Mathematical Statistics - Section 1 - NYU Spring 2019 -Homework 4

MLE for Poisson We recall that, for $\lambda > 0$, the Poisson distribution π_{λ} with parameter λ is a distribution on the integers $k \ge 0$ given by

$$\pi_{\lambda}(X=k) := e^{-\lambda} \frac{\lambda^k}{k!}$$

1. Compute the maximum likelihood estimator for the Poisson distribution.

The uniform distribution Here we choose for statistical model the family of uniform distributions $\{U_{\theta}\}_{\theta}$, where the pdf of U_{θ} is given by

$$U_{\theta}(x) = \begin{cases} \frac{1}{\theta} & \text{if } x \in [0, \theta] \\ 0 & \text{otherwise.} \end{cases}$$

We let θ_{\star} be the "real" parameter, that we try to infer.

- 2. Compute the first and second moment of U_{θ} . Deduce two estimators of θ_{\star} based on the method of moments. *Hint: we mentioned those in class.*
- 3. Compute the variance of the estimator based on the first moment *Hint: this should be almost like computing the variance of the empirical mean.*
- 4. We recall that the MLE in this case is given by $\hat{\theta}_n := \max_{i=1,\dots,n} X_i$. Compute the probability distribution function of $\hat{\theta}_n$.

Hint: compute $\frac{1}{\delta} \mathbb{P}\left(\max_{i=1,\dots,n} X_i \in [x, x+\delta]\right)$ for $\delta > 0$ arbitrarily small.

- 5. Compute the expectation of $\hat{\theta}_n$.
- 6. Compute the variance of $\hat{\theta}_n$, and compare it to the result found in question 3.