Let $C^{0}(\mathbb{R}, \mathbb{R})$ be the set of all continuous functions from \mathbb{R} to \mathbb{R}.
Perhaps surprisingly, the following result is true:
Theorem 1. There exists an injective (one-to-one) map ψ from $C^{0}(\mathbb{R}, \mathbb{R})$ to \mathbb{R} itself.

In plain words, there is a way (although an extremely cumbersome one, see below) to encode every continuous function by a single real number!

This abstract result points out that the distinction parametric/nonparametric is not extremely well-defined as such, because under very reasonable assumptions, all the models are, strictly speaking, parametric. It should be taken as a heuristic distinction: some models have natural parameters attached to them, e.g. the mean and the variance for the Gaussian family, or the coefficients of a matrix for the linear models, and some don't, e.g. the family of all probability distributions.

A possible way to make the distinction sounder is to require the parametrization $\theta \mapsto P_{\theta}$ to have some kind of regularity: this is possible for the "really" parametric models, but impossible for the "falsely" parametric ones.

Here is a brief sketch of how the proof of the theorem goes:

1. Let \mathbb{Q} be the set of all rational numbers. It is well-known that \mathbb{Q} is countable, i.e. there exists a bijection from \mathbb{Q} to \mathbb{N} (the set of natural numbers) [that might already be a bit surprising]. In other words, we may enumerate all the rational numbers as an infinite sequence $\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)$.
2. Given a function f in $C^{0}(\mathbb{R}, \mathbb{R})$, we may encode it by only keeping track of its values on \mathbb{Q}, instead of \mathbb{R}. This is because:
(a) The rational numbers are dense in \mathbb{R} (in other words: every real number is a limit of a sequence of rational numbers).
(b) A continuous function is determined by its values on any dense subset of \mathbb{R} (in other words: if D is a dense subset of \mathbb{R} and if two continuous functions f, g are equal on D, then they must be equal on \mathbb{R}, so $f=g$).
3. Define a first encoding map $\phi: C^{0}(\mathbb{R}, \mathbb{R}) \rightarrow \mathbb{R}^{\mathbb{N}}$ by

$$
\phi(f):=\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right), \ldots\right)
$$

By the arguments above, ϕ is a one-to-one map.
4. Show that there exists a one-to-one map j from $\mathbb{R}^{\mathbb{N}}$ to \mathbb{R}. This is quite non-trivial (and things start to be very surprising).
5. The composition $\psi:=j \circ \phi$ is then a one-to-one map from $C^{0}(\mathbb{R}, \mathbb{R})$ to \mathbb{R}.

