1 Rings

1.1 Definition

Definition 1.1 (Ring). A ring is a triplet $(R, +, \times)$, where

- *R is a set*
- \bullet + *is a binary operation on R such that* $(R,+)$ *is an Abelian group.*
- $\bullet \times$ *is a binary operation on R that satisfies*
	- $1. \times$ *is associative, i.e. for all a, b, c in R, we have*

$$
(a \times b) \times c = a \times (b \times c)
$$

2. \times *distributes on* +*, i.e. for all a, b, c in R we have*

 $a \times (b + c) = a \times b + a \times c$, $(b + c) \times a = b \times a + c \times a$.

Furthermore:

- We denote by 0 the neutral element for $+$.
- If the operation \times is commutative, we say that R is a commutative ring.
- If the operation \times admits a neutral element, we say that *R* has a unity. Although this is not, strictly speaking, part of our definition, all the rings that we will consider here have a unity - and in fact, in some books the existence of a unity is included in the definition of a ring.

As usual, with the definition of a structure comes the natural definition of the associated sub-structure.

Definition 1.2 (Subring). Let $(R, +, \times)$ be a ring, and $R' \subset R$ be a subset of R. We say *that* R' *is a subring of* R *if* $(R', +, \times)$ *is a ring by itself.*

In practice, to prove that $R' \subset R$ is a subring of R, we check the following properties:

- 1. $(R', +)$ is a subgroup of $(R, +)$.
- 2. *R'* is stable (or "closed") by product, i.e. for all a, b in R' , the product $a \times b$ is still in R^{\prime} .

1.2 Some examples

- The "usual" examples: the sets $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ with the usual addition and multiplication are all commutative rings with a unity. In fact $\mathbb Z$ is a subring of $\mathbb Q$, who is a subring of R, etc.
- The "functional examples": the set F of all functions from $\mathbb R$ to $\mathbb R$ can be endowed with a commutative ring structure. We define the sum and product of two functions as follows

$$
\forall x \in \mathbb{R}, \quad (f+g)(x) := f(x) + g(x), \quad (f \times g)(x) := f(x) \times g(x).
$$

Let us emphasize that when we write $(f+g)(x) := f(x)+g(x)$, the first symbol + denotes the binary operation on \mathcal{F} , which is being defined in terms of the usual addition on \mathbb{R} , to which the second symbol + corresponds. Inside the ring $\mathcal F$ we may find interesting subrings:

- $-$ The ring $C^0(\mathbb{R},\mathbb{R})$ of all continuous functions from \mathbb{R} to \mathbb{R} . It is a subring of F because the sum, difference and product of two continuous function is still continuous.
- $-$ For all $k ≥ 1$, the ring $C^k(\mathbb{R}, \mathbb{R})$ of all functions from \mathbb{R} to \mathbb{R} which are of class C^k , i.e. *k* times differentiable, and whose *k*-th derivative is continuous. It is a subring of $\mathcal F$ because the sum, difference and product of functions of class C^k is still of class C^k .
- **–** The ring R[*X*] of all polynomial functions with real coefficients. We may also look at $\mathbb{Q}[X]$ or $\mathbb{Z}[X]$, and check that $\mathbb{Z}[X]$ is a subring of $\mathbb{Q}[X]$, itself a subring of $\mathbb{R}[X].$
- The "matrix examples". The set $M_{2,2}(\mathbb{R})$ of 2×2 matrices with real coefficients, with the matrix addition and multiplication, is a ring. Its unity is the identity matrix. Of course, this is **not** a commutative ring. An interesting subring is formed by the "upper triangular" matrices, i.e. the matrices of the form

$$
\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}, \quad a, b, c \in \mathbb{R}.
$$

We could also consider the rings $M_{2,2}(\mathbb{Q})$ or $M_{2,2}(\mathbb{C})$, or even $M_{2,2}(\mathbb{Z})$.

