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1 Algebraic side

1.1 Introduction : braid group and Yang-Baxter equation

Why ? Objects that we will meet again, and also part of the initial motivations.

Braid group The braid group with n strands is defined non rigourously as the group whose elements are
. . .braids with n numbered strands, and composition law is just gluing the strands of two braids according
to their numbers. Generators of this group are given by the braids with only one crossing of two adjacent
strands. One can see that two such generators commute whenever they do not affect a same brand, by
drawing a picture one can see a relation between two generators sharing one brand. Algebraically, the
group Bn is given by n generators s1, . . . , sn−1 subject to the relations :

1. sisj = sjsi for |i− j| > 1 (commutativity of two “disjoint” generators)

2. sisi+1si = si+1sisi+1 (relation bewteen two “adjacent” generators) [YB1]

It is a (hard) theorem from Artin (1925) that the intuitive description (which can be turned on a rigourous
topological-minded definition of a group) gives the same result as this algebraically-minded description.
There is a natural surjection of Bn onto Sn (permutation group), by sending si on the transposition
(i, i+ 1). In fact, Sn admits a group presentation similar to the preceeding one for Bn, by simply adding
the relation s2i = 1 for each i = 1 . . . n−1. This difference induces two major differences : Bn is torsion-free
and (thus) infinite.

Let us now consider the one-dimensional representations ρ of Bn. The condition [YB1] implies that ρ
is constant on the generators. Let eiθ be this constant value, then ρθ is a variation on the cases θ = 0 and
θ = −π, which pass to the quotient Sn and correspond to the trivial representation (bosonic statistics)
and the signature (fermionic statistics).

Yang-Baxter equation A way of constructing higher-dimensional representations is to start with a
vector space V , an automorphism R of V ⊗ V , and to let the generator si act on V ⊗n by :

si(v1 ⊗ · · · ⊗ vn) = v1 ⊗ . . . R(vi ⊗ vi+1) · · · ⊗ vn) (1)

This gives a representation if and only if R is compatible with the relation [YB1], which translates into
the following condition (expressed in V ⊗3) :

(R⊗ I)(I ⊗R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R) (2)

We will use the notation Ri,i+1 to designate the action of R on the i, i+1-th coordinate, so we can rewrite
2 as R12R23R12 = R23R12R23. This will be the first occurence of the Yang-Baxter equation. Every solution
to this equation gives rise to a representation of Bn for all n. Observe that a trivial solution to 2 is given
by the flip τ(v1 ⊗ v2) = v2 ⊗ v1, which corresponds to the signature representation of Bn. A less trivial
example, which will also be the first occurence of a deformation is given by : pick an invertible scalar q
in the base field of a f.d. vector space V , and define R(ei ⊗ ej) as : qei ⊗ ei if ii = j, ej ⊗ ei if i > j and
ej ⊗ ei + (q − q−1)ei ⊗ ej for j > i.

1.2 Hopf algebras

Let F be a (covariant) functor from the category of (commutative) C-algebra to the category of groups
defined by F = Hom(AF , .) (an affine groups scheme). The algebra AF carries an extra-structure : since
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F (C) is a group, Hom(AF ,C) possesses a neutral element ε which is a distinguished morphism AF −→ C.
There is also a map

Hom(AF ,C)×Hom(AF ,C)(∼= Hom(AF ⊗AF ,C)) −→ Hom(AF ,C)

which gives raise to a map ∆ : AF −→ AF ⊗ AF . Moreover, the inversion rule in the group corresponds
to a map

Hom(AF ,C) −→ Hom(AF ,C)

which corresponds to a map S : AF −→ AF . The axioms obtained are the one of a Hopf algebra :
an algebraic object which has both an algebra structure (in the usual sense), and a co-algebra structure
(obtained by reversing the arrows in the definition of an algebra), and also (which is the difference between
a“bialgebra”and a“Hopf algebra”) this inversion morphism S (called antipode) which recalls the“groupic”
origin of the coalgebra structure. Note that, conversely, a (commutative) Hopf algebra gives raise to a group
affine scheme.

Definition An Hopf algebra (over C) (A,m, η,∆, ε, S) is a C-module A such that :

1. (A,m, η) is a (unital) C-algebra (η : k −→ A gives the unit).

