Mathematical Statistics - Section 1 - NYU Spring 2019 Homework 2

Questions preceded by $a\left(^{*}\right)$ are either more technical or require more initiative.

We recall that, if p is a probability distribution function (pdf) on \mathbb{R}, the associated cumulative distribution function (cdf) F is given by

$$
F(t):=\int_{-\infty}^{t} p(x) d x
$$

"Probabilistically speaking", if X a random variable with pdf p, the quantity $F(t)$ corresponds to $F(t)=P(X \leq t)$. The cdf F is (among other things) used to define important statistical quantities named quantiles.

We will often assume that p is a continuous, non-negative probability distribution function, e.g. a Gaussian distribution. Then F is strictly increasing on $(-\infty, \infty)$ and it is in fact a bijection from $(-\infty, \infty)$ to $(0,1)$. In particular, for any $p \in(0,1)$, there exists a unique real number t such that $F(t)=p$. We define this as the quantile of order p and we denote it by $Q(p)$. In short, for $p \in(0,1)$, we have:

$$
Q(p)=t \Longleftrightarrow F(t)=p .
$$

A specific case is $p=\frac{1}{2}$, in which case $Q\left(\frac{1}{2}\right)$ is called the median of the distribution. The median is thus the value t such that $F(t)=\frac{1}{2}$, which can be read as $P(X \leq t)=\frac{1}{2}$, so of course we also have $P(X>t)=\frac{1}{2}$. In this case, the median is the only value such that $P(X \leq t)=P(X>t)$, i.e. it is equally likely for X to be above t or below t.

1. Let p_{θ} be an exponential distribution of parameter $\theta>0$. Compute the cumulative distribution function $t \mapsto F_{\theta}(t)$ of p_{θ}.
2. Compute the values Q_{1}, Q_{2}, Q_{3} such that $F\left(Q_{1}\right)=0.25, F\left(Q_{2}\right)=0.5$, $F\left(Q_{3}\right)=0.75$. You have obtained the first quartile, the median and the third quartile of the distribution.
3. The inter-quartile range is defined as the quantity $Q_{3}-Q_{1}$. Is this quantity increasing or decreasing as a function of θ ?

In the sequel, let p be a general pdf such that F is strictly increasing on $(-\infty, \infty)$. We denote by M its median. Let X_{1}, \ldots, X_{n} be an observation of p (n random variables, i.i.d, of common distribution p). We form the empirical $c d f$, as defined in class, by:

$$
\hat{F}_{n}(t):=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{X_{i} \leq t}
$$

4. Explain why there exists either no t or more than one t such that $\hat{F}_{n}(t)=\frac{1}{2}$. (Hint: imagine an "example" of a "data set" with $n=4$ and $n=5$).
5. Suggests (at least) two different ways in which you could define an "empirical median". Which one would you prefer? Why?

Now, we let \hat{M}_{n} be a statistic defined in such a way that we can always guarantee:

$$
\left|\hat{F}_{n}\left(\hat{M}_{n}\right)-\frac{1}{2}\right| \leq \frac{1}{n} .
$$

[All your possible definitions of "empirical medians" in question 5 should satisfy this.] We want to prove that \hat{M}_{n} is a "good" estimator of M.
6. For a given $\varepsilon>0$, show that

$$
P\left(\hat{M}_{n} \geq M+\varepsilon\right) \leq P\left(\hat{F}_{n}(M+\varepsilon) \leq \frac{1}{2}+\frac{1}{n}\right) .
$$

(Remember that the empirical cdf \hat{F}_{n} is always a non-decreasing function).
7. What do we know (from class) about $\hat{F}_{n}(M+\varepsilon)$ and $F(M+\varepsilon)$?
8. (*) Conclude that \hat{M}_{n} is a consistent estimator of M.

