
Estimating quantities via bootstrap.

When studying Wald’s test, we ran into the following problem: assume
that someone gives us an estimator θ̂n to estimate a certain parameter θ?,
that we do not know. This person also gives us a theoretical result guaran-
teeing that θ̂n is asymptotically normal in the following sense:

θ̂n − θ?√
Varθ?(θ̂n)

−→in distribution
n→∞ N (0, 1).

We want to use this result e.g. for hypothesis testing, or to build a confidence
interval.

Given an observation X1, . . . , Xn, we can compute θ̂n(X1, . . . , Xn). But
the variance term Varθ?(θ̂n) cannot be computed from data, because it cor-
responds to the variance of θ̂n under the true distribution with parameter
θ?.

Good cases: when we have a simple expression Let us first consider
a simple example, the case of the empirical mean m̂n. It is defined as

m̂n := 1
n

n∑
i=1

Xi.

In this case, using the fact that the Xi’s are independent, we have the
theoretical formula

Varθ? [m̂n] = 1
n2

n∑
i=1

Varθ?(Xi) = 1
n

Varθ?(X).

The term Varθ?(X) is still not accessible, but we may estimate it from data,
e.g. by using the empirical variance

V̂arn := 1
n

n∑
i=1

(Xi − m̂n)2 .

Let us note that even this case is not completely trivial. In particular, ask
yourselves: why (besides the name) does this give us a good estimate of the
variance?

General case: the bootstrap recipe Next, let us present the bootstrap
method, without justification. Let X1, . . . , Xn be our data set. Let us fix
an integer m.

1. For k = 1 to m, pick n data points Y1,k, . . . , Yn,k from the data set
(independently, with replacement). Call this the “k-th bootstrap data
set” Dk = (Y1,k, . . . , Yn,k).

1



2. For every k = 1 to m, compute the value Tn,k := θ̂n (Y1,k, . . . , Yn,k).

3. Compute the following quantity

1
m

m∑
k=1

Tn,k − 1
m

m∑
j=1

Tn,j

2

.

And return this as an estimate for the variance of θ̂n.

Some justification, 1: the law of large numbers Let us recall the
law of large numbers. Under very weak assumptions, if Y1, . . . , Ym are m
independent random variables, all distributed as some fixed random variable
Y , the following convergence holds

1
m

m∑
k=1

Yk −→m→∞ E[Y ] (in probability) .

For simulation purposes, we would read this informally as follows: if I want
to compute E[Y ], but all I can do is sampling Y many times, I should sample
it m times (with m large) and compute the empirical mean of my data set

1
m

m∑
k=1

Yk,

which should give me a good numerical estimate for E[Y ].
An important point to keep in mind, is that the law of large number

is valid in many different situations. Let us for example consider the case
where the random variable Y is defined as follows:

1. First, sample (A,B), a couple of two random variables with given joint
distribution.

2. Then, compute Y = h(A,B) where h is some fixed function of two
variables.

How could we compute E[Y ] numerically? Well, if we can sample the couple
(A,B) as many times as we want, we should

1. Independently draw m realisations (A1, B1), . . . (Am, Bm),

2. Compute each time the quantity Yk = h(Ak, Bk) (for k = 1 . . .m),

3. And finally compute the empirical mean

1
m

m∑
k=1

Yk ≈ E[Y ].
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There is (almost) no restriction on the way Y is defined. In particular, if Y is
defined as a function of n (rather than 1 or 2) random variables A1, . . . , An,
by some formula

Y = g(A1, . . . , An),

then a way to numerically compute E[Y ] is to do the following:

1. Draw a large number m of realisations of the n-tuple, denote them by

(A1,1, . . . , An,1), (A1,2, . . . , An,2), . . . (A1,m, . . . An,m)

(each parenthesis is a n-tuple, and we have m of them)

2. Compute Yk := g(A1,k, . . . , An,k) for each k = 1, . . . ,m.

3. Finally, compute the empirical mean

1
m

m∑
k=1

Yk ≈ E[Y ].

Some justification, 2: re-sampling from the data set The bootstrap
method is based on the previous observation: in order to compute, say
Eθ? [θ̂n], where θ̂n is a function of n variables, we should

1. Generate m realisations (called above the “bootstrap data sets”) of
these n variables.

2. Compute the value of θ̂n for each realisation.

3. Compute an empirical mean.

Steps 2 and 3 are fine, but for step 1 there is an issue: each variable in each
realisation should be distributed independently, and according to the true
pdf, but we do not have access to it!! The only thing we have access to, is
the initial data set...

Instead of sampling from the true distribution, that we cannot access,
we will thus sample from the “empirical distribution”, as provided by the
data set. Sampling from the data set is equivalent to choosing a data point
uniformly at random, and this is exactly what we do in the first step of the
“bootstrap recipe”.

Why “bootstrap”? In total, we need m × n points drawn from the real
distribution. We only have n data points to start with... but we then pretend
that they give a good description of the real distribution, and re-sample from
them, to produce more fictive data points. Fortunately, it works...
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