Mathematical Statistics - Section 1 - NYU Spring 2019 Homework 8

Quadratic regression We study the following problem: we have n data points $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ and we want to find the best quadratic fit. In other words, we are looking for coefficients a, b, c such that the fitted values

$$
\hat{Y}_{i}:=a+b X_{i}+c X_{i}^{2}
$$

approximate the real values Y_{i} as well as possible. In which sense? Once again, we want the "residual sum of squares", i.e. the quantity

$$
\sum_{i=1}^{n}\left|Y_{i}-\hat{Y}_{i}\right|^{2}
$$

to be as small as possible. We will follow the same strategies as for the linear case.

Questions are written with a bold typeface.

1. First, we re-formulate the problem as follows: we let \vec{U} be the vector with n coordinates equal to $1, \vec{X}$ be the vector with coordinates X_{1}, \ldots, X_{n} and $\overrightarrow{X^{2}}$ be the vector with coordinates $X_{1}^{2}, \ldots, X_{n}^{2}$. Let also \vec{Y} be the vector with coordinates Y_{1}, \ldots, Y_{n}.
Find the orthogonal projection of \vec{Y} onto the linear subspace spanned by $\vec{U}, \vec{X}, \overrightarrow{X^{2}}$. That is, find (equations characterizing) a, b, c such that the vector

$$
a \vec{U}+b \vec{X}+c \overrightarrow{X^{2}}-\vec{Y}
$$

is orthogonal to \vec{U}, \vec{X} and $\overrightarrow{X^{2}}$.
Write this as as linear system of three equations with unknowns a, b, c (if you're brave, you can solve it).
2. Next, we encode all the "features" in a matrix. First of all, we perform the trick of adding a 1 as the first coordinate of each feature, and for every $i=1 \ldots n$ we let

$$
\text { Feature }_{i}:=\left(1, X_{i}, X_{i}^{2}\right),
$$

and then we let F be the matrix whose rows are the Feature $_{i}$ for $i=1 \ldots n$, which means

$$
F=\left(\begin{array}{ccc}
1 & X_{1} & X_{1}^{2} \\
\ldots & \ldots & \ldots \\
1 & X_{n} & X_{n}^{2}
\end{array}\right)
$$

By construction, F is an " n by 3 " matrix. We ask the following question: which element in the image of F, i.e. which element of the form $F C$ (where $C=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is a vector with three arbitrary coordinates $a, b, c)$, is the closest to $L=\left(\begin{array}{c}Y_{1} \\ \ldots \\ Y_{n}\end{array}\right)$? Once again, it is the projection of L onto the correct space, here the image of F.
Show that the vectors in the image of F are the same thing as the vectors of the form $a \vec{U}+b \vec{X}+c \overrightarrow{X^{2}}$ considered above.
We have thus already "solved" this problem in question 1.
Solve it a second time in a slightly more "abstract" way, as done in class for the "multiple linear regression".

