
Mathematical Statistics - Section 1 - NYU Spring 2019 -
Homework 3

Questions preceded by a (*) are either more technical or require more ini-
tiative.

Hoeffding and DKW We recall Hoeffding’s inequality in the case of
Bernoulli random variables. If H1, . . . ,Hn are i.i.d. Bernoulli random vari-
ables with parameter τ ∈ (0, 1) (i.e. P(H = 1) = τ), we have

P
(∣∣∣∣∣ 1n

n∑
i=1

Hi − τ
∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−2ε2n

)
.

Let p be an unknown pdf, F be its cdf, let X1, . . . , Xn be iid random
variables with common pdf p. We recall that the empirical cdf F̂n is defined
as

F̂n(t) := 1
n

n∑
i=1

1Xi≤t.

1. Recall why, for a fixed t, the variables 1Xi≤t are i.i.d. Bernoulli random
variables. What is their parameter?

2. Apply Hoeffding’s inequality to these variables, and deduce a quanti-
tative bound

P
(∣∣∣F̂n(t)− F (t)

∣∣∣ ≥ ε) ≤ 2 exp
(
−2ε2n

)
. (1)

Observe that the right-hand side does not depend t, and deduce

sup
t∈R

P
(∣∣∣F̂n(t)− F (t)

∣∣∣ ≥ ε) ≤ 2 exp
(
−2ε2n

)
. (2)

3. In fact, there is a (much more difficult to prove) inequality named the
Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (Theorem 7.5 in the
textbook), that reads

P
(

sup
t∈R

∣∣∣F̂n(t)− F (t)
∣∣∣ ≥ ε) ≤ 2 exp

(
−2ε2n

)
. (3)

I want you to convince yourself that DKW’s inequality (3) is stronger
than (2) (i.e. inequality (3) implies inequality (2)).
Explain why, if A1, A2 are two positive quantities, it is better to know
that

P(max(A1, A2) ≥ 100) ≤ 1
10

rather than knowing

P(A1 ≥ 100) ≤ 1
10 and P(A2 ≥ 100) ≤ 1

10 .
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“How to choose the bin sizes when plotting histograms?” We have
learned in class how to estimate the cdf F . We recall that

• For any t, and for any n, F̂n(t) is an unbiased estimator of F (t) (what
does that mean?).

• For any t, F̂n(t) is a consistent estimator of F (t) (what does that
mean?).

This will be useful to keep in mind for the questions below.
We now turn to the problem of estimating the pdf p itself. We recall

that, in general, F ′ = p (the derivative of the cdf is the pdf), but that is only
useful in the continuous setting. When working with empirical quantities
based on data sets, we will instead use the fact that

F ′(t) = lim
ε→0

F (t+ ε)− F (t)
ε

,

and thus intuitively, for ε “small”, we have approximately-but-not-exactly

F ′(t) ≈ F (t+ ε)− F (t)
ε

.

4. If we fix some ε > 0 and define the empirical pdf p̄n as

p̄n(t) := F̂n(t+ ε)− F̂n(t)
ε

,

do we get a “good” estimator of p(t)? More precisely: is it asymptot-
ically unbiased? is it consistent?

Instead, we decide to let ε go to 0 as n → ∞. We work with a sequence
{εn}n of positive real numbers, such that limn→∞ εn = 0.

5. If we define now the empirical pdf p̂n as

p̂n(t) := F̂n(t+ εn)− F̂n(t)
εn

, (4)

show that it is asymptotically unbiased.

6. However, the consistency is a delicate matter. As an example, discuss
what happens if we take εn “way too small” (e.g. εn = n−100). Hint:
for a fixed, large n, imagine what the function t 7→ F̂n(t) typically
looks like, and then what t 7→ F̂n(t + n−100)− F̂n(t) looks like. To fix
ideas, you may imagine that you are sampling e.g. from the uniform
distribution on [0, 1].
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7. (*) If εn = n−1/4, show that for any fixed t, the ”mobile window”
quantity p̂n(t) as defined in (4) is a consistent estimator of p(t).
Hint: you will need to prove the convergence in probability “by hand”,
using the inequality (1) obtained in question 2 to control the difference
between F̂n and F ) at certain points).

In fact, using DKW inequality (3), we can prove that supt∈R |p̂n(t)−p(t)|
converges to 0 in probability (perhaps with an extra assumption on p).
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