2. (A, δ, ε) is a (unital) C-coalgebra. The map ∆ : A −→ A⊗A and the map ε : A −→ k satisfy

(a) Coassociativity : (∆⊗ Id) ◦∆ = (Id⊗∆) ◦∆

(b) Neutrality of ε : (ε⊗ Id) ◦∆ = (Id⊗ ε) ◦∆ = Id

(c) Compatibility of the structures : ∆, ε and m, η are morphisms of algebra and coalgebra res-
pectively.

(d) Antipode : the antipode S is an anti-morphism (for both the product and coproduct), and
m ◦ (S ⊗ Id) ◦∆ = m ◦ (Id⊗ S) ◦∆ = η ◦ ε.

Elementary properties of Hopf algebras Fix an Hopf algebra H. Let τ be the flip τ : H ⊗H −→
H⊗H, v⊗w 7→ w⊗v. The Hopf algebra H is cocommutative if τ ◦∆ = ∆. Let us a show a simple general
proposition on Hopf algebras to use the definitions.

Proposition 1. If H is either commutative or cocommutative, then the antipode S is involutive.

Démonstration. The axioms of the antipod can be restated by saying that S is the (two-sided) inverse of
Id for the convolution product on End(H) (as a vector space) given by :

f ? g = m ◦ (f ⊗ g) ◦∆ (3)

whose neutral element is η ◦ ε. Such an inverse is unique. But by applying S to the left (resp. to the right)
to m ◦ (S ⊗ Id) ◦∆ = η ◦ ε, we get - S being an anti-morphism of bialgebra - that

τ ◦m ◦ (S2 ⊗ S) ◦∆ = S ◦ η ◦ ε

resp.
m ◦ (S2 ⊗ S) ◦ τ ◦∆ = η ◦ ε ◦ S

The right-hand side is always equal to η ◦ ε, and if H is commutative or co-commutative one of the two
former equations expresses the fact that S2 is a left inverse to S for the convolution product, and thus
must be equal to Id.

Some “classical” examples We quote some classical examples of Hopf algebras. They are classical in
the sense that they are all commutative and/or cocommutative, whereas a quantum group will be seen as
a non-commutative, non-cocommutative Hopf algebra.

1. For a group G, the group algebra CG, spanned by the elements of g as a C-vector space, with
the multiplicative law extending the one on G (δgδh := δgh). In this case the coproduct is given by
∆(g) = g⊗g. This comes from the group structure on Hom(CG,C), given by pointwise multiplication.

2. If G is finite, the dual FG of CG (the C-valued functions on G) is an Hopf algebra with coproduct
∆f(g ⊗ h) = f(gh). This comes from the group structure on Hom(FG,C).
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3. Let g be a finite-dimensional Lie algebra over C, the universal enveloping Lie algebra is defined as
the algebra generated by 1 and the elements of a basis of g modulo the relations xy − yx = [x, y]
(it is then a Lie algebra with the commutator bracket). We can endow U(g) with an Hopf algebra
structure, with coproduct ∆x = x ⊗ 1 + 1 ⊗ x, εx = 0 (for x non-scalar) and Sx = −x. Note
that since this Hopf algebra is not commutative, it does not come from an affine group scheme.
The map ∆ is rather the composition of the diagonal morphism x 7→ (x, x) and the isomorphism
U(g ⊕ g) ∼= U(g)⊗ U(g). Nonetheless, U(g) is co-commutative.

We will have at hearth to deform these examples to obtain truly “quantum” objects, but not too badly so
that the Hopf algebra remains “almost co-commutative” in the following sense.

Almost co-commutative Hopf algebra An Hopf algebra A is called “almost co-commutative” if the
following is true : there exists an invertible element R ∈ A ⊗ A such that τ ◦ ∆(a) = R∆(a)R−1 (of
course, a commutative, almost co-commutative Hopf algebra is co-commutative). This assumption has
good consequences on the representation theory of H (cf. later), e.g. the tensor product V ⊗W of two
representations V and W is then isomorphic to W ⊗ V (as H-module). The antipode is, in general, not
involutive, but satisfies the following property :

Proposition 2. If (A,R) is almost co-commutative, then “S2 is almost the identity” in the sense that
u = m(S ⊗ Id)(τ(R)) is an invertible element such that S2(a) = uau−1 for all element a.