1.3 Ring morphisms and ideals

Once the ring structure is defined, we have the usual definition of a ring morphism:

Definition 1.3 (Ring morphism and kernel). Let $(R, +_R, \times_R)$ and $(S, +_S, \times_S)$ be two rings, *and* $\varphi: R \to S$ *be a map. We say that* φ *is a ring morphism when*

$$
\forall a, b \in R, \quad \varphi(a +_R b) = \varphi(a) +_S \varphi(b), \quad \varphi(a \times_R b) = \varphi(a) \times_S \varphi(b).
$$

In other words, φ *respects the ring structures of* R *and* S *.*

To a ring morphism $\varphi: R \to S$ *is associated its kernel*

$$
\ker \varphi := \{ a \in R, \varphi(a) = 0_S \}.
$$

Remark 1.4. *A ring morphism from* $(R, +_R, \times_R)$ *to* $(S, +_S, \times_S)$ *is in particular a group* **morphism** from $(R, +_R)$ to $(S, +_S)$. Its kernel in the sense of "ring morphism" as defined *above and its kernel in the sense of "group morphism" as defined previously are the same object.* In particular, we know that ker φ is a **subgroup** of $(R, +_R)$. It is not difficult to *check that it is a subring of* $(R, +_R, \times_R)$ *. In fact, we have more!*

Proposition 1.5. *Let* $\varphi: R \to S$ *be a ring morphism.*

- ker φ *is a subgroup of R*.
- ker φ "absorbs elements through product": if a is in ker φ and b is in R, then $a \times b$ and $b \times a$ *are both in* ker φ *.*

Definition 1.6 (Ideal)**.** *Let R be a ring. A subset I of R is an ideal of R if I is a subgroup of R which satisfies:*

• For all a in I , for all b in R , $a \times b$ is in I (right ideal).

- For all a in I , for all b in R , $b \times a$ is in I (left ideal).
- For all a in I, for all b in R, $a \times b$ and $b \times a$ are both in I (two-sided ideal).

Of course, in a commutative ring, there is no distinction between left, right and two-sided ideals.

It follows immediately from Proposition [1.5](#page-1-0) and the definition above that the kernel of a ring morphism is always a two-sided ideal.

- **Proposition 1.7.** *1. The sets* {0} *and R itself are always ideals of R, although not very interesting ones.*
	- *2. If R has a unity, any ideal containing* 1 *is equal to R itself. (This is frequently used to prove that some ideal is equal to the whole ring).*

Proof. Proof of 2. if $1 \in I$, and *I* is e.g. a left ideal, then for all *b* in *R* we have $b \times 1 \in I$, but $b \times 1 = b$, so $b \in I$ and *I* contains all the elements of *R*. П

Example: evaluation morphisms and their kernel. Let $\mathcal F$ be, as above, the set of all functions from R to R. For any α in R, we consider the map φ_{α} from F to R defined as follows

$$
\forall f \in \mathcal{F}, \quad \varphi_{\alpha}(f) := f(\alpha).
$$

Then φ_{α} is a ring morphism. Its kernel is given by

$$
\ker \varphi_{\alpha} := \{ f \in \mathcal{F}, f(\alpha) = 0 \},
$$

which is the set of all functions vanishing at α . It is an ideal of F.

1.4 More about ideals

Definition 1.8 (Principal ideals)**.** *Let R be a commutative ring and x be an element of X. The ideal generated by x is defined as the set* $\{x \times a, a \in R\}$ *, and denoted by* (x) *(or* $\langle x \rangle$ *, depending on the convention).*

Exercise: check that this is indeed an ideal. Of course, if R is not commutative, one should define three notions: left ideal generated by x (sometimes denoted by Rx), right ideal generated by x (sometimes denoted by xR, and two-sided ideal generated by x (sometimes denoted by RxR.

- For any $n \geq 1$, the set $n\mathbb{Z}$ of all multiples of \mathbb{Z} is an ideal of \mathbb{Z} .
- In $\mathbb{R}[X]$, for all $k \geq 1$ the set (X^k) of all polynomials which have no coefficient of order $0, 1, 2, \ldots k-1$ is an ideal of $\mathbb{R}[X]$.

Definition 1.9 (Principal ideal)**.** *If an ideal I is of the form* (*x*) *for some x in R, we say that I is a principal ideal*

The ideal $6\mathbb{Z}$ is principal. However:

- It is strictly contained in the ideals $2\mathbb{Z}$ and $3\mathbb{Z}$.
- We have $3 \times 2 = 6 \in 6\mathbb{Z}$ even though $2 \notin 6\mathbb{Z}$ and $3 \notin 6\mathbb{Z}$.

To address these two situations, we introduce two definitions.

