
1 Rings

1.1 Definition

Definition 1.1 (Ring). A ring is a triplet (R,+,×), where

• R is a set
• + is a binary operation on R such that (R,+) is an Abelian group.
• × is a binary operation on R that satisfies

1. × is associative, i.e. for all a, b, c in R, we have

(a× b)× c = a× (b× c)

2. × distributes on +, i.e. for all a, b, c in R we have

a× (b+ c) = a× b+ a× c, (b+ c)× a = b× a+ c× a.

Furthermore:

• We denote by 0 the neutral element for +.
• If the operation × is commutative, we say that R is a commutative ring.
• If the operation × admits a neutral element, we say that R has a unity. Although this

is not, strictly speaking, part of our definition, all the rings that we will consider here
have a unity - and in fact, in some books the existence of a unity is included in the
definition of a ring.

As usual, with the definition of a structure comes the natural definition of the associated
sub-structure.

Definition 1.2 (Subring). Let (R,+,×) be a ring, and R′ ⊂ R be a subset of R. We say
that R′ is a subring of R if (R′,+,×) is a ring by itself.

In practice, to prove that R′ ⊂ R is a subring of R, we check the following properties:

1. (R′,+) is a subgroup of (R,+).
2. R′ is stable (or “closed”) by product, i.e. for all a, b in R′, the product a × b is still in
R′.

1.2 Some examples

• The “usual” examples: the sets Z,Q,R,C with the usual addition and multiplication
are all commutative rings with a unity. In fact Z is a subring of Q, who is a subring of
R, etc.
• The “functional examples”: the set F of all functions from R to R can be endowed

with a commutative ring structure. We define the sum and product of two functions as
follows

∀x ∈ R, (f + g)(x) := f(x) + g(x), (f × g)(x) := f(x)× g(x).

Let us emphasize that when we write (f+g)(x) := f(x)+g(x), the first symbol + denotes
the binary operation on F , which is being defined in terms of the usual addition on R,
to which the second symbol + corresponds. Inside the ring F we may find interesting
subrings:
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– The ring C0(R,R) of all continuous functions from R to R. It is a subring of
F because the sum, difference and product of two continuous function is still
continuous.

– For all k ≥ 1, the ring Ck(R,R) of all functions from R to R which are of class Ck,
i.e. k times differentiable, and whose k-th derivative is continuous. It is a subring
of F because the sum, difference and product of functions of class Ck is still of
class Ck.

– The ring R[X] of all polynomial functions with real coefficients. We may also look
at Q[X] or Z[X], and check that Z[X] is a subring of Q[X], itself a subring of
R[X].

• The “matrix examples”. The set M2,2(R) of 2 × 2 matrices with real coefficients, with
the matrix addition and multiplication, is a ring. Its unity is the identity matrix. Of
course, this is not a commutative ring. An interesting subring is formed by the “upper
triangular” matrices, i.e. the matrices of the form(

a b
0 c

)
, a, b, c ∈ R.

We could also consider the rings M2,2(Q) or M2,2(C), or even M2,2(Z).

1.3 Ring morphisms and ideals

Once the ring structure is defined, we have the usual definition of a ring morphism:

Definition 1.3 (Ring morphism and kernel). Let (R,+R,×R) and (S,+S ,×S) be two rings,
and ϕ : R→ S be a map. We say that ϕ is a ring morphism when

∀a, b ∈ R, ϕ(a+R b) = ϕ(a) +S ϕ(b), ϕ(a×R b) = ϕ(a)×S ϕ(b).

In other words, ϕ respects the ring structures of R and S.
To a ring morphism ϕ : R→ S is associated its kernel

kerϕ := {a ∈ R,ϕ(a) = 0S}.

Remark 1.4. A ring morphism from (R,+R,×R) to (S,+S ,×S) is in particular a group
morphism from (R,+R) to (S,+S). Its kernel in the sense of “ring morphism” as defined
above and its kernel in the sense of “group morphism” as defined previously are the same
object. In particular, we know that kerϕ is a subgroup of (R,+R). It is not difficult to
check that it is a subring of (R,+R,×R). In fact, we have more!