The proof is a (non-trivial) computation.

1.3 Quantum double and deformation

Morally, here is what we do : given an Hopf algebra and its dual, we define an Hopf algebra structure
on their tensor product, with a coproduct governed by the duality bracket. Then, we observe that one
can replace this bracket by any “pairing” (in a to-be-precised sense) and this allows us to define non-
cocommutative structures on the “quantum double”. We then apply this construction to the universal
enveloping algebra of sl2.

Looking for a twist At the end of the last section, we defined the notion of almost co-commutative
Hopf algebra. The search for an almost co-commutative structure is equivalent to the one for an invertible
element R that conjugates the coproduct and the flipped coproduct. More generally, we may try to
construct coproducts by looking at ∆F (a) = F∆(a)F−1 for an invertible element F in A⊗A (where A is
an Hopf algebra). Such an element must satisfies some properties to insure the coassociativity of ∆F and
the other axioms.

Lemme 1. We give a sufficient condition :

1. A sufficient condition for ∆F to be coassociative is F12(∆⊗ Id)(F ) = F23(id⊗∆)(F )

2. If we ask furthermore that (∆ ⊗ Id)(F ) = F13F23 and (id ⊗ ∆)(F ) = F13F12 then the preceeding
condition is the Yang-Baxter equation for F

Preuve. Simply check.

We are now left with looking to such elements. It turns out that there is a canonical way to construct
a valid F when dealing with the tensor product of an Hopf algebra with its dual.

The dual quantum double construction Let A be a finite-dimensional (as vector space) Hopf al-
gebra (with invertible antipode). Let A∗ be the dual Hopf algebra (defined the natural way, with more
or less permuting the roles of m and ∆ by transposition) and Aop the opposite algebra (with flipped
multiplication), and let Ã = A∗ ⊗Aop. Pick a basis (ei), its dual basis (e∗i ) and define (indepently of this
choice) :

F̃ :=
∑

(1A∗ ⊗ ei)⊗ (e∗i ⊗ 1A) (4)

Lemme 2. F̃ is invertible and F̃−1 =
∑

(1A∗⊗S−1ei)⊗ (e∗i ⊗1A) satisfies the condition of the preceeding
lemma.

Preuve. Computation with F , and taking the inverse. To find F̃−1, rewrite F̃ as 1A∗ ⊗ (
∑
ei ⊗ e∗i )⊗ 1A

in A∗⊗ (Aop⊗A∗)⊗Aop. Under the identification Aop⊗A∗ ∼= End(Aop), the product on Aop⊗A∗ is the
convolution product on End(Aop) given by the coalgebra structure on A. Inverting F̃ is then equivalent
to invert

∑
ei ⊗ e∗i = Id, which can be done since the antipode is supposed to be invertible (if S is the

invertible antipode for an Hopf algebra H, then Hop is an Hopf algebra with antipode S−1).
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Proposition 3. We then get an Hopf algebra H on Ã by conjugating the tensor coproduct by F̃−1.

Preuve. Something is to be checked concerning the antipode (which in fact needs to be defined).

The quantum double construction We consider now the dual Hopf algebra H∗ = A⊗A∗,cop of the
Hopf algebra we just obtained. Let us describe it :

1. As a coalgebra, it is the tensor product of the coalgebra A and the co-opposite coalgebra A∗.

2. It admits A and A∗,cop as Hopf subalgebras

3. The product is given by : for all l in A∗ and a in A, we have

(a) (a⊗ 1)(1⊗ l) = a⊗ l, whereas :

(b) (1⊗ l)(a⊗ 1) =
∑
〈l1, S−1a1〉 〈l3, a3 〉a2 ⊗ l2 with the duality bracket 〈, 〉.

The multiplication may seem weird. Remember that we twisted the co-algebra structure on H, than have
taken the dual : now it is the algebra structure which is unusual.