Definition 1.10. *Let R be a commutative ring and I be an ideal of R.*

I is said to be a maximal ideal if, for any ideal *I*' such that $I \subset I'$, we have $I' = I$ or $I' = R$. *I* is said to be a prime ideal if, for any a, b in R such that $a \times b \in I$, we must have $a \in I$ or $b \in I$ *.*

For example, 6Z is not maximal because $6\mathbb{Z} \subset 2\mathbb{Z}$ and yet $2\mathbb{Z} \neq 6\mathbb{Z}$ and $2\mathbb{Z} \neq \mathbb{Z}$. It is not prime neither, because $2 \times 3 \in 6\mathbb{Z}$ and yet $2 \notin 6\mathbb{Z}$ and $3 \notin 6\mathbb{Z}$.

1.5 Two constructions

1.5.1 Direct product of rings

Let $(R, +_R, \times_R)$ and $(S, +_S, \times_S)$ be two rings. The Cartesian product $R \times S$ can be endowed with a ring structure $(R \times S, +, \times)$ named the *product ring* and defined as follows: for a, a' in R and b, b' in S , we let

$$
(a,b) + (a',b') := (a +_R a', b +_S b'), \quad (a,b) \times (a',b') := (a \times_R a', b \times_S b').
$$

The ring $R \times S$ is commutative if and only if both R and S are commutative (proof: exercise).

R and *S* are both "included" in $R \times S$ as follows: the maps $i_1 : R \to R \times S$ and $i_2 : S \to$ $R \times S$ defined by

$$
i_1(a) := (a, 0), \quad i_2(b) := (0, b),
$$

are injective ring morphisms.

Conversely, $R \times S$ can be "projected down" onto *R* or *S* as follows: the maps $\pi_1 :=$ $R \times S \to R$ and $\pi_2 : R \times S \to S$ defined by

$$
\pi_1(a, b) := a, \quad \pi_2(a, b) := b,
$$

are surjective ring morphisms.

Lemma 1.11. If R, S are two rings, I is an ideal of R and J is an ideal of S , then $I \times J$ is *an ideal of* $R \times S$ *.*

Proof. Exercise.

1.5.2 Quotient ring

Let $(R, +_R, \times_R)$ be a commutative ring, and *I* be an ideal of *R*. In particular, *I* is a subgroup of *R*, and it is even a *normal* subgroup of *R* since (*R,* +) is always, by definition, an Abelian group. So we can consider the quotient group $(R/I, \overline{+})$.

Question: can *R/I* be endowed with a ring structure?

Yes! Let \bar{a}, \bar{b} be two elements of R/I , i.e. two equivalence classes for the relation "equal" modulo an element of *I*" on *R*. We want to define $\overline{a \times b}$, the natural guess is to let

$$
\overline{a}\overline{\times}\overline{b}:=\overline{a\times_R b},
$$

in other words we define $\overline{a} \times \overline{b}$ as the equivalence class of $a \times_B b$ in *R*.

Question: is this well-defined?

Yes! But as for the quotient group construction, we need to check that the definition above does **not** depend on the choice of *a, b* among their equivalence class. In order to do that, let

 a', b' be such that $\overline{a} = \overline{a'}$ and $\overline{b} = \overline{b'}$. By definition of the relation "equal modulo an element of *I*", it means that there exist *i* and *j* in *I* such that

$$
a' = a + i, \quad b' = b + j.
$$

Now, let us compute (using the fact that product distributes on sum!)

$$
a' \times_R b' = (a + i) \times_R (b + j) = a \times_R b + i \times_R b + a \times_R j + i \times_R j.
$$

The last three terms in the right-hand side all belong to *I* because *I* is an ideal and *i, j* are in *I*. So $a' \times_R b'$ is equal to $a \times_R b$ plus an element of *I*, which means that they are equivalent modulo *I*, and have the same equivalence class in R/I , so indeed

$$
\overline{a' \times_R b'} = \overline{a \times_R b},
$$

and the product operation on *R/I* is well-defined.

We call $(R/I, \overline{+}, \overline{\times})$ the *quotient ring* of *R* by the ideal *I*.

2 The ring Z

2.1 Z **as a principal ring**

Theorem 1 (Ideals of \mathbb{Z}). *Every ideal of* \mathbb{Z} *is principal, i.e. of the form n* \mathbb{Z} *for some* $n \in \mathbb{Z}$ *.*

Proof. An ideal of \mathbb{Z} is, in particular, a subgroup of \mathbb{Z} , but \mathbb{Z} is cyclic, and we know that all subgroups of a cyclic group is cyclic. So there exists *n* in Z such that $I = \langle n \rangle$ (as a subgroup). It is easy to check that $\langle n \rangle = n\mathbb{Z}$ and that $n\mathbb{Z}$ is indeed an ideal.

