Algebra - Midterm 2 - Fall 2018 - NYU

All answers must be justified.

Exercise 1 Let R be a commutative ring, and let I, J be two ideals of R. We define the subset I + J as follows

$$I + J := \{i + j, \text{ for } i \in I \text{ and } j \in J\}.$$

- 1. Show that I + J is an ideal of R.
- 2. Why is it true that $I \subset I + J$?
- 3. Recall the definition of a maximal ideal.
- 4. If I is maximal, and if J is not included in I, show that I + J = R.

Exercise 2 The following questions are independent.

- 1. A Boolean ring R is a ring where $a^2 = a$ for any a in R. Prove that if R is a Boolean ring, then R is anti-commutative, i.e. $a \times b = -b \times a$ for all a, b in R.
- 2. Let $(R, +, \times)$ be a commutative ring, and a be a fixed element of R. Show that the set

$$J := \{ r \in R, \text{ such that } r \times a = 0 \}$$

is an ideal of R.

Exercise 3 Let $T_2(\mathbb{R})$ be the ring of 2×2 upper-triangular matrices with real coefficients

$$T_2(\mathbb{R}) := \left\{ \begin{pmatrix} a & c \\ 0 & b \end{pmatrix}, \quad a, b, c \in \mathbb{R}. \right\}$$

- 1. Let I be a left-ideal of $T_2(\mathbb{R})$
 - (a) If I contains a matrix $\begin{pmatrix} a & c \\ 0 & b \end{pmatrix}$ with $a \neq 0$ and $b \neq 0$, show that I is trivial.
 - (b) Deduce that if I contains two matrices $\begin{pmatrix} a & c \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & c' \\ 0 & b \end{pmatrix}$ with $a \neq 0$ and $b \neq 0$, then I is trivial.
 - (c) (Bonus question) Find all the left-ideals of $T_2(\mathbb{R})$, all the right-ideals of $T_2(\mathbb{R})$ and all the two-sided ideals of $T_2(\mathbb{R})$.

Exercise 4 Let us define the sets $\mathbf{Z}[\sqrt{2}], \mathbf{Q}[\sqrt{2}]$ as

$$\mathbf{Z}[\sqrt{2}] := \left\{ a + b\sqrt{2}, \text{ for } a, b \text{ in } \mathbf{Z} \right\}, \quad \mathbf{Q}[\sqrt{2}] := \left\{ a + b\sqrt{2}, \text{ for } a, b \text{ in } \mathbf{Q} \right\}$$

1. Show that $\mathbf{Q}[\sqrt{2}]$ is a subring of \mathbb{R} . Is it an ideal of \mathbb{R} ?

- 2. Is $\mathbf{Z}[\sqrt{2}]$ an ideal of $\mathbf{Q}[\sqrt{2}]$?
- 3. Write down a non-trivial ideal of $\mathbf{Z}[\sqrt{2}]$.
- 4. Let A be the subset of $\mathbf{Z}[\sqrt{2}]$ defined by $A := \{2n + 2m\sqrt{2}, \text{ for } n, m \text{ in } \mathbf{Z}\}$. It is easy to check that A is an ideal of $\mathbf{Z}[\sqrt{2}]$, and we admit it.
 - (a) Show that A is a **principal** ideal.
 - (b) Show that A is not a **maximal** ideal (hint: consider the set of all $2n + m\sqrt{2}$, for n, m in \mathbb{Z})