Let $C^0(\mathbb{R}, \mathbb{R})$ be the set of **all** continuous functions from \mathbb{R} to \mathbb{R} . Perhaps surprisingly, the following result is true:

Theorem 1. There exists an injective (one-to-one) map ψ from $C^0(\mathbb{R}, \mathbb{R})$ to \mathbb{R} itself.

In plain words, there is a way (although an extremely cumbersome one, see below) to encode every continuous function by a single real number!

This abstract result points out that the distinction parametric/nonparametric is not extremely well-defined as such, because under very reasonable assumptions, **all** the models are, strictly speaking, parametric. It should be taken as a heuristic distinction: some models have natural parameters attached to them, e.g. the mean and the variance for the Gaussian family, or the coefficients of a matrix for the linear models, and some don't, e.g. the family of all probability distributions.

A possible way to make the distinction sounder is to require the parametrization $\theta \mapsto P_{\theta}$ to have some kind of regularity: this is possible for the "really" parametric models, but impossible for the "falsely" parametric ones.

Here is a brief sketch of how the proof of the theorem goes:

- 1. Let \mathbb{Q} be the set of all rational numbers. It is well-known that \mathbb{Q} is *countable*, i.e. there exists a bijection from \mathbb{Q} to \mathbb{N} (the set of natural numbers) [that might already be a bit surprising]. In other words, we may enumerate all the rational numbers as an infinite sequence $(x_1, x_2, \ldots, x_n, \ldots)$.
- 2. Given a function f in $C^0(\mathbb{R}, \mathbb{R})$, we may encode it by only keeping track of its values on \mathbb{Q} , instead of \mathbb{R} . This is because:
 - (a) The rational numbers are dense in \mathbb{R} (in other words: every real number is a limit of a sequence of rational numbers).
 - (b) A continuous function is determined by its values on any dense subset of \mathbb{R} (in other words: if D is a dense subset of \mathbb{R} and if two continuous functions f, g are equal on D, then they must be equal on \mathbb{R} , so f = g).
- 3. Define a first encoding map $\phi: C^0(\mathbb{R}, \mathbb{R}) \to \mathbb{R}^{\mathbb{N}}$ by

$$\phi(f) := (f(x_1), f(x_2), \dots, f(x_n), \dots).$$

By the arguments above, ϕ is a one-to-one map.

- 4. Show that there exists a one-to-one map j from $\mathbb{R}^{\mathbb{N}}$ to \mathbb{R} . This is quite non-trivial (and things start to be very surprising).
- 5. The composition $\psi := j \circ \phi$ is then a one-to-one map from $C^0(\mathbb{R}, \mathbb{R})$ to \mathbb{R} .