Questions with a (*) are more difficult.

- 1. (a) What are the group morphisms from $(\mathbb{Z}, +)$ to itself?
 - (b) What are the ring morphisms from $(\mathbb{Z}, +, \times)$ to itself? Show that the map $x \mapsto x^3$ is not a ring morphism.
 - (c) What are the group morphisms from $(\mathbb{Z}_3, +)$ to itself?
 - (d) What are the ring morphisms from $(\mathbb{Z}_3, +, \times)$ to itself? Show that the map $x \mapsto x^3$ is a ring morphism.
 - (e) For any fixed polynomial $Q \in \mathbb{Z}[X]$, show that the map

$$P \in \mathbb{Z}[X] \mapsto Q \times P$$

is a group morphism from $(\mathbb{Z}[X], +)$ to itself.

- (f) (*) Are there group morphisms from $(\mathbb{Z}[X], +)$ to itself which are not of this type?
- (g) Show that the map $P \mapsto P^3$ is **not** a ring morphism $(\mathbb{Z}[X], +)$ to itself.
- (h) (*) What are the ring morphisms from $(\mathbb{Z}[X], +, \times)$ to itself?
- (i) For any fixed polynomial $Q \in \mathbb{Z}_3[X]$, show that the map

$$P \in \mathbb{Z}_3[X] \mapsto Q \times P$$

is a group morphism from $(\mathbb{Z}_3[X], +)$ to itself.

- (j) Show that the map $P \mapsto P^3$ is a ring morphism from $(\mathbb{Z}_3[X], +)$ to itself.
- 2. Let $T := \{z \in \mathbb{C}, |z| = 1\}$. We recall that (T, \times) is a subgroup of (\mathbb{C}^*, \times) .
 - (a) For any $k \ge 1$, we define T_k as the set

$$T_k := \left\{ z \in \mathbb{C}, z^k = 1 \right\}.$$

Show that T_k is a subgroup of T.

- (b) (*) Show that T_k is a cyclic group (you really need to find T_k explicitly for that. Look for "roots of unity").
- (c) If G is a group, we let Aut(G) be the set of group isomorphisms from G to G.

- i. Show that the identity map and the conjugation map are in Aut(T).
- ii. For z_0 in T, show that the map from T to T defined by

 $z \mapsto z_0 \times z$,

is a bijection from T to T, but not a morphism, unless $z_0 = 1$ iii. For $k \ge 2$, show that the map from T to T defined by

 $z\mapsto z^k$

is a group morphism from T to T, but not an isomorphism. What is its kernel?

- (d) How many elements are there in T_3 ?
- (e) Show that there is a one-to-one map from $Aut(T_3)$ to S_3 (the permutation group with 4 elements).
- (f) (*) Is this map onto?
- 3. Let \mathcal{F} be the set of all functions from \mathbb{R} to \mathbb{R} . We recall that $(\mathcal{F}, +, \times)$ is a commutative ring.
 - (a) Let A be the set of all functions f in \mathcal{F} such that f(x) > 0 for all x in \mathbb{R} . Show that (A, \times) is an Abelian group.
 - (b) Let B be the set of all functions f in \mathcal{F} such that f(x) > 2 for all x in \mathbb{R} . Is (B, \times) a group?
 - (c) Let C the set of all functions f in \mathcal{F} such that f(x) is a non-zero rational number for all x in \mathbb{R} . Is (C, \times) a group?
 - (d) Let D the set of all **continuous** functions f in \mathcal{F} such that f(x) is a non-zero rational number for all x in \mathbb{R} . Is (D, \times) a group?
 - (e) (*) (This needs an analytic argument) Show that D is isomorphic to the group (\mathbb{Q}^*, \times) .
 - (f) Recall the definition of the direct product of two groups.
 - (g) (*) Let S be a set and G be a group. Define an interesting group structure on the set of all maps from S to G. Show that for $S = \{0, 1\}$, the structure you obtain is isomorphic to the direct product $G \times G$.