Proposition 1.5. Let ϕ : R→ S be a ring morphism.

• kerϕ is a subgroup of R.
• kerϕ “absorbs elements through product”: if a is in kerϕ and b is in R, then a× b and
b× a are both in kerϕ.

Definition 1.6 (Ideal). Let R be a ring. A subset I of R is an ideal of R if I is a subgroup
of R which satisfies:

• For all a in I, for all b in R, a× b is in I (right ideal).
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• For all a in I, for all b in R, b× a is in I (left ideal).
• For all a in I, for all b in R, a× b and b× a are both in I (two-sided ideal).

Of course, in a commutative ring, there is no distinction between left, right and two-sided
ideals.

It follows immediately from Proposition 1.5 and the definition above that the kernel of a
ring morphism is always a two-sided ideal.

Proposition 1.7. 1. The sets {0} and R itself are always ideals of R, although not very
interesting ones.

2. If R has a unity, any ideal containing 1 is equal to R itself. (This is frequently used to
prove that some ideal is equal to the whole ring).

Proof. Proof of 2. if 1 ∈ I, and I is e.g. a left ideal, then for all b in R we have b× 1 ∈ I, but
b× 1 = b, so b ∈ I and I contains all the elements of R.

Example: evaluation morphisms and their kernel. Let F be, as above, the set of all
functions from R to R. For any α in R, we consider the map ϕα from F to R defined as
follows

∀f ∈ F , ϕα(f) := f(α).

Then ϕα is a ring morphism. Its kernel is given by

kerϕα := {f ∈ F , f(α) = 0},

which is the set of all functions vanishing at α. It is an ideal of F .

1.4 More about ideals

Definition 1.8 (Principal ideals). Let R be a commutative ring and x be an element of X.
The ideal generated by x is defined as the set {x × a, a ∈ R}, and denoted by (x) (or 〈x〉,
depending on the convention).

Exercise: check that this is indeed an ideal. Of course, if R is not commutative, one
should define three notions: left ideal generated by x (sometimes denoted by Rx), right ideal
generated by x (sometimes denoted by xR, and two-sided ideal generated by x (sometimes
denoted by RxR.

• For any n ≥ 1, the set nZ of all multiples of Z is an ideal of Z.
• In R[X], for all k ≥ 1 the set (Xk) of all polynomials which have no coefficient of order

0, 1, 2, . . . k − 1 is an ideal of R[X].

Definition 1.9 (Principal ideal). If an ideal I is of the form (x) for some x in R, we say
that I is a principal ideal

The ideal 6Z is principal. However:

• It is strictly contained in the ideals 2Z and 3Z.
• We have 3× 2 = 6 ∈ 6Z even though 2 /∈ 6Z and 3 /∈ 6Z.

To address these two situations, we introduce two definitions.

Definition 1.10. Let R be a commutative ring and I be an ideal of R.
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I is said to be a maximal ideal if, for any ideal I ′ such that I ⊂ I ′, we have I ′ = I or I ′ = R.
I is said to be a prime ideal if, for any a, b in R such that a× b ∈ I, we must have a ∈ I or
b ∈ I.

For example, 6Z is not maximal because 6Z ⊂ 2Z and yet 2Z 6= 6Z and 2Z 6= Z. It is not
prime neither, because 2× 3 ∈ 6Z and yet 2 /∈ 6Z and 3 /∈ 6Z.

1.5 Two constructions

1.5.1 Direct product of rings

Let (R,+R,×R) and (S,+S ,×S) be two rings. The Cartesian product R×S can be endowed
with a ring structure (R × S,+,×) named the product ring and defined as follows: for a, a′
in R and b, b′ in S, we let

(a, b) + (a′, b′) := (a+R a
′, b+S b

′), (a, b)× (a′, b′) := (a×R a′, b×S b′).

The ring R × S is commutative if and only if both R and S are commutative (proof:
exercise).

