Mathematical Statistics - Section 1 - NYU Spring 2019 - Midterm NAME:

Warm-up First, we consider the usual family of exponential distributions. For any $\theta>0$, we consider the pdf $x \mapsto f(x ; \theta)$, defined for $x \in[0,+\infty)$ by $f(x ; \theta):=\theta e^{-\theta x}$. We let θ_{\star} be the true, unknown value of the parameter, and $X_{1}, \ldots X_{n}$ be n independent random variables, identically distributed with pdf $x \mapsto f\left(x ; \theta_{\star}\right)$.

1. Compute the mean and the variance of a random variable with $\operatorname{pdf} x \mapsto f\left(x ; \theta_{\star}\right)$.
2. Define the empirical mean \hat{m}_{n} of X_{1}, \ldots, X_{n}.
3. State an asymptotic normality result for \hat{m}_{n}. Make sure that your statement is complete, and includes an explicit expression for the expectation/variance that appear; the mode of convergence etc.
4. Compute the max-likelihood estimator for θ_{\star}.
5. Compute the Fisher information $I\left(\theta_{\star}\right)$.

The "multinoulli" distribution For any choice of two parameters p, q in the interval $(0,1)$ such that $0<p+q<1$, we consider a random variable X distributed according to the "multinoulli distribution" $\mathbb{P}_{p, q}$. It has three possible outcomes: 0,1 , or 2 and we let

$$
\mathbb{P}_{p, q}(X=0)=p, \quad \mathbb{P}_{p, q}(X=1)=q, \quad \mathbb{P}_{p, q}(X=2)=1-(p+q)
$$

Let p_{\star}, q_{\star} be fixed, unknown parameters (the "real ones"), that we now want to estimate.

1. Compute the first moment $\mathrm{FM}:=\mathbb{E}_{p_{\star}, q_{\star}}[X]$ and the second moment $\mathrm{SM}:=\mathbb{E}_{p_{\star}, q_{\star}}\left[X^{2}\right]$.
2. Show that we have the relations

$$
p_{\star}=1+\frac{\mathrm{SM}-3 \mathrm{FM}}{2}, \quad q_{\star}=2 \mathrm{FM}-\mathrm{SM}
$$

3. Let X_{1}, \ldots, X_{n} be i.i.d. random variables distributed according to $\mathbb{P}_{p_{\star}, q_{\star}}$. We let

$$
\widehat{\mathrm{FM}}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad \widehat{\mathrm{SM}}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}
$$

Justify, briefly but precisely, why the following convergences hold:
$\widehat{\mathrm{FM}}_{n} \longrightarrow_{n \rightarrow \infty} \mathrm{FM}$ in probability, $\quad \widehat{\mathrm{SM}}_{n} \longrightarrow_{n \rightarrow \infty} \mathrm{SM}$ in probability.
4. The method of moments suggests to consider the following estimators for p_{\star}, q_{\star} :

$$
\hat{p}_{n}:=1+\frac{\widehat{\mathrm{SM}}_{n}-3 \widehat{\mathrm{FM}}_{n}}{2}, \quad \hat{q}_{n}:=2 \widehat{\mathrm{FM}}_{n}-\widehat{\mathrm{SM}}_{n} .
$$

Prove that \hat{p}_{n} is an unbiased, consistent estimator of p_{\star} and that \hat{q}_{n} is an unbiased, consistent estimator of q_{\star}.
Hint: unbiasedness can be proven directly. For consistency, you may want to use the result of the previous question.

Do it yourself: a fallible, fair coin. We consider the following situation: a rudimentary computer is programmed as a "random number generator". Each time that we run the program, it answers 0 or 1 with equal probability. However, once in a while, something goes wrong, in which case the output of the program is $\frac{1}{2}$.

We let R_{1}, \ldots, R_{n} be the results obtained in the course of n runs, we assume that the results are independent. We let p_{\star} be the (unknown) probability that the program "fails" and answers $\frac{1}{2}$.

- Frame the problem as a parametric statistical model.
- Design an estimator for p_{\star} (there is more than one possible answer)
- Justify, concisely but precisely, its properties: (asymptotic) unbiasedness, consistency, asymptotic normality... ?

