# HW 7 - ODE's - Spring 2018 

Due date: Tuesday, March $27^{\text {th }}$

Conjugated systems Let us consider two autonomous ODE's in $\mathbb{R}^{N}$

$$
Y^{\prime}=F(Y), \quad Z^{\prime}=G(Z),
$$

Let $\Phi, \Psi$ be the associated flows. We assume, for simplicity, that $F, G$ are globally Lipschitz on $\mathbb{R}^{N}$, so that the flows are defined everywhere and for all $t$.

Let $p \geq 0$ be an integer. We say ${ }^{1}$ that the flows are $C^{p}$-conjugated if there exists a $C^{p}$-diffeomorphism ${ }^{2} h: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ such that for all $t$ in $(-\infty, \infty)$

$$
\begin{equation*}
\Phi^{t} \circ h=h \circ \Psi^{t} . \tag{1}
\end{equation*}
$$

1. Check that it is an equivalence relation between flows (reflexive, symmetric, transitive).
2. Show that if the flows are $C^{0}$-conjugated, then $h$ induces a bijection from the orbits of $\Psi$ onto the orbits of $\Phi$.
3. Show that if the flows are $C^{1}$-conjugated by the diffeomorphism $h$, we have for any $x$ in $\mathbb{R}^{N}$

$$
\begin{equation*}
(D h)(x) G(x)=(F \circ h(x)), \tag{2}
\end{equation*}
$$

where $(D h)(x)$ is the Jacobian matrix of $h$ at $x$.
4. Now, we consider two linear ODE's

$$
Y^{\prime}=A Y, \quad Z^{\prime}=B Y .
$$

Show that if $A, B$ are similar matrices then the associated flows are $C^{p}$-conjugated for every $p$.
5. Take $A, B$ to be

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)
$$

Using the first result of last lecture ("straightening flows"), explain why the flows associated to $A$ and $B$ are locally $C^{1}$-conjugated away from the real axis, in the following sense: for any point $x_{0}$ that is not $(0,0)$, and for $t$ small enough, the relation (1) holds for a certain map $h$ defined around $x$.

[^0]6. Explain why they cannot be locally $C^{1}$-conjugated around $(0,0)$. You can use the identity (2) (and differentiate it) to show that if the flows associated to $A, B$ are conjugated around $(0,0)$ then $A$ and $B$ must be similar.
7. Let us consider the ODE's
\[

\left\{$$
\begin{array}{l}
x^{\prime}=2 x^{2} y^{2}+\sin (x) \\
y^{\prime}=y^{3}+2 y
\end{array}
$$, \quad\left\{$$
\begin{array}{l}
x^{\prime}=\sin (x) \\
y^{\prime}=2 \sin (y)
\end{array}
$$\right.\right.
\]

Using Hartman-Grobman's theorem, show that the flows of these ODE's are locally $C^{0}$-conjugated around ( 0,0 ).

Taylor's method We study the scalar ODE $y^{\prime}=f(t, y)$ under the assumption that the map $(t, x) \mapsto f(t, x)$ is of class $C^{2}$ on $(-\infty, \infty) \times \mathbb{R}$, and that its first and second partial derivatives are all uniformly bounded.

Say we look at the time interval $t \in[0,1]$, with a given initial condition $y(0)=y^{0}$.
For $N \geq 1$, we consider the following numerical scheme: $y_{0, N}$ is fixed and for $0 \leq n<N$ we define

$$
\begin{equation*}
y_{n+1, N}:=y_{n, N}+\frac{1}{N} f\left(\frac{n}{N}, y_{n, N}\right)+\frac{1}{2}\left(\frac{1}{N}\right)^{2} f^{\prime}\left(\frac{n}{N}, y_{n, N}\right) . \tag{3}
\end{equation*}
$$

This amounts to taking a fixed step-size $\frac{1}{N}$ and replacing the first-order approximation of "Explicit Euler" by a second-order approximation.

Question: Prove the convergence of this numerical method. In other words, assuming ${ }^{3}$ that we take $\lim _{N \rightarrow \infty} y_{0, N}=y^{0}$, show that the quantity

$$
\max _{0 \leq n \leq N}\left|y_{n, N}-y\left(\frac{n}{N}\right)\right|
$$

tends to zero as $N \rightarrow \infty$. What is the speed (order) of convergence? What if we assume $f$ to be $C^{p}$ and take a Taylor's approximation of order $p$ in the numerical scheme (3)?

[^1]
[^0]:    ${ }^{1}$ This might not be standard terminology.
    ${ }^{2}$ We recall that a $C^{p}$-diffeomorphism is a bijection of class $C^{p}$, whose inverse bijection is also of class $C^{p}$.

[^1]:    ${ }^{3}$ You may assume that $y_{0, N}$ is equal to $y^{0}$ if that makes your life simpler.

