HW 4 - ODE's - Spring 2018

Due date: Tuesday, February 20th

Application of Cauchy-Lipschitz Justify that there is existence and uniqueness of maximal solutions for the following ODE with initial condition.

 $y'' + (y')^2 \sin(ty) = 0$ with y(0) = 1, y'(0) = 3

(Do not try to solve!)

Cauchy-Lipschitz, again Study the existence/uniqueness of maximal solutions, and their expressions, in the following cases.

- 1. $y' = y^2$, with y(2) = -1/2.
- 2. $y' = y^2 + 1$ with y(1) = 1.
- 3. $y' = \frac{1}{y}$ with y(0) = 1.

In particular, try to explain why the solutions that you find are **maximal**.

Particular equations Find the maximal solutions for the following ODE's (make sure to check that your solutions are *maximal*).

1.
$$y' = t\sqrt{y}$$

2. $t^2y' - ty - y^2 = 0$

The Euler equation Euler's equation is an ODE of the form

$$t^{n}y^{(n)} + a_{n-1}t^{n-1}y^{(n-1)} + \dots + a_{1}ty' + a_{0}y = 0.$$
 (1)

Where a_0, \ldots, a_{n-1} are constants. For simplicity, let us assume that we consider this equation for t in $(0, +\infty)$.

We want to show that changing the time variable as $t = e^u$ transforms Euler's equation into a linear ODE.

1. Let us first treat the n = 2 case

$$t^2y^2 + aty' + by = 0,$$

where a, b are constants. We let $y(t) = z(\ln(t))$, where z is the new unknown function, and we let $u = \ln(t)$. Express y' and y'' in terms of z', z'', t, u and show that $u \mapsto z(u)$ satisfies a linear equation on \mathbb{R} . 2. Now, n is arbitrary, we still let $y(t) = z(\ln(t))$, where z is the new unknown function, and $u = \ln(t)$. Show (e.g. by induction on k) that for any $k \ge 1$, there exists constants c_2, \ldots, c_k such that

$$y^{(k)}(t) = \frac{1}{t^k} \left(z'(\ln(t)) + c_2 z''(\ln(t)) + \dots + c_k z^{(k)}(\ln(t)) \right).$$

3. Deduce that $u \mapsto z(u)$ satisfies some linear equation on \mathbb{R} (you do not have to write it down explicitly).

[Optional] "Lowering the order" Let y_1 be a solution of

$$y'' + p(t)y' + q(t)y = 0,$$
(2)

different from the trivial one. Show that, after introducing the unknown function z defined by $y = y_1 z$, the equation (2) can be reduced to a first-order linear equation in $y_1^2 z$, and deduce the solutions of (2).