R and S are both “included” in R× S as follows: the maps i1 : R→ R× S and i2 : S →
R× S defined by

i1(a) := (a, 0), i2(b) := (0, b),

are injective ring morphisms.
Conversely, R × S can be “projected down” onto R or S as follows: the maps π1 :=

R× S → R and π2 : R× S → S defined by

π1(a, b) := a, π2(a, b) := b,

are surjective ring morphisms.

Lemma 1.11. If R,S are two rings, I is an ideal of R and J is an ideal of S, then I × J is
an ideal of R× S.

Proof. Exercise.

1.5.2 Quotient ring

Let (R,+R,×R) be a commutative ring, and I be an ideal of R. In particular, I is a subgroup
of R, and it is even a normal subgroup of R since (R,+) is always, by definition, an Abelian
group. So we can consider the quotient group (R/I,+).
Question: can R/I be endowed with a ring structure?
Yes! Let a, b be two elements of R/I, i.e. two equivalence classes for the relation “equal
modulo an element of I” on R. We want to define a×b, the natural guess is to let

a×b := a×R b,

in other words we define a×b as the equivalence class of a×R b in R.
Question: is this well-defined?
Yes! But as for the quotient group construction, we need to check that the definition above
does not depend on the choice of a, b among their equivalence class. In order to do that, let
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a′, b′ be such that a = a′ and b = b′. By definition of the relation “equal modulo an element
of I”, it means that there exist i and j in I such that

a′ = a+ i, b′ = b+ j.

Now, let us compute (using the fact that product distributes on sum!)

a′ ×R b′ = (a+ i)×R (b+ j) = a×R b+ i×R b+ a×R j + i×R j.

The last three terms in the right-hand side all belong to I because I is an ideal and i, j are in
I. So a′ ×R b′ is equal to a×R b plus an element of I, which means that they are equivalent
modulo I, and have the same equivalence class in R/I, so indeed

a′ ×R b′ = a×R b,

and the product operation on R/I is well-defined.
We call (R/I,+,×) the quotient ring of R by the ideal I.

2 The ring Z

2.1 Z as a principal ring

Theorem 1 (Ideals of Z). Every ideal of Z is principal, i.e. of the form nZ for some n ∈ Z.
Proof. An ideal of Z is, in particular, a subgroup of Z, but Z is cyclic, and we know that all
subgroups of a cyclic group is cyclic. So there exists n in Z such that I = 〈n〉 (as a subgroup).
It is easy to check that 〈n〉 = nZ and that nZ is indeed an ideal.

As a reminder, review the proof that “every subgroup of a cyclic group is cyclic”: we
introduce n as

n := min {k ∈ I, k > 0} ,
and show that every element of I is a multiple of n, using Euclidean division.

Proposition 2.1. Let n ≥ 1. The following statements are equivalent:
1. The ideal nZ is a maximal ideal.
2. The ideal nZ is a prime ideal.
3. n is a prime number.

Proof. We show
• 2. ⇐⇒ 3. If n is a prime number, and if pq ∈ nZ, it means that n divides pq, so n

must divide p or q (Gauss’s lemma), so nZ is a prime ideal.
Conversely, if n is not a prime number and can be written as n = pq for 1 < p, q < n,
then pq ∈ nZ and yet p /∈ nZ, q /∈ nZ so the ideal nZ is not prime.
• 1. ⇐⇒ 3. If n is a prime number, and if nZ is included in some ideal I, since Z is

principal we know that I is of the form mZ for some m, but then n ∈ nZ ⊂ mZ so m
divides n, which means m = 1 or m = n, and thus mZ = Z or mZ = nZ. So indeed nZ
is a maximal ideal.
Conversely, if n is not a prime number, there exists a number m with 1 < m < n which
divides m, and thus nZ ⊂ mZ, so nZ is not a maximal ideal.