As a reminder, review the proof that "every subgroup of a cyclic group is cyclic": we introduce *n* as

$$
n := \min\{k \in I, k > 0\}\,
$$

and show that every element of *I* is a multiple of *n*, using Euclidean division.

 \Box

 \Box

Proposition 2.1. *Let* $n \geq 1$ *. The following statements are equivalent:*

- *1. The ideal n*Z *is a maximal ideal.*
- *2. The ideal n*Z *is a prime ideal.*
- *3. n is a prime number.*

Proof. We show

• 2. \iff 3. If *n* is a prime number, and if $pq \in n\mathbb{Z}$, it means that *n* divides pq, so *n* must divide p or q (Gauss's lemma), so $n\mathbb{Z}$ is a prime ideal. Conversely, if *n* is not a prime number and can be written as $n = pq$ for $1 < p, q < n$,

then $pq \in n\mathbb{Z}$ and yet $p \notin n\mathbb{Z}$, $q \notin n\mathbb{Z}$ so the ideal $n\mathbb{Z}$ is not prime.

• 1. \iff 3. If *n* is a prime number, and if $n\mathbb{Z}$ is included in some ideal *I*, since \mathbb{Z} is principal we know that *I* is of the form $m\mathbb{Z}$ for some m , but then $n \in n\mathbb{Z} \subset m\mathbb{Z}$ so m divides *n*, which means $m = 1$ or $m = n$, and thus $m\mathbb{Z} = \mathbb{Z}$ or $m\mathbb{Z} = n\mathbb{Z}$. So indeed $n\mathbb{Z}$ is a maximal ideal.

Conversely, if *n* is not a prime number, there exists a number *m* with $1 \lt m \lt n$ which divides *m*, and thus $n\mathbb{Z} \subset m\mathbb{Z}$, so $n\mathbb{Z}$ is not a maximal ideal.

Question: What is the quotient ring $\mathbb{Z}/n\mathbb{Z}$? Nothing but \mathbb{Z}_n .

Ideals of $\mathbb{Z} \times \mathbb{Z}$ Let us consider the direct product of \mathbb{Z} by itself, i.e. the ring $\mathbb{Z} \times \mathbb{Z}$. We know a family of ideals of $\mathbb{Z} \times \mathbb{Z}$: all the ideals of the form $n\mathbb{Z} \times m\mathbb{Z}$ for *n, m* in \mathbb{Z} . **Question:** are there more ideals?

No! Let *K* be an ideal of $\mathbb{Z} \times \mathbb{Z}$. Its respective images by the projections π_1 and π_2 are subgroups (in fact, ideals) of \mathbb{Z} , and are thus of the form $m\mathbb{Z}$ and $n\mathbb{Z}$, thus $K \subset m\mathbb{Z} \times n\mathbb{Z}$. Moreover, *K* contains an element of the form (m, x) for some *x* and of the form (y, n) for some *y*. Multiplying the first by $(1,0)$ and the second by $(0,1)$, we see that $(m,0)$ and $(0,n)$ belong to *K*, and thus *K* contains $m\mathbb{Z} \times n\mathbb{Z}$. So $K = m\mathbb{Z} \times n\mathbb{Z}$.

3 Rings of functions

Let us start with the following question: what are the ideals of \mathbb{R} ?

Proposition 3.1. All the ideals of \mathbb{R} are trivial, i.e. are equal to $\{0\}$ or \mathbb{R} itself.

Proof. Let *I* be an ideal of R, and assume that *I* is not $\{0\}$. Then *I* contains some $x \neq 0$. Since *I* is an ideal, it also contains $x \times \frac{1}{x} = 1$. We know that any ideal that contains the unity is the ring itself. \Box

This is not specific to R, in fact this is true in every *field* (see later).

Now, let us ask: what are the ideals of $\mathbb{R} \times \mathbb{R}$? Or \mathbb{R}^{N} ? We recall that $\mathbb{R} \times \mathbb{R}$ has the structure of a product ring, where

$$
(x,y) + (x',y') := (x+x',y+y'), \quad (x,y) \times (x',y') := (x \times x',y \times y').
$$

Let *K* be an ideal of $\mathbb{R} \times \mathbb{R}$. Let *I* be the image of *K* by the first projection $\pi_1(x, y) := x$ and let *J* be the image of *K* by the second projection $\pi_2(x, y) := y$.

