
COMPACTIFY NO MORE?

Let (X, d) be a metric space, let Γ be a family of measures in P(X). Prokhorov’s
theorem ensures that, in order to prove that Γ is relatively compact, it is enough
to prove that it is tight. The tightness assumption reads as follows: for every ε > 0,
there exists a compact Kε in X such that µ(Keps) > 1− ε for every µ in Γ.

Of course, if X is compact, then every family is tight. On the other hand, if
X is compact, then P(X) is compact (and thus every family in P(X) is relatively
compact), but that is far less obvious. Given a sequence of probability measures
µk on X, how would we extract a converging subsequence?

• First, let us consider the simple case where each µk is purely atomic, sup-
ported on 100 points in X. Each point carries a mass between 0 and 1, and
we can represent µk as an element of X100 × [0, 1]100. By elementary com-
pactness results, there exists a convergent subsequence of images in that
space. It is then easy to check that the limit point corresponds to a purely
atomic probability measure µ, and that the convergence of the atoms and
the weights implies the weak convergence of the corresponding probability
measures µk to µ.

• In the general, non-atomic case, one could attempt to use a similar argu-
ment by discretizing: split X into a finite number of small boxes that cover
up the whole space, and represent µk in an approximate way by the data
of µk(A) for A in the finite σ-algebra generated by the boxes. Each data
point can be embedded into a finite power of [0, 1], in which we can take
limit points. Any equation involving a finite number of Borel sets will pass
to the limit, so we obtain some sort of discretized measure in the limit,
that passes sanity checks. I believe that a fun little exercise shows it can be
extended into a ”full” measure on X, by placing atoms at the right spots.
Of course by doing that we have not constructed an actual limit point for
the µk, but an ”approximate limit”.

• The approximation in the previous step comes from the discretization pro-
cedure, yielding a finite number of Borel sets. This had two advantages:
(1) We could embed measures as a finite power of the interval [0, 1], and

use compactness.
(2) The ”sanity checks”, i.e. the fact that the limit point satisfies the

properties of a measure, were all finitary, and thus trivially true by
passing their ”finite k” version to the limit k →∞.

In fact, for point 1. there is no actual advantage in having finitely many sets.
By Tychonov’s theorem (a very much non-constructive result indeed) the
product of an arbitrary number of compact sets is compact for the product
topology. Instead of considering a finite-scale graining of the space, we
could represent each measure µk into an infinite product of [0, 1] by listing
the data of µk(A) for every Borel set A. A limit point µ for those objects
is thus a way to attribute mass between 0 and 1 to every Borel set, in
a fairly consistent way: the mass of ∅ is 0, the total mass is 1, and µ is
finitely additive. Let us point out that (after extraction) µ is very much the
weak limit of the µk’s in the sense that e.g. lim infk µk(O) ≥ µ(O) for any
open set O: in fact by construction the limit exists and there is equality!
However, the requirement that µ be σ-additive is not obvious, as it requires
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to exchange two limits. That is precisely where compactness comes into
play, as it basically allows to extract from an infinite (in particular: from
a countable) family of sets a finite one: after that we can pass information
about each element to the limit.

The most common way to prove thatX compact implies P(X) compact is slightly
different from the previous idea. First, one sees a probability measure as living in
the dual space of continuous functions (when X is compact, there is no need to
specify: bounded, compactly supported, etc.). Existence of a limit point follows
from the Banach-Alaoglu-Bourbaki theorem about compactness of the unit ball for
the weak-∗ topology: this is nothing but a short application of Tychonov. The dif-
ficult step is to argue that this limit point, living in a dual space, really corresponds
to some probability measure on X: this is done by applying the Riesz-(Markov-
Kakutani) representation theorem (below shortened as RRT), which is valid and
easy to state for X compact (there are variations when X is locally compact). The
proof of RRT looks very much like the argument sketched above: one defines the
corresponding measure ”setwise” in a fairly natural way, the finite additivity is easy
to check, and σ-additivity is reduced to finite additivity through a careful appli-
cation of compactness. We sketched above a proof for Prokhorov in the compact
case, whose ingredients are: a convenient representation of measures, a compactness
argument, and a verification that σ-additivity works well at the level of the limit
point. The first step can (but need not to) be phrased in dual terms, in which case
the second step is named ”Banach-Alaoglu-Bourbaki”: that is, at most, a matter of
convenience. The last step is the only really delicate point: it can be found among
the proof of RRT and then written back in ”primal” language.

What about X not compact? When X is not compact, it is no longer true that
P(X) is compact: take X = N and the family of Dirac masses at each successive
integer. Coincidentally, RRT fails for non-compact spaces with e.g. the exact
same counter-example, but read dually: the positive linear functional on Cb(N
given by lim sup cannot be represented by a measure. In the case of N the lack of
compactness is felt because mass can leak at infinity, but one could imagine other
defects. In order to save compactness in P(X), or to fix the RRT, one has to add
an assumption of tightness. For example, there is a ”non-compact RRT” that says:
any positive linear functional on Cb(X) can be represented as a measure on X,
provided that it satisfies the following : for every ε > 0, there exists a compact K
such that |ϕ(f)| < ε when f has norm at most 1 and is supported outside of K.
That is good old tightness, but dual.

Where does tightness come into play, really? Take a countable bunch of open
sets Ai, one wants to prove e.g.

µ
(⋃

Ai

)
≤
∑
i

µ(Ai).

Fix ε > 0, take a compact K big enough such that the µk (and thus µ) give mass at
least 1− ε to K. Intersecting the Ai’s with K puts us back to a compact context,
where we can extract a finite covering and pass to the limit in the inequalities in-
volving µk’s. We are making a small error on the masses, controlled by an arbitrary
ε, so we are good. Most proofs use the following route:

(1) Embed X into a compactified space X̂, and P(X) into the space of proba-

bility measures on X̂, which we know is thus compact, too.
(2) Obtain a limit point that is a measure on X̂. Tightness does not play any

role here, because every family over X̂ is tight for free!
(3) Observe that, really, it is (the image of) a measure on X, because it con-

centrates on X ⊂ X̂. This is where tightness comes into play.
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That, to me, leaves an air of mystery, if not magic. We compactify, deduce some-
thing at the level of the compactified space, and then pullback everything into the
original space, as if nothing happened? The point of this note is to convince myself
(and an hypothetical reader) that, indeed, nothing happened - and certainly not
any magic. One could write the proof without wearing duality lenses and without
compactifying.


