HW6 - Solution
$5)$
a) Power function $\beta(\theta)=\mathbb{P}_{\theta}(y>c)$

$$
\begin{aligned}
& \left.=\mathbb{P}_{\theta}\left(\max \alpha x_{1}, \ldots x_{n}\right\}>c\right) \\
& =1-\mathbb{P}_{\theta}(\max \leqslant c)=1-\left(\frac{c}{\theta}\right)^{n} \text { if } c \leqslant \theta \\
& =0 \text { if } c \geqslant \theta
\end{aligned}
$$

b) We have sire $=\beta\left(\frac{1}{2}\right)=\left\{\begin{array}{cc}1-(2 c)^{n} & c \leqslant \frac{1}{2} \\ 0 & c \geqslant 1\end{array}\right.$

Sire 0.05 $c \geqslant 1 / 2$

$$
\Leftrightarrow 1-(2 c)^{n}=0.05 \Leftrightarrow \frac{(0.95)^{1 / A}}{2}=c
$$

C) $1-(2 \times 0.48)^{20}=1-(0.96)^{20} \approx 1-0.44 \approx \frac{0.56}{p \text {-value . }}$

I would keep H_{0}
d) p-value $=0$ Reject H_{0} with confidence, even certainty!

Rem. This is nd a great test. If $\theta=\frac{1}{2}$, the max should be around $\frac{1}{2}$, and we should reject if it st oo small.
6) $\boldsymbol{\theta}=$ probability of dying before rather than after.

Belief $\theta=\frac{1}{2}$

$$
\begin{aligned}
& n=1919 \\
& k=922 \text { \# deaths before rather than } \\
& \text { after. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Pearson's } T \\
X^{2} \text {-statistic }
\end{array}=\frac{\left(922-\frac{1919}{2}\right)^{2}}{\frac{1819}{2}}+\frac{\left(997-\frac{1919}{2}\right)^{2}}{959.5}+\frac{1406.25}{259.5} \\
&==2.93 \\
& \text { should be a } X^{2}-\text { distribution } \\
& P \text {-vale } \mathbb{P}_{X^{2}}(X \geqslant 2.93) \quad \text { between } 5 \% \text { and } 10 \% \quad \text { Reject Ho } H_{0}
\end{aligned}
$$

Confidence interval? Can use empirical mean.

$$
\begin{aligned}
& \hat{\theta}=\frac{922}{1919}=0.48 \quad n=1919 \\
& (\hat{\theta}-\theta) \frac{\sqrt{n}}{\hat{\theta}(1-\hat{\theta})} \approx \mathcal{S h o u l d} \text { be sql } \\
& \left.|\theta-\hat{\theta}| \leqslant \frac{C \hat{\theta}(1-\hat{\theta})}{\sqrt{n}} \text { with probe } \leqslant \mid p(|V(0,1)| \geqslant c)\right) \\
& |\bar{\theta}-\hat{\theta}| \leqslant \frac{c^{4}}{4 \times 959.5} \quad \theta \in\left[0.48-\frac{1.4}{4 \times 999}\right. \\
& \text { Should be } 2 \text { instead of } 44 \times 959.5 \\
& \left.959.5 \text { is }(1919) / 2 \text {, whereas it should be } 0.48+\frac{1.4}{4 \times 959}\right] \\
& C=1.4^{(1919)^{\wedge}(1 / 2)} \text { with } 95 \% \text { corfidenc }
\end{aligned}
$$

7 a) Compute $\hat{\mu}_{1}, \hat{\mu}_{2}$, and $\hat{\mu}_{1}-\hat{\mu}_{2}$ (difference of empirical means)
Then compute standard errors.
If we consider that 10 is a large number, we can perform Wall's teat and check wether $\mathbb{P}\left(|X(0,1)| \geqslant \frac{\hat{\mu}_{1}-\hat{\mu}_{2}}{\sqrt{\frac{x_{2}^{2}}{8}+\frac{\boldsymbol{\beta}_{2}^{2}}{10}}}\right)$ is smallornot...
8) The distribution of T is $\rho\left(\theta, \frac{1}{n}\right)=$ 我车 $\theta+N(0, n) \cdot \frac{1}{\sqrt{n}}$
a) So $\mathbb{P}(T>c)=\mathbb{P}_{\theta=0}\left(\begin{array}{l}\left.\theta+\frac{1}{\sqrt{n}} N(0,1)>c\right)\end{array}\right.$

$$
=\mathbb{P}(N(0,1)>c \sqrt{n})
$$

if we want $\leq \alpha$, take Z las .t. $\mathbb{P}(N(0,1) \geqslant z) \leqslant \alpha$ and let $c=\frac{z(\alpha)}{\sqrt{n}}$
b) $\beta(1)=\mathbb{P}_{\theta=1}\left(1+\frac{1}{\sqrt{n}} N(0,1)>c\right)$
c) $\quad \cos n+\infty, \sin \varepsilon \leftrightarrow 0$ we have indeed

$$
\beta(1) \underset{n+\infty}{\rightarrow} \mathbb{P}_{\theta=1}(1>0)=1
$$

9) By asymptotic normality of MLE,

$$
\begin{aligned}
& \frac{\hat{\theta}-\theta_{1}}{\hat{\hat{s}}} \longrightarrow N(0,1) \\
& \text { So } \frac{\hat{\theta}-\theta_{0}}{\hat{s_{e}}}=\frac{\hat{\theta}-\theta}{\substack{\hat{s}}}+\frac{\theta-\theta_{0}}{\hat{s_{e}}} \rightarrow+\infty(0,) \xrightarrow{\text { and thus } \beta(\theta) \rightarrow 1 \text {. }}
\end{aligned}
$$