- 1. *I*, *J* are ideals of R, thus they are equal to {0} or R. Moreover we have $K \subset I \times J$.
- 2. Conversely, let (a, b) be in $I \times J$. By definition, *a* is in the image of π_1 , so there exists b' such that (a, b') is in *K*. But then $(a, 0) = (a, b') \times (1, 0)$ is also in *K* Similarly, $(0, b)$ is in *K*. Then $(a, b) = (a, 0) + (0, b)$ is in *K*. This shows $I \times J \subset K$.

So the ideals of $\mathbb{R} \times \mathbb{R}$ are $\{0\} \times \{0\}$, $\{0\} \times \mathbb{R}$, $\mathbb{R} \times \{0\}$ and $\mathbb{R} \times \mathbb{R}$. **Question:** which one are prime? maximal?

Proposition 3.2. Let $N \geq 2$. The ideals of \mathbb{R}^N are of the form $I_1 \times \cdots \times I_N$ where I_k is *either* {0} *or* R*. Which one are prime? Maximal? Show that all of them are principal.*

Proof. Homework.

Now, let *S* (*S* as "sequence") be the set of all sequences of real numbers $(u_n)_{n\geq 1}$. We endow it with a commutative ring structure by defining

$$
(u+v)_n := u_n + v_n, \quad (u \times v)_n := u_n \times v_n.
$$

There is a unity: the sequence constant equal to 1. **Question:** what are the ideals of *S*?

Claim 1. *Let I be an ideal of S. If I contains a sequence that never vanishes, then I is equal to S itself.*

 \Box

Proof. If $u = (u_n)_{n \geq 0}$ is a sequence such that $\forall n, u_n \neq 0$, then the sequence v defined by $v_n = \frac{1}{u_n}$ $\frac{1}{u_n}$ satisfies $u \times v = 1_S$, so *I* contains the unity and is thus equal to *S* itself. \Box

Thus every sequence in a non-trivial ideal of *S* must be equal to zero at least once.

Proposition 3.3. Let *Z* be a non-empty subset of $\mathbb N$. The set $S_0(Z)$ of all sequences *u* such *that*

$$
\forall n \in Z, u_n = 0
$$

form an ideal of S. It is the principal ideal generated by the sequence v defined by

$$
v_n = 0 \text{ if } n \in Z, \quad v_n = 1 \text{ if } n \notin Z.
$$

Moreover

 $S_0(Z)$ *is prime* $\iff S_0(Z)$ *is maximal* $\iff Z$ *is a singleton.*

We could hope that all ideals of *S* are of the form $S_0(Z)$ for some non-empty subset *Z*, and *S* would be principal. Unfortunately, here is a counter-example:

Proposition 3.4. *The set J of all sequences that have only finitely many terms not equal to zero is an ideal of J. It is not of the form* $S_0(Z)$ *for any Z. It is not prime.*

Proof. The fact that *J* is not prime can be checked with a example: the sequences *u, v* defined by $u_n = 0$, $v_n = 1$ if *n* is odd and $u_n = 1$, $v_n = 0$ if *n* is even, are not elements of *J* but $u_n \times v_n$ is always 0 and thus $u \times v$ is in *J*. \Box

Remark 3.5. *Is the subset "sequences with infinitely many* 0 *terms" an ideal of S? What about the subset "infinitely many terms not equal to* 0*"?*

Lemma 3.6 (Bezout's identity)**.** *If R is a commutative ring with unity, if I is a maximal ideal and* $p \notin I$ *, then there exists* α *in* R *, i in* I *such that* $\alpha \times p + i = 1$ *.*

Proof. Let *I* be a maximal ideal and *p* be an element of *R* that does not belong to *I*. Let $I + (p)$ be the set

$$
I + (p) := \{ i + \alpha \times p, i \in I, \alpha in R \}.
$$

Check that this is an ideal, that contains I and is not equal to I . Since I is maximal, this must be *R*, so it must contain 1, so there exists $i \in I$, α *inR* such that $i + \alpha \times p = 1$. \Box

Lemma 3.7. *If R is a commutative ring with unity, every maximal ideal is prime.*

Proof. Let *I* be a maximal ideal (not equal to *R* otherwise there is nothing to prove), let *p, q* be two elements such that $p \times q \in I$. Assume, by contradiction, that $p \notin I$ and $q \notin I$. Then by the previous result, we know that there exists α, β in *R* and *i, j* in *I* such that

$$
\alpha p + i = 1, \quad \beta q + j = 1.
$$

But then $(\alpha p + i)(\beta q + j) = 1 = \alpha \beta pq + i\beta q + j\alpha p + ij$, which is a sum of terms in *I*. Thus $1 \in I$, and *I* is equal to *R*, contradiction. \Box

Questions: What do the quotient rings look like?

