Mathematical Statistics - Section 1 - NYU Spring 2019 - Midterm NAME:

Warm-up First, we consider the usual family of exponential distributions. For any $\theta > 0$, we consider the pdf $x \mapsto f(x;\theta)$, defined for $x \in [0, +\infty)$ by $f(x;\theta) := \theta e^{-\theta x}$. We let θ_{\star} be the true, unknown value of the parameter, and $X_1, \ldots X_n$ be *n* independent random variables, identically distributed with pdf $x \mapsto f(x;\theta_{\star})$.

1. **Compute** the mean and the variance of a random variable with pdf $x \mapsto f(x; \theta_{\star})$.

2. **Define** the empirical mean \hat{m}_n of X_1, \ldots, X_n .

3. State an asymptotic normality result for \hat{m}_n . Make sure that your statement is complete, and includes an explicit expression for the expectation/variance that appear; the mode of convergence etc. 4. Compute the max-likelihood estimator for θ_{\star} .

5. Compute the Fisher information $I(\theta_{\star})$.

The "multinoulli" distribution For any choice of two parameters p, q in the interval (0,1) such that $0 , we consider a random variable X distributed according to the "multinoulli distribution" <math>\mathbb{P}_{p,q}$. It has three possible outcomes: 0, 1, or 2 and we let

 $\mathbb{P}_{p,q}(X=0) = p, \quad \mathbb{P}_{p,q}(X=1) = q, \quad \mathbb{P}_{p,q}(X=2) = 1 - (p+q).$

Let p_{\star}, q_{\star} be fixed, unknown parameters (the "real ones"), that we now want to estimate.

1. Compute the first moment $\mathsf{FM} := \mathbb{E}_{p_{\star},q_{\star}}[X]$ and the second moment $\mathsf{SM} := \mathbb{E}_{p_{\star},q_{\star}}[X^2]$.

2. Show that we have the relations

$$p_{\star} = 1 + \frac{\mathsf{SM} - 3\mathsf{FM}}{2}, \quad q_{\star} = 2\mathsf{FM} - \mathsf{SM}.$$

3. Let X_1, \ldots, X_n be i.i.d. random variables distributed according to $\mathbb{P}_{p_\star,q_\star}$. We let

$$\widehat{\mathsf{FM}}_n := \frac{1}{n} \sum_{i=1}^n X_i, \quad \widehat{\mathsf{SM}}_n := \frac{1}{n} \sum_{i=1}^n X_i^2.$$

Justify, briefly but precisely, why the following convergences hold:

 $\widehat{\mathsf{FM}}_n \longrightarrow_{n \to \infty} \mathsf{FM}$ in probability, $\widehat{\mathsf{SM}}_n \longrightarrow_{n \to \infty} \mathsf{SM}$ in probability.

4. The method of moments suggests to consider the following estimators for p_{\star}, q_{\star} :

$$\hat{p}_n := 1 + \frac{\widehat{\mathsf{SM}}_n - 3\widehat{\mathsf{FM}}_n}{2}, \quad \hat{q}_n := 2\widehat{\mathsf{FM}}_n - \widehat{\mathsf{SM}}_n.$$

Prove that \hat{p}_n is an unbiased, consistent estimator of p_{\star} and that \hat{q}_n is an unbiased, consistent estimator of q_{\star} .

Hint: unbiasedness can be proven directly. For consistency, you may want to use the result of the previous question.

Do it yourself: a fallible, fair coin. We consider the following situation: a rudimentary computer is programmed as a "random number generator". Each time that we run the program, it answers 0 or 1 with equal probability. However, once in a while, something goes wrong, in which case the output of the program is $\frac{1}{2}$.

We let R_1, \ldots, R_n be the results obtained in the course of n runs, we assume that the results are independent. We let p_{\star} be the (unknown) probability that the program "fails" and answers $\frac{1}{2}$.

- Frame the problem as a parametric statistical model.
- **Design** an estimator for p_{\star} (there is more than one possible answer)
- Justify, concisely but precisely, its properties: (asymptotic) unbiasedness, consistency, asymptotic normality... ?