The field of complex numbers

- 1. Define the ideal generated by $X^2 + 1$ in $\mathbb{R}[X]$. We will denote it by $\langle X^2 + 1 \rangle$.
- 2. Explain why, for every polynomial P in $\mathbb{R}[X]$, there exists a polynomial *R* of degree (at most) 1 such that

$$
P - R \in \langle X^2 + 1 \rangle.
$$

- 3. Let *Q* be the quotient ring $\mathbb{R}[X]/\langle X^2+1 \rangle$, and let π be the usual projection map from $\mathbb{R}[X]$ to Q , that sends an element on its equivalence class. Recall the three main properties of π .
- 4. Show that $\pi(X^2) = \pi(-1)$.
- 5. Let φ be the map from $\mathbb{R} \times \mathbb{R}$ to Q defined as

$$
\varphi(a,b) := \pi(a+bX).
$$

Prove that φ is one-to-one (injective).

6. Deduce from question 2. that, for every polynomial P in $\mathbb{R}[X]$, there exists two real numbers *a, b* such that

$$
\pi(P) = \pi(a + bX),
$$

In particular, the map φ defined in question 5. is onto (surjective).

- 7. We define a ring structure on $\mathbb{R} \times \mathbb{R}$ as follows:
	- (a) Addition: $(a, b) + (a', b') := (a + a', b + b')$
	- (b) Product: $(a, b) \star (a', b') := (aa' bb', ab' + a'b).$

(No need to check that this defines indeed a ring.) Show that $(0,1)$ $*$ $(0,1) = (-1,0).$

8. Show that φ is a ring isomorphism from $(\mathbb{R} \times \mathbb{R}, +, \star)$ to Q .