4 Rings of matrices

For $n \geq 2$, we let $M_{n,n}(\mathbb{R})$ be the ring of $n \times n$ matrices with real coefficients.

Remark 4.1. *Mn,n is not commutative.*

Start with $n = 2$ *, then, for e.g.*

$$
A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix},
$$

we have

$$
AB = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}, \quad BA = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix},
$$

and thus $AB \neq BA$ *.*

How to generalize for $n \geq 2$? We find construct an example by hand. Or we can rely on the following "abstract" result:

Lemma 4.2. *For* $m \geq n$ *, the map* $\phi : M_{n,n}(\mathbb{R}) \to M_{m,m}(\mathbb{R})$ *defined by*

$$
\phi(A) := \begin{pmatrix} A & 0_{n,m-n} \\ 0_{m-n,n} & 0_{m-n} \end{pmatrix},
$$

(using block-matrix notation) is a one-to-one ring morphism.

In particular: $M_{n,n}(\mathbb{R})$ *is isomorphic to a subring of* $M_{m,m}(\mathbb{R})$ *.*

Proof. Exercise. The fact that if there is a one-to-one morphism from *R* to *S*, then *R* is isomorphic to a subring of *S* (the range of ϕ) was already mentioned in the case of groups. \Box

In particular, since $M_{2,2}(\mathbb{R})$ is not commutative, then $M_{m,m}(\mathbb{R})$ is not commutative for $m \geq 2$ (why?).

Since we are not dealing with commutative rings *R*, one has to distinguish between

- Left-ideal $I : \forall a \in I, \forall b \in R, b \times a \in I$
- Right-ideal $I : \forall a \in I, \forall b \in R, a \times b \in I$
- Two-sided ideal: both left and right.

How to find ideals? We still have *principal* ideals, but now of different types. Fix *a* in *R*.

- The left-ideal generated by *a* is $Ra := \{ra, r \in R\}$ (notation Ra with R on the **left**)
- The right-ideal generated by *a* is $aR := \{ar, r \in R\}$ (notation aR with *R* on the **right**)

Question, is the subset

$$
\{ras, r \in R, s \in R\}
$$

a two-sided ideal? Answer: it clearly "absorbs" elements on the left/right but is not clear that it is a subgroup!! To generate a two-sided ideal from *a*, we need to consider finite linear combinations of elements of the type *ras*, so in fact we define

 $RaR := \{r_1as_1 + \cdots + r_nas_n, n \geq 1, r_1, \ldots, r_n \in R, s_1, \ldots, s_n \in R\}.$

Fact: *Ra* is a left-ideal, *aR* is a right-ideal, *RaR* is a two-sided ideal. Proof: exercise. **Question:** who are the ideals of the ring $M_{2,2}(\mathbb{R})$?

Remark 4.3. If I is an ideal (left, right, two-sided) of $M_{2,2}(\mathbb{R})$, then either I is trivial or it *contains only non-invertible matrices?*

Proof. Same reason than for functions: if *A* is invertible and in *I*, then $A \times A^{-1}$ is in *I* (or $A^{-1} \times A$ if *I* is a left-ideal) and then the identity is in *I* and *I* contains all the matrices. \square

The two-sided ideals

Lemma 4.4. *The only two-sided ideals of* $M_{2,2}(\mathbb{R})$ *are trivial.*

Proof. Let *I* be a two-sided ideal, and assume it is not trivial, so it contains a matrix *A* of rank 1 (it cannot contain a matrix of rank 2 because this would be invertible, see above). We now from linear algebra that there exists *P, Q* (invertible, but here it does not matter) such that

$$
PAQ = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},
$$

and clearly we can also find P', Q' such that

$$
P'AQ'=\begin{pmatrix}0&0\\0&1\end{pmatrix},\end{pmatrix}
$$

since *I* is a two-sided ideal we have

$$
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in I, \quad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in I,
$$

and so their sum is in *I* but this is the identity matrix, so *I* is trivial.

