$HW8 - Algebra - Solution$

 $\frac{17}{5}$ Ex. 26 let F be a field. We claim that the polynomial X doesn't have a multiplicative inverse, hence F[X] is not a field. Assume that there is $PfFLx$ such that $Px \times = 1$. White $f(x) = \sum_{k=0}^{n} a_k x^k$. Then $f(x) \cdot x = \sum_{k=0}^{n} a_k x^{k+1}$ which is not $1 ...$ so $P \cdot X \neq 1$, contradiction. $\frac{C_{\text{Lap}}(8)}{1,4,6,9,10,11}$ (abc) \perp let $z = a + b\sqrt{3}$; a, b in \mathbb{Z} Let us hole for an inverse for z, of the form $z' = a' + b'\sqrt{s}i$. $Z \cdot Z' = (a\acute{a} -3b\acute{b}') + (a\acute{b} + \acute{a}\acute{b})\sqrt{3}$ We have * First observation: assume a +3b2 = 1, take $a' = a$; $b' = -b$, then $Z \cdot Z' = (a^2 + 3b^2) + (-ab + ab) \sqrt{3} i = 1,$ So z is a unit (i.e. has an inverse). * Second observation : if z is a unit, i.e. has an inverse, we must les able to find à, b' such that $d \frac{ad - 3bb' = 1}{ab' + ab} = 0$ Ne must have a 70, otherwise 3bb'= 1, impossible. So we may write $b' = -\frac{ab}{a}$, and thus $\alpha a' + \frac{3b^2 a'}{a} = 1$, so $a'(a^2 + 3b^2) = 1$ $b = 0$ and hence $a' = 4 \pm 1$; $a^2 + 3b^2 = 1$, which implies $a = \pm 1$

4	True	Assume	$x y = 0$, and $x \ne 0$, $y \ne 0$
then by applying	$x^{-1} \cdot y^{-1}$ we obtain $d = 0$ should		
6	let d be the and $g \ne f$.	for f	
7	$\frac{f}{d} \Rightarrow \frac{f}{d} \Rightarrow (\frac{1 + 1 + \dots + 4}{f} \cdot \frac{1}{f} \cdot \frac{1}{f} \cdot \frac{1 + 1 + \dots + 4}{f} \cdot \frac{1}{f} \$		

Ŷ.

 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ (a+bVz) (a+bVz) =0 \Rightarrow ac +2bb = 0 and (ab + ba) = 0 The simplest way is to observe that Q (V2) is a field containing Z[VE], tance, by question (1), Z[VE] nust be anistegral domain b) let a, b in Z; assume there exists a, b'in Z such that $(a+\sqrt{2}b)(a+\sqrt{2}b)=1$. $ad + 2bb' = 3$ j $ab' + ba' = 0$. Then We must have a for otherwise $2bb = 3$. Then $b' = \frac{-bx'}{a}$, and $ad = 2b^2a'$, so $a'(a^2-2b^2) = 1$ Thus $a^7 - 2b^2 = \pm 1$ and $a' = \frac{1}{a^7 - 2b^2}$. $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ Units are exactly the ones with $a^2 - 2b^2 = 1$ or -1 $-\frac{1}{\sqrt{n+5}}$ of $\frac{1}{2}$, $\frac{1}{2}$ $c)$ it is $\phi(\sqrt{z})$ same reason as $\varphi.9$.

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$ $\label{eq:2.1} \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}))\leq \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}))\leq \mathcal{L}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}_{\mathcal{L}}))$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$