Question: What is the quotient ring Z/nZ? Nothing but Zn.
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Ideals of Z × Z Let us consider the direct product of Z by itself, i.e. the ring Z × Z. We
know a family of ideals of Z×Z: all the ideals of the form nZ×mZ for n,m in Z. Question:
are there more ideals?
No! Let K be an ideal of Z × Z. Its respective images by the projections π1 and π2 are
subgroups (in fact, ideals) of Z, and are thus of the form mZ and nZ, thus K ⊂ mZ × nZ.
Moreover, K contains an element of the form (m,x) for some x and of the form (y, n) for
some y. Multiplying the first by (1, 0) and the second by (0, 1), we see that (m, 0) and (0, n)
belong to K, and thus K contains mZ× nZ. So K = mZ× nZ.

3 Rings of functions

Let us start with the following question: what are the ideals of R?

Proposition 3.1. All the ideals of R are trivial, i.e. are equal to {0} or R itself.

Proof. Let I be an ideal of R, and assume that I is not {0}. Then I contains some x 6= 0.
Since I is an ideal, it also contains x× 1

x = 1. We know that any ideal that contains the unity
is the ring itself.

This is not specific to R, in fact this is true in every field (see later).
Now, let us ask: what are the ideals of R × R? Or RN? We recall that R × R has the

structure of a product ring, where

(x, y) + (x′, y′) := (x+ x′, y + y′), (x, y)× (x′, y′) := (x× x′, y × y′).

Let K be an ideal of R×R. Let I be the image of K by the first projection π1(x, y) := x and
let J be the image of K by the second projection π2(x, y) := y.

1. I, J are ideals of R, thus they are equal to {0} or R. Moreover we have K ⊂ I × J .
2. Conversely, let (a, b) be in I × J . By definition, a is in the image of π1, so there exists
b′ such that (a, b′) is in K. But then (a, 0) = (a, b′)× (1, 0) is also in K Similarly, (0, b)
is in K. Then (a, b) = (a, 0) + (0, b) is in K. This shows I × J ⊂ K.

So the ideals of R×R are {0}× {0}, {0}×R, R×{0} and R×R. Question: which one are
prime? maximal?

Proposition 3.2. Let N ≥ 2. The ideals of RN are of the form I1 × · · · × IN where Ik is
either {0} or R. Which one are prime? Maximal? Show that all of them are principal.

Proof. Homework.

Now, let S (S as “sequence”) be the set of all sequences of real numbers (un)n≥1. We
endow it with a commutative ring structure by defining

(u+ v)n := un + vn, (u× v)n := un × vn.

There is a unity: the sequence constant equal to 1. Question: what are the ideals of S?

Claim 1. Let I be an ideal of S. If I contains a sequence that never vanishes, then I is equal
to S itself.
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Proof. If u = (un)n≥0 is a sequence such that ∀n, un 6= 0, then the sequence v defined by
vn = 1

un
satisfies u× v = 1S , so I contains the unity and is thus equal to S itself.

Thus every sequence in a non-trivial ideal of S must be equal to zero at least once.

Proposition 3.3. Let Z be a non-empty subset of N . The set S0(Z) of all sequences u such
that

∀n ∈ Z, un = 0

form an ideal of S. It is the principal ideal generated by the sequence v defined by

vn = 0 if n ∈ Z, vn = 1 if n /∈ Z.

Moreover
S0(Z) is prime ⇐⇒ S0(Z) is maximal ⇐⇒ Z is a singleton.

We could hope that all ideals of S are of the form S0(Z) for some non-empty subset Z,
and S would be principal. Unfortunately, here is a counter-example:

Proposition 3.4. The set J of all sequences that have only finitely many terms not equal to
zero is an ideal of J . It is not of the form S0(Z) for any Z. It is not prime.

Proof. The fact that J is not prime can be checked with a example: the sequences u, v defined
by un = 0, vn = 1 if n is odd and un = 1, vn = 0 if n is even, are not elements of J but
un × vn is always 0 and thus u× v is in J .

Remark 3.5. Is the subset “sequences with infinitely many 0 terms” an ideal of S? What
about the subset “infinitely many terms not equal to 0”?