Example : if G is a group and A = F(G) is the Hopf algebra of functions on G. Then A∗,cop is simply the
group algebra C[G], and the quantum double D(A) is isomorphic (as an algebra) to the crossed product of
F(G) by G acting by conjugation. We can convince ourselves of this fact : in the crossed product F(G)oG,
we have indeed (F, 1) × (1, g) = (F, g) and (1, g) × (F, 1) = (g.F, g) where g.F (x) = F (g−1xg). The
expression given for the product is, on the other hand,

∑
〈g1, S−1F1〉 〈g3, F3 〉F2⊗g2, with g1 = g2 = g3 = g,

hence
∑
〈g−1, F1〉 〈g, F3 〉F2 ⊗ g and the left component of this tensor is indeed F (g.g−1).

Generalized double The duality bracket in the former description can be replaced by any bilinear
application φ : A ⊗ A∗, provided that ϕ satisfies appropriate conditions. This leads us to the following
definition :

Définition 1 (Hopf pairing). Let A and B be Hopf algebras with invertible antipodes. A Hopf pairing
between A and B is a bilinear form ϕ : A×B −→ C such that :

1. ϕ(a, bb′) =
∑
ϕ(a1, b)ϕ(a2, b

′) idem pour ϕ(aa′, b).

2. ϕ(Sa, b) = ϕ(a, S−1b)

3. ϕ(a, 1B) = ε(a) and idem for b.

These conditions express the “adjoint” relation between the algebra structure on B and the coalgebra struc-
ture on A, and vice-versa.

Re-writing the proof we have not done of the quantum double construction, with the duality bracket
replaced by a Hopf pairing as defined, we get :

Théorème 1. Let A and B be Hopf algebras and ϕ : A×B −→ C a Hopf pairing. Then there is a Hopf
algebra structure on A⊗B such that :

1. As a coalgebra, it is the tensor product of the coalgebra A and B.

2. It admits A and B as Hopf subalgebras

3. The product is given by : for all l in A and a in B, we have :

(a) (a⊗ 1)(1⊗ l) = a⊗ l, whereas :

(b) (1⊗ l)(a⊗ 1) =
∑
ϕ(l1, S

−1a1) ϕ(l3, a3)a2 ⊗ l2.

We would like to know : how easy is it to construct such an Hopf pairing ? Because we would like to
deform existing Hopf algebras. The following lemma provides us a general result for existence of non-trivial
Hopf pairing on a free Hopf algebra (the work will then be to check when such an Hopf pairing agrees
with the relations we put) :

Lemme 3. Let A be a free algebra generated by a1, . . . , ap such that ∆(ai) is a linear combination of
ar ⊗ as for each i. Take B with the same assumptions (b1, . . . , bq). Fix pq scalars λij. Then there is a
(unique) Hopf pairing ϕ : A×B −→ C given by ϕ(ai, bj) = λij.

Preuve. Simply define ϕ(ai1 . . . air , b) as
∑
ϕ(ai1 , b(r)) . . . ϕ(air , b(1)) (and vice-versa). Then extend the

definition on all A and B. We crucially use the freeness and the fact that the terms that appear in the
iterated coproducts are themselves basis elements.
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1.4 The quantized enveloping algebra

We now apply the quantum double construction (with the freedom stated by the last lemma) to the
quantization of U(sl(2)).

Reminder on sl(2) Let sl(2) be the Lie algebra of complex 2× 2 matrices with trace 0. A basis of sl(2)
is given by E = E1,2, F = E2,1 and H = E11 − E22. The relations are [E,F ] = H, [H,E] = 2E and
[H,F ] = −2F . The situation is identical for the universal enveloping algebra U(sl(2)).

Construction of Uq(sl(2)) Let q be an indeterminate, and choose as ground field the field of fractions
C(q) (observe that so far, we can replace C by an arbitrary field k in the definitions and results). Let U+

be the C(q)-algebra generated by three elements E, K and K−1 subject to the relations expressing that
K is the inverse of K−1 and the following commutation relation :

KE = q2EK (5)

Define similarly U− with F,K ′,K ′−1 and K ′F = q−2FK ′. The co-algebras structures put on U+ and U−
are : ∆(K) = K ⊗ K (idem for K ′) and ∆(E) = E ⊗ 1 + K ⊗ E, ∆(F ) = F ⊗ K ′−1 + 1 ⊗ F . Explain
doubling the Cartan subalgebra etc ? We can define a pairing if we stay careful about the relations put on
U+ and U−. We choose :

1. ϕ(E,F ) = − 1
q−q−1

2. ϕ(E,K ′) = ϕ(F,K) = 0

3. ϕ(K,K ′) = q−2

The first choice is arbitary, and merely a convention. The second choice helps ϕ to be consistent with
the relations on the algebras. The third choice will guarantee the following : in the double quantum

construction, we have KF = q−2FK, K ′E = q2EK ′ and [E,F ] = K−K′−1

q−q−1 . To obtain the “real” deformed
universal enveloping algebra, one then quotients by the annihilator of ϕ, and - more important - by the
ideal (K − K ′), because one wants to identify these two copies of K. Note that one can extend the
construction to construct Uq(sl(n+ 1)) for any n ≥ 1.

