HW 8 - ODE's - Spring 2018

Due date: Tuesday, April $10^{\text {th }}$

One-dimensional case Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and T-periodic, we consider

$$
u^{\prime}(t)=f(t) u(t) .
$$

Find a necessary and sufficient condition on f in order for all the solutions of the ODE to be bounded.

Periodic solution for Mathieu We consider the ODE

$$
u^{\prime \prime}(t)+(\alpha+\beta \cos (2 t)) u(t)=0,
$$

where α, β are real coefficients.

1. Let (α, β) be fixed and assume that the ODE admits a periodic solution u. Show that one of the following cases hold:
(a) All the solutions are periodic.
(b) The periodic solution is even.
(c) The periodic solution is odd.

Hint: consider $\bar{u}(t)=u(-t)$. Also, keep in mind that the space of solutions has dimension 2...
2. Show that for b) we must have $u^{\prime}(0)=0$ and for c) we must have $u(0)=0$.

Harmonic oscillator with external force We study the ODE

$$
u^{\prime \prime}+\omega^{2} u=v, \quad u(0)=u^{\prime}(0)=0 .
$$

We assume that v is T-periodic, and we recall that v can be written as a Fourier series

$$
v(t)=\sum_{k \in \mathbb{Z}} a_{k} \exp \left(\frac{2 i k \pi}{T} t\right),
$$

where the $\left\{a_{k}\right\}_{k \in \mathbb{Z}}$ are the Fourier coefficients.

1. Find the solution of the homogeneous equation.
2. We recall the method of "superposition of solutions": when looking for a particular solution of a linear $O D E$ with right-hand side $w_{1}+w_{2}$, we can sum the particular solutions obtained for w_{1} and w_{2}. If T is not an integer multiple of $\frac{2 \pi}{\omega}$, find a particular solution in the form of a Fourier series.
3. If $T=\frac{2 k \pi}{\omega}$, for some integer k, find a particular solution of

$$
u^{\prime \prime}+\omega^{2} u=\exp \left(\frac{2 i k \pi}{T} t\right)
$$

Hint: look back for the "particular solutions" remark in the "Linear ODE" chapter.
4. Is it periodic? This is called a secular term.
5. Still in this case, give the form of the solution of

$$
u^{\prime \prime}+\omega^{2} u=v, \quad u(0)=u^{\prime}(0)=0
$$