Remark 4.5. *We have previously seen an example where all the two-sided ideals where trivial: the case of* R *(because it is a "field"). Here we have another example, which is not a "field". We say the ring is "simple" (compare to "simple groups" = all normal subgroups are trivial).*

Question: What about left ideals?

Lemma 4.6. Let I be a non trivial left-ideal of $M_{2,2}(\mathbb{R})$. For any A_1, A_2 in I, we must have

$$
\ker A_1 \cap \ker A_2 \neq \{0\}.
$$

Proof. Since *I* is not trivial, *A*1*, A*² have rank at most 1. Assume they both have rank 1 (otherwise there is nothing to prove), but ker $A_1 \cap \text{ker } A_2 = \{0\}.$

Let *u, v* such that ker $A_1 = \mathbb{R}u$, ker $A_2 = \mathbb{R}v$, and by assumption *u, v* are not colinear, hence they form a basis. We have

$$
A_1 u = 0, A_1 v = \alpha u + \beta v, \quad A_2 u = \gamma u + \delta v, A_2 v = 0.
$$

• If $\beta = 0$, but $\alpha \neq 0$ multiply A_1 on the left by the matrix *C* such that

$$
Cu = \frac{1}{\alpha}v, Cv = 0,
$$

then CA_1 sends u to 0 and v to v

• If $\beta \neq 0$, multiply A_1 on the left by the matrix *C* such that

$$
Cu = 0, Cv = \frac{1}{\beta}v,
$$

then CA_1 sends u to 0 and v to v .

• Idem for A_2 .

Since *I* is a left-ideal, we obtain that (written in a certain basis)

$$
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in I, \quad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in I,
$$

so the identity is in *I*, hence *I* is trivial.

Proposition 4.7. *If I is a non-trivial left-ideal of* $M_{2,2}(\mathbb{R})$ *, then*

$$
\bigcap_{M\in I}\ker M
$$

is a subspace F of dimension 1*, and I is the left-ideal of matrices whose kernel contains F.*

Proof. It follows from the previous lemma. Why?

Remark 4.8. *This is a principal ideal. Can you find a generator? Complete F into a basis* of \mathbb{R}^2 (by adding a vector) and consider the matrix written

$$
\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}
$$

in this basis. Then any matrix in the ideal can be written as

$$
\begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}.
$$

Exercise: extend the result to $n \geq 3$, and to right-ideals.

5 Polynomials

Definition 5.1. *If R is a ring, we define the ring of polynomials with coefficients in R, denoted by R*[*X*]*, as the set of all sequences of elements of R that are eventually equal to* 0*, so*

$$
R[X] := \{ P = \{a_k\}_{k \geq 0}, \ a_k \in R \forall k \ a_k = 0 \text{ for } k \text{ large enough} \}.
$$

We define the degree of P as

$$
\deg(P) := \max\{k, a_k \neq 0\}.
$$

 \Box

 \Box

Given a sequence of coefficients $\{a_k\}_{k\geq 0}$, we usually write

$$
P(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_k X^k + \dots a_{\deg(P)} X^{\deg(P)} = \sum_{k=0}^{\deg(P)} a_k X^k.
$$

We define two operations + and \times on *R[X]*, cf. Textbook section 17.1. If *R* is a commutative ring with unity, then so is $R[X]$. In the sequel, we will focus on $\mathbb{C}[X]$, polynomials with coefficients in C.

Ideals? Let us consider the "evaluation morphisms": fix *z* in \mathbb{C} and define $\Phi_z : \mathbb{C}[X] \to \mathbb{C}$ by

$$
\Phi_z(P) := P(z).
$$

Its kernel is the set of all polynomials vanishing at z , it is an ideal of $\mathbb{C}[X]$. More ideals?

Lemma 5.2. *Let* R, S_1, S_2 *be three rings, let* φ_1 *be a ring morphism from* R *to* S_1 *and* φ_2 *be a ring morphism from R to* S_2 *. Then the map* (φ_1, φ_2) *defined by*

$$
r \mapsto (\varphi_1, \varphi_2)(r) := (\varphi_1(r), \varphi_2(r))
$$

is a ring morphism from R to $S_1 \times S_2$ *and its kernel is the intersection* ker $\varphi_1 \cap \ker \varphi_2$ *.*