2 Analytic side

2.1 Motivation

A constant idea in “non-commutative geometry” is to obtain non-commutative analoguous of classical
objects by considering the algebras of functions defined on these objects, and allow them to be non-
commutative. A celebrated example is the one of the C∗ − algebras. If X is a compact (Hausdorff)
topological space, its algebra of function C(X) is endowed with an involution f 7→ f̄ and a (complete)
norm ||.|| = supx∈X |f(x)| such that ||ff̄ || = ||f ||2. These are the axioms for a C∗-algebra : an algebra with
an involution, complete for a norm such that ||xx∗|| = ||x||2. The Gelfand-Naimark theorem states that
every commutative C∗-algebra A is the algebra of functions on a topological space Spec(A), which is locally
compact in general, and compact if and only if A is unital. The points of Spec(A) are the characters of A,
i.e. the algebra morphisms A −→ C (which can be thought of as “evaluation” morphisms). A general, non
necessarily commutative, C∗-algebra will be then considered as a “non-commutative” topological space.

The definition of a compact quantum group will be following the same idea : it is a compact topological
space, hence a unital C∗-algebra, but it carries an extra structure, which reflects on its algebra of function
(the C∗-algebra) through a bialgebra structure. Some problems of topological nature though arise in order
to define a somehow general topological quantum group (fortunately it turns out that these problems are
relatively mild in the compact case).

2.2 Quantum group

Let G = (A,Φ) with A a (separable) unital C∗-algebra and Φ : A −→ A⊗A a unital *-homomorphism.
We ask that Φ satisfies the axiom of co-associativity. We replace the antipods axioms by the following
requirement :

1. The sets {(b⊗ I)Φ(c) : b, c ∈ A} and {(I ⊗ b)Φ(c) : b, c ∈ A} are dense in A⊗A.

Why this hypothesis ? The existence of a coproduct corresponds morally to the existence of an asso-
ciativ Te composition law on the underlying “quantum space”, which hence is a priori only a semi-group.
However, we have :

5



Proposition 4. Let G be a compact (classical) semi-group, A = C(G) and Φ the natural comultiplication.
If the sets {(b ⊗ I)Φ(c) : b, c ∈ A} and {(I ⊗ b)Φ(c) : b, c ∈ A} are dense in A ⊗ A, then G has the
cancellation property.

Preuve. Note that by applying the involution, we have a symmetric assumption on Φ(c)(I⊗b) and Φ(c)(b⊗
I). Take p, q, r in G and assume pr = qr. Then for all f, g in A, we have by definition (Φ(f)(1⊗g))(p, r) =
f(pr)g(r) and Φ(f)(1⊗ g)(q, r) = f(qr)g(r), and these numbers are equal. By density, this is true for all
h ∈ A we have : h(q, r) = h(q, r), hence p = q (such functions separate points).

Proposition 5. A compact semi-group G with cancellation is a group.

Preuve. First, we look for an identity e of G. Intuitively, e is the single element in the intersection of all
subgroups of G, but there are no “subgroups” yet, only ideals (sub-semi-groups, i.e. subsets I such that
gI ⊂ I for all g in G). Pick an element s and consider the closed-sub-semi-group H generated by s (which
is still compact). Then take the intersection I of all (closed) ideals of H, this is a non-empty closed ideal
of H. For all p in I, pI ⊂ I is again a closed ideal, but I is the smallest such, hence pI ⊂ I. Hence there
exists e ∈ I such that pe = p. Multiplying by any q on the right and using cancellation, we obtain eq = q
for any q ∈ G, then the same thing on the left (again by cancellation), hence e is the identity. Moreover
sI = I, hence (by taking sq = e) the existence of an inverse.

