HW 3 - ODE's - Spring 2018

Due date: Tuesday, February $13^{\text {th }}$

First-order linear ODE's Solve the following ODE's with given initial condition (or "Cauchy problem"). Specify the interval where the (maximal) solution is defined.
1.

$$
y^{\prime}=\frac{1}{1+t^{2}} y+(1+\cos (t)) e^{\tan ^{-1}(t)}
$$

with $y(0)=1$.
2.

$$
y^{\prime}=\sqrt{t} y+t^{5 / 2}
$$

with $y(1)=0$.
The non diagonalizable case We consider the following ODE

$$
\begin{cases}x^{\prime} & =5 x-y \\ y^{\prime} & =x+3 y\end{cases}
$$

1. Write the system in the form $Z^{\prime}=A Z$ where A is a 2×2 matrix.
2. Compute the eigenvalues of A. Can you find a basis of eigenvectors?
3. Find a basis of \mathbb{R}^{2} in which A has the form

$$
\left(\begin{array}{ll}
4 & 1 \\
0 & 4
\end{array}\right)
$$

and let P be the associated "change of basis" matrix, such that

$$
A=P\left(\begin{array}{ll}
4 & 1 \\
0 & 4
\end{array}\right) P^{-1}
$$

4. Let N be the matrix

$$
N=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

Show that its exponential is given by

$$
e^{t N}=\mathrm{Id}_{2}+t N
$$

where Id_{2} is the 2×2 identity matrix.
5. Conclude that

$$
e^{t A}=P e^{4 t}\left(\operatorname{Id}_{2}+t N\right) P^{-1}
$$

and deduce the solutions of the ODE.

Application of Cauchy-Lipschitz Justify, as concisely and convincingly as you can, that there is existence and uniqueness of maximal solutions for the following ODE's with initial conditions.

1. $y^{\prime}=t^{2} e^{y}$ with $y(0)=2$
2. $y^{\prime \prime}+\left(y^{\prime}\right)^{2} \sin (t y)=0$ with $y(0)=1, y^{\prime}(0)=3$.
(Do not try to solve them!)

Cauchy-Lipschitz, again Study the existence/uniqueness of maximal solutions, and their expressions, in the following cases.

1. $y^{\prime}=y^{2}$, with $y(2)=-1 / 2$.
2. $y^{\prime}=y^{2}+1$ with $y(1)=1$.
3. $y^{\prime}=\frac{1}{y}$ with $y(0)=1$.

In particular, try to explain why the solutions that you find are maximal.

Particular solutions Go back to the "particular solutions" exercise of HW2 and convince yourself that the recipes given in class indeed yield particular solutions.
[Optional] Global solutions Let $f:(a, b) \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous with respect to the first variable and C^{1} with respect to the other one. Moreover, assume that there exists positive functions C_{1}, C_{2} which are integrable ${ }^{1}$ on (a, b) and such that

$$
|f(t, y)| \leq C_{1}(t)|y|+C_{2}(t) \quad \text { for all }(t, y) \text { in }(a, b) \times \mathbb{R}
$$

Prove that maximal solutions of $y^{\prime}=f(t, y)$ are global, i.e. defined on (a, b). You may use Grönwall's lemma.

[^0]
[^0]: ${ }^{1}$ You can assume "bounded" if that is easier.

