Mathematical Statistics - Section 1 - NYU Spring 2019 Homework 5

In this exercise, we will denote by M the constant

$$
M:=\int_{-\infty}^{+\infty} e^{-x^{4}} d x
$$

which we will not try to compute.

1. Show that, for any $\gamma>0$, the function $x \mapsto f(x ; \gamma)$ defined by

$$
f(x ; \gamma):=\frac{1}{M} \gamma e^{-\gamma^{4} x^{4}}
$$

is a pdf on $(-\infty, \infty)$ (Hint: linear change of variables)
2. Let X_{1}, \ldots, X_{n} be an observation, with true parameter γ_{\star}. Compute the max-likelihood estimator $\widehat{\gamma}_{n}$ of γ_{\star} (Hint: follow the usual strategy. Write the likelihood, take the log, compute the derivative etc.)
3. Show that the Fisher information ${ }^{1}$ of this statistical model can be written as

$$
I_{1}(\gamma)=\frac{A}{\gamma^{2}}
$$

for some constant A that we will not try to compute. (Hint: use the formula seen in class for the Fisher information, and do a linear change of variables to find an expression as desired.)

We now fix some $\gamma>0$, and consider the following family of pdf's, with parameter $\mu \in(-\infty,+\infty)$

$$
g(x ; \mu):=\frac{1}{M} \gamma e^{-\gamma^{4}(x-\mu)^{4}}
$$

4. Let X_{1}, \ldots, X_{n} be an observation with true parameter μ_{\star}. Give an equation that characterizes the max-likelihood estimator $\widehat{\mu}_{n}$ of μ_{\star}, but don't try to solve it. (Hint: same strategy as above.)
5. Show that the Fisher information ${ }^{1}$ of this statistical model, can be written as:

$$
I_{2}(\mu)=B \gamma^{2}
$$

where B is a constant (not depending on μ, γ) that we will not try to compute. (Hint: same strategy as above.)

[^0]6. We can readily see that:
(a) The Fisher information does not depend on μ.
(b) When γ is large, the Fisher information is also large.

Why is that true, intuitively? (Hint: think about "personality")

Finally, we decide to return to the initial problem, but we change the parametrization. Here we let $\sigma>0$ be the parameter, and we consider the family of pdf's given by

$$
h(x ; \sigma):=\frac{1}{M} \frac{1}{\sigma} e^{-x^{4} / \sigma^{4}},
$$

where M is the same constant as in the beginning. Observe that

$$
h(x ; \sigma)=f\left(x ; \frac{1}{\gamma}\right),
$$

where f was defined above - so we are considering the same family of pdf's, but parametrized differently, the correspondence between parameters being given by $\sigma \leftrightarrow \frac{1}{\gamma}$.
7. Let X_{1}, \ldots, X_{n} be an observation with real parameter σ_{\star}. Compute the max-likelihood $\widehat{\sigma}_{n}$ of σ_{\star}. (Hint: same as usual).
8. Assume that $\sigma_{\star}, \gamma_{\star}$ are connected by the relation $\sigma_{\star}=\frac{1}{\gamma_{\star}}$, observe that

$$
\widehat{\sigma}_{n}=\frac{1}{\hat{\gamma}_{n}},
$$

where $\widehat{\gamma}_{n}$ is the MLE for γ_{\star} found in question 2 . Of which property of max-likelihood estimators is this an illustration?
9. Show that the Fisher information, in this case, can be written as:

$$
I_{3}(\sigma)=\frac{C}{\sigma^{2}},
$$

for a constant C that we will not try to compute. (Hint: same as above.)
10. (Optional) Observe that, if $\sigma=\frac{1}{\gamma}$, we do not have

$$
I_{3}(\sigma)=\frac{1}{I_{1}(\gamma)}
$$

so the Fisher information does not enjoy the same nice property as the MLE. Based on the asymptotic normality result for MLE, can you make up a rule of transformation of the Fisher information under re-parametrization of the family?

[^0]: ${ }^{1}$ We add a subscript in I_{1}, I_{2}, I_{3} because we will compute several Fisher informations for several models.

