Mathematical Statistics - Section 1 - NYU Spring 2019 -Homework 1

Questions preceded by a (*) are either more technical or require more initiative.

We take for statistical model the family of exponential distributions. Here $\Theta = (0, +\infty)$ and for $\theta \in \Theta$, the exponential distribution with parameter θ is given by the probability density

$$P_{\theta}(x) := \theta e^{-\theta x}$$
 on $[0, +\infty)$.

- 1. For any θ , show that the mean $m(\theta) := \int_0^{+\infty} x P_{\theta}(x) dx$ is finite, and compute it.
- 2. Show that the variance $V(\theta) := \int_0^{+\infty} (x m(\theta))^2 P_{\theta}(x) dx$ is finite, and compute it.
- 3. Let X_1, \ldots, X_n be an observation of P_{θ} (i.e. X_1, \ldots, X_n are *independent* and *identically distributed* with distribution P_{θ}). Let \hat{m} be the empirical mean, defined as

$$\hat{m} := \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Compute the expectation and the variance of \hat{m} . Recall why \hat{m} is a consistent estimator of $m(\theta)$.

4. We recall a useful inequality, known as the Bienaymé–Chebyshev inequality: if Y is a random variable such that E[Y] = 0 and $E[Y^2]$ is finite, then

$$P(Y \ge t) \le \frac{1}{t^2} E[Y^2].$$

Use this inequality to prove that, for any $\varepsilon > 0$, we have

$$P(|\hat{m} - m(\theta)| \ge \varepsilon) \le \frac{2V(\theta)}{\varepsilon^2 n}.$$

Explain why it gives a *quantitative* estimate on the consistency of \hat{m} .

5. We define a quantity \hat{V} (the empirical variance) as

$$\hat{V} := \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{m})^2.$$

Compute the expectation of \hat{V} .

- 6. Is \hat{V} an unbiased estimator of $V(\theta)$?
- 7. Is \hat{V} an asymptotically unbiased estimator of $V(\theta)$?
- 8. (*) Is \hat{V} a consistent estimator of $V(\theta)$?