HW 5 - ODE's - Spring 2018

Due date: Tuesday, February $27^{\text {th }}$

Power series expansion We consider the ODE

$$
y^{\prime \prime}=e^{t} y^{2}-\left(y^{\prime}\right)^{2} .
$$

We assume that the solution with initial condition $y(0)=0$ and $y^{\prime}(0)=1$ admits a power series expansion near $t=0$. Give the expansion of $y(t)$ near 0 up to fourth order, i.e. with an error $O\left(t^{5}\right)$.

Time of existence

1. We consider the ODE

$$
y^{\prime}=36 \cos \left(\sqrt{1+y^{2}}\right)
$$

where y is an unknown real-valued function. Show that the maximal solutions are global, i.e. defined on \mathbb{R}.
2. Same question for the ODE

$$
y^{\prime}=36 \sqrt{1+y^{2}} .
$$

3. Now we consider the ODE

$$
y^{\prime}=36\left(1+y^{2}\right)^{3 / 5}
$$

with $y(0)=1$. Give a lower bound on the time of existence of the maximal solution.
Conserved quantities We consider the following ODE (with x the unknown function)

$$
\begin{equation*}
x^{\prime \prime}+x+x^{3}=0, \tag{1}
\end{equation*}
$$

which is an autonomous, second-order scalar ODE.

1. Find a conserved quantity, i.e. find a function Q on $\mathbb{R} \times \mathbb{R}$ such that, if x is a solution to (1) defined on I, we have

$$
Q\left(x(t), x^{\prime}(t)\right)=\text { constant for } t \text { in } I .
$$

Hint: for these questions, it is often fruitful to multiply the ODE by x^{\prime} and to integrate.
2. Show that the maximal solutions to (1) are global, i.e. they are all defined on \mathbb{R}.
3. We want to prove that every solution is periodic. Let x_{0}, x_{0}^{\prime} be in \mathbb{R} and let x be the solution to (1) defined on \mathbb{R} and satisfying $x(0)=x_{0}$ and $x^{\prime}(0)=x_{0}^{\prime}$.
(a) Prove that if there exists $T>0$ such that $x(T)=x_{0}$ and $x^{\prime}(T)=x_{0}^{\prime}$, then for all t in \mathbb{R} we have $x(t+T)=x(t)$ and $x^{\prime}(t+T)=x^{\prime}(T)$, and thus the solution is periodic.
(b) Prove that there exists $T>0$ such that $x(T)=x_{0}$ and $x^{\prime}(T)=x_{0}^{\prime}$. Hint: you may need to use the result of question 1. Keep also in mind that x is continuous and real-valued.
4. We now consider the equation

$$
x^{\prime \prime}+c x^{\prime} x^{2}+x^{3}=0
$$

where c is some constant. Are there periodic solutions?

