HW 9 - ODE's - Spring 2018

Due date: Tuesday, April $17^{\text {th }}$

A periodic system We consider the system of ODE's

$$
\begin{cases}x^{\prime} & =x+y \\ y^{\prime} & =y \frac{\cos (t)+\sin (t)}{2+\sin (t)-\cos (t)}\end{cases}
$$

1. Write down the matrix $R(2 \pi)$ representing the flow at time 2π, in the basis (x, y). Hint: first, solve the $O D E$ for y, then plug into the first line and solve for x.
2. Find a matrix P such that $R(2 \pi)=e^{2 \pi P}$.
3. Find a matrix U such that $R(t)=U(t) e^{t P}$ for all t (Floquet's normal form).

Markus-Yamabe We consider $Y^{\prime}=A(t) Y$, where A is a π-periodic matrix given by

$$
A(t)=\left(\begin{array}{cc}
-1+\frac{3}{2} \cos ^{2}(t) & 1-\frac{3}{2} \cos (t) \sin (t) \\
-1-\frac{3}{2} \cos (t) \sin (t) & -1+\frac{3}{2} \sin ^{2}(t)
\end{array}\right)
$$

1. What are the eigenvalues of $A(t)$? Let us call them λ_{1}, λ_{2}.
2. Show that

$$
Y(t)=e^{t / 2}\binom{\cos (t)}{-\sin (t)}
$$

is a solution to the ODE.
3. Is the solution $Y(t) \equiv 0$ stable?
4. Show that, on the other hand, the solution $Y(t) \equiv 0$ would be stable for the ODE

$$
Y^{\prime}=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) Y
$$