These two general results justify the replacement of the antipode assumption by these assumptions.
We will see that this implies the existence of a true Hopf (*-)algebra structure (with an antipode !) on a
dense subset.

2.3 Haar measure

First, one has to ask : what is the good definition for a Haar measure in the quantum case ? The
classical Haar measure on a compact group is a probability measure invariant by the left and right actions
of the group. In the unital C∗-algebra setting, a probability measure corresponds to a state, i.e. a linear
function varphi : A −→ A such that φ(1) = 1, φ(ff∗) ≥ 0. Indeed, we think of the integration against a
probability measure dp as a linear functional f 7→

∫
fdp, which is positive (dp is a positive measure) and

normalized (
∫
dp = 1). In the classical setting, the Haar measure is such that for all function f :∫

f(g1g)dp(g) =

∫
f(g)dp(g) (6)

Which amounts, when written as a coproduct relation : (Id⊗ h)ϕ(Φ(f)) = h(f)1. Similarly for the right
invariance. We will use this remark as a definition for the quantum Haar measure, we ask that this relation
holds for any f ∈ A (together with its companion for right invariance). We now turn to the existence of a
Haar measure. Note that the coproduct on A induces a product on the linear functional A∗

Lemme 4. For h ∈ A∗ positive normalized to be a Haar measure, it is enough to show that h satisfies
hw = wh = h for one faithful state w.

Preuve. Sketch of the proof. Define the map Ψ(c) = h ? c − h(c)I on A. Our goal is to show that Ψ(c)
is identically 0, wich by faithfulness is equivalent to (ρ)(Ψ ∗ Ψ(c)) is always 0. Consider Lh⊗ρ the closed
left ideal related to the state h⊗ ρ on A⊗ A. We want to show (Id⊗Ψ(c)) ∈ Lh⊗ρ. For that, first show
that the elements of the type (Id⊗Ψ)(Φ(c)) belong to this ideal : this is a short computation. Then, since
Lh⊗ρ is an ideal, it contains all the elements of the form (b⊗Ψ)(Φ(c)), but by density and closedness this
gives the result.

Lemme 5. Let w be a state on A, then there is a state h such that hw = wh = h

Preuve. Take an accumulation point of 1
n (w + · · ·+ wn).

Conclusion : take a faithful state, apply the two last lemmas, this gives a Haar measure.

2.4 Compact matrix quantum groups

We defined abstract quantum groups, but there are many concrete examples as “matrix quantum
groups” (and in fact the representation theory connects closely a compact quantum group with its concrete
realizations).

Définition 2. A compact matrix quantum group is a unital C∗-alebra A generated by N2 elements Uij
with an ∗-homomorphism Φ : A −→ A⊗A such that ∆(uij) =

∑
k uik ⊗ ukj for all i, j.
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Quantum classic compact groups Following the motto of “consider the algebra of functions and let
it be noncommutative”, we define the quantum orthogonal, unitary, and symmetric group of rank n by
the following universal C∗-algebra :

Ao(n) = C∗(uij |u orthogonal)

Au(n) = C∗(uij | u unitary)

As(n) = C∗(uij | u magic unitary)

A magic matrix has projection-valued coefficients, such that the sum on each line and column is equal to
1. The other definitions are standard. Here A is a C∗-algebra.

Exemple 1 (Quantum permutations groups). The algebra As(n) is a quantum analogue of C(Sn), and
the underlying quantum group is indeed “quantum permutations”. Consider X = {1, . . . , n} and the action
of Sn on X translates into a map αcom : C(X) −→ C(X)⊗ C(Sn) defined by αcom(δi) =

∑
δj ⊗ uji. We

extend this definition for α : C(X) −→ C(X) ⊗ As(n) and the obvious diagram commutes. Question : is
As(n) really bigger than C(Sn). The answer is : yes for n ≥ 4 (then As(n) is non commutative, infinite
dimensional), no for n = 1, 2, 3 where the canonical map As(n) −→ C(Sn) is an isomorphism (the entries
of a n× n permutation matrix are commuting for small values). An example for n = 4 is given by

p 1− p 0 0
1− p p 0 0

0 0 q 1− q
0 0 1− q q

with p, q two free projections.
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