Lemma 3.6 (Bezout’s identity). If R is a commutative ring with unity, if I is a maximal
ideal and p /∈ I, then there exists α in R, i in I such that α× p+ i = 1.

Proof. Let I be a maximal ideal and p be an element of R that does not belong to I. Let
I + (p) be the set

I + (p) := {i+ α× p, i ∈ I, αinR} .

Check that this is an ideal, that contains I and is not equal to I. Since I is maximal, this
must be R, so it must contain 1, so there exists i ∈ I, αinR such that i+ α× p = 1.

Lemma 3.7. If R is a commutative ring with unity, every maximal ideal is prime.

Proof. Let I be a maximal ideal (not equal to R otherwise there is nothing to prove), let p, q
be two elements such that p× q ∈ I. Assume, by contradiction, that p /∈ I and q /∈ I. Then
by the previous result, we know that there exists α, β in R and i, j in I such that

αp+ i = 1, βq + j = 1.

But then (αp+ i)(βq + j) = 1 = αβpq + iβq + jαp+ ij, which is a sum of terms in I. Thus
1 ∈ I, and I is equal to R, contradiction.

Questions: What do the quotient rings look like?
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4 Rings of matrices

For n ≥ 2, we let Mn,n(R) be the ring of n× n matrices with real coefficients.

Remark 4.1. Mn,n is not commutative.
Start with n = 2, then, for e.g.

A =
(

0 1
2 0

)
, B =

(
0 2
1 0

)
,

we have
AB =

(
1 0
0 4

)
, BA =

(
4 0
0 1

)
,

and thus AB 6= BA.

How to generalize for n ≥ 2? We find construct an example by hand. Or we can rely on
the following “abstract” result:

Lemma 4.2. For m ≥ n, the map φ : Mn,n(R)→Mm,m(R) defined by

φ(A) :=
(

A 0n,m−n
0m−n,n 0m−n

)
,

(using block-matrix notation) is a one-to-one ring morphism.
In particular: Mn,n(R) is isomorphic to a subring of Mm,m(R).

Proof. Exercise. The fact that if there is a one-to-one morphism from R to S, then R is
isomorphic to a subring of S (the range of φ) was already mentioned in the case of groups.

In particular, since M2,2(R) is not commutative, then Mm,m(R) is not commutative for
m ≥ 2 (why?).

Since we are not dealing with commutative rings R, one has to distinguish between

• Left-ideal I : ∀a ∈ I, ∀b ∈ R, b× a ∈ I
• Right-ideal I : ∀a ∈ I, ∀b ∈ R, a× b ∈ I
• Two-sided ideal: both left and right.

How to find ideals? We still have principal ideals, but now of different types. Fix a in R.

• The left-ideal generated by a is Ra := {ra, r ∈ R} (notation Ra with R on the left)
• The right-ideal generated by a is aR := {ar, r ∈ R} (notation aR with R on the right)

Question, is the subset
{ras, r ∈ R, s ∈ R}

a two-sided ideal? Answer: it clearly “absorbs” elements on the left/right but is not clear
that it is a subgroup!! To generate a two-sided ideal from a, we need to consider finite linear
combinations of elements of the type ras, so in fact we define

RaR := {r1as1 + · · ·+ rnasn, n ≥ 1, r1, . . . , rn ∈ R, s1, . . . , sn ∈ R}.

Fact: Ra is a left-ideal, aR is a right-ideal, RaR is a two-sided ideal. Proof: exercise.
Question: who are the ideals of the ring M2,2(R)?
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Remark 4.3. If I is an ideal (left, right, two-sided) of M2,2(R), then either I is trivial or it
contains only non-invertible matrices?

Proof. Same reason than for functions: if A is invertible and in I, then A × A−1 is in I (or
A−1 ×A if I is a left-ideal) and then the identity is in I and I contains all the matrices.

The two-sided ideals

Lemma 4.4. The only two-sided ideals of M2,2(R) are trivial.

