the data series.
Previous studies have also proposed the construction of a
complex network based on the phase space reconstruction
of a data series [23, 24], or on its visibility graph [33], which
can then be used to identify different patterns of interest.
Series2Graph shares the same goal of converting the data
series into a graph in order to reveal significant features.
However, differently from the above methods that convert
each point of the series into a separate node, Series2Graph
uses a single node to represent several subsequences.

7. CONCLUSIONS AND FUTURE WORK
Even though subsequence anomaly detection in data se-

ries has attracted a lot of attention, existing techniques have
several shortcomings.In this work, we describe a novel ap-
proach, based on a graph representation of the data series,
which enables us to detect both single and recurrent anoma-
lies (as well as the normal subsequences), in an unsupervised
and domain-agnostic way. Experiments with several real
datasets demonstrate the benefits of our approach in terms
of both efficiency and accuracy. As future work, we plan to
use modern data series indices [18, 19, 47, 46, 25] for accel-
erating the operation of Series2Graph, extend our approach
to operate on streaming and multivariate data, and compare
to the recently proposed NorM approach [9, 10].
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