Proof. Let I be a two-sided ideal, and assume it is not trivial, so it contains a matrix A of
rank 1 (it cannot contain a matrix of rank 2 because this would be invertible, see above). We
now from linear algebra that there exists P,Q (invertible, but here it does not matter) such
that

PAQ =
(

1 0
0 0

)
,

and clearly we can also find P ′, Q′ such that

P ′AQ′ =
(

0 0
0 1

)
,

since I is a two-sided ideal we have(
1 0
0 0

)
∈ I,

(
0 0
0 1

)
∈ I,

and so their sum is in I but this is the identity matrix, so I is trivial.

Remark 4.5. We have previously seen an example where all the two-sided ideals where trivial:
the case of R (because it is a “field”). Here we have another example, which is not a “field”.
We say the ring is “simple” (compare to “simple groups” = all normal subgroups are trivial).

Question: What about left ideals?

Lemma 4.6. Let I be a non trivial left-ideal of M2,2(R). For any A1, A2 in I, we must have

kerA1 ∩ kerA2 6= {0}.

Proof. Since I is not trivial, A1, A2 have rank at most 1. Assume they both have rank 1
(otherwise there is nothing to prove), but kerA1 ∩ kerA2 = {0}.

Let u, v such that kerA1 = Ru, kerA2 = Rv, and by assumption u, v are not colinear,
hence they form a basis. We have

A1u = 0, A1v = αu+ βv, A2u = γu+ δv,A2v = 0.

• If β = 0, but α 6= 0 multiply A1 on the left by the matrix C such that

Cu = 1
α
v,Cv = 0,

then CA1 sends u to 0 and v to v
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• If β 6= 0, multiply A1 on the left by the matrix C such that

Cu = 0, Cv = 1
β
v,

then CA1 sends u to 0 and v to v.
• Idem for A2.

Since I is a left-ideal, we obtain that (written in a certain basis)(
1 0
0 0

)
∈ I,

(
0 0
0 1

)
∈ I,

so the identity is in I, hence I is trivial.

Proposition 4.7. If I is a non-trivial left-ideal of M2,2(R), then⋂
M∈I

kerM

is a subspace F of dimension 1, and I is the left-ideal of matrices whose kernel contains F .

Proof. It follows from the previous lemma. Why?

Remark 4.8. This is a principal ideal. Can you find a generator? Complete F into a basis
of R2 (by adding a vector) and consider the matrix written(

0 1
0 1

)

in this basis. Then any matrix in the ideal can be written as(
0 a
0 b

)
=
(
a 0
0 b

)
×
(

0 1
0 1

)
.

Exercise: extend the result to n ≥ 3, and to right-ideals.

5 Polynomials

Definition 5.1. If R is a ring, we define the ring of polynomials with coefficients in R,
denoted by R[X], as the set of all sequences of elements of R that are eventually equal to 0,
so

R[X] := {P = {ak}k≥0, ak ∈ R∀k ak = 0 for k large enough} .

We define the degree of P as

deg(P ) := max{k, ak 6= 0}.
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Given a sequence of coefficients {ak}k≥0, we usually write

P (X) = a0 + a1X + a2X
2 + · · ·+ akX

k + . . . adeg(P )X
deg(P ) =

deg(P )∑
k=0

akX
k.

We define two operations + and × on R[X], cf. Textbook section 17.1. If R is a com-
mutative ring with unity, then so is R[X]. In the sequel, we will focus on C[X], polynomials
with coefficients in C.

Ideals? Let us consider the “evaluation morphisms”: fix z in C and define Φz : C[X]→ C
by

Φz(P ) := P (z).

Its kernel is the set of all polynomials vanishing at z, it is an ideal of C[X]. More ideals?

Lemma 5.2. Let R,S1, S2 be three rings, let ϕ1 be a ring morphism from R to S1 and ϕ2 be
a ring morphism from R to S2. Then the map (ϕ1, ϕ2) defined by

r 7→ (ϕ1, ϕ2)(r) := (ϕ1(r), ϕ2(r))

is a ring morphism from R to S1 × S2 and its kernel is the intersection kerϕ1 ∩ kerϕ2.
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