
Ordinary Differential Equations - Final exam - Spring 2018 - NYU

This exam consists of three exercises and a problem:

• Exercise 1 is a list of six computational questions.

• Exercise 2 studies the time of existence for the maximal solution of a non-linear ODE.

• Exercise 3 is devoted to the qualitative study of some non-linear, autonomous ODE.

• The Problem is devoted to the “gradient descent” algorithm. There are three (almost)
independent parts

– In 4.1, we study the gradient descent in continuous time.
– In 4.2, we study a numerical scheme for gradient descent.
– In 4.3, we study the case of a gradient descent with some perturbative noise term.

Of course, THIS IS WAY TOO MUCH for 110 minutes. I recommend that you start by
solving Exercise 1. Then, you are invited to first have a quick overview of the exam, choose the
topics that you feel the most comfortable with and solve the related questions. An indicative
weight of each part is given, the total weight being

30 + 20 + 30 + 40 + 40 + 20 = 180.

(It is plausible that a total of 100 points would roughly correspond to a grade of 100% but the
scheme may be adjusted after grading.)

Allow me to remind you that:

• Every answer must be precisely justified, unless stated otherwise. Intellectual honesty is
a good guideline for “how much justification should I provide?”

• Every answer must use words, and will preferably take the form of one or several full
sentences. It is good practice to underline or to box the key steps of an argument and
the final result of a computation.

• Please use a real pen, not a pencil. Use scratch paper for your trial-and-error process
and for uncertain computations. It is, of course, OK to strike out a paragraph.

• It is always OK to skip a question and to admit the result of a previous question. Indicate
it clearly. In general, always refer precisely to the result(s) you are using, may it be the
answer to a previous question or a result from class.

Good luck!
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1 Computational questions (30)
For all the following ODE’s with given initial condition, find the expression of the solution as
a function of the time variable t. You do not have to justify existence, uniqueness, or to worry
about the time of existence of the solutions, but you need to explain your computations.

1.
x′ = t

3 + x
, x(0) = 1.

2.
x′′ − x′ + x = 0, x(0) = 1, x′(0) = 0.

3.
X ′ =

(
0 1
1 0

)
X, X(0) =

(
1
0

)
.

4.
x′ = t+ tx2, x(0) = 0.

5.
x′ − x = et, x(0) = 1.

6.
tx′ = x+ tex/t, x(1) = 1.
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2 Time of existence (20)
We consider the ODE

x′ = t2x+ (1 + cos2(t))x2.

We denote by γ the maximal solution of this ODE with initial condition γ(0) = 1, defined on
some interval (α, β).

1. Show that γ(t) is always positive for t in (α, β).

2. Show that γ is increasing on (α, β).

3. Justify that α = −∞.

4. Justify that β is finite. You may use the ODE x′ = x2 for comparison.
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3 Qualitative study (30)
We consider the ODE

x′′ − sin(x) = 0. (1)

1. Re-write (1) as a first-order ODE with unknown function X = (x, x′).

2. Find a (non-trivial) conserved quantity.

3. Sketch the allure of the orbits in R2 with the system of coordinates (x, x′).

(a) Near the point (π/2, 0).
(b) Near the point (0, 2).

(Briefly justify your drawing.)

4. Explain why we can find a change of variables that would transform the two sketches
drawn in the previous question onto one another.

5. Explain why, near the point (0, 0), the flow of this ODE looks like

etA, A =
(

0 1
1 0

)

6. Sketch the allure of the orbits near (0, 0).
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4 Around the gradient descent
Let d ≥ 1 be the dimension. In this problem, E is a function from Rd to R of class C1 such
that:

• E is Lipschitz, with a Lipschitz constant denoted by L. By definition, it means

∀x, y ∈ Rd, |E(x)− E(y)| ≤ L‖x− y‖.

You may use the following consequence: ∀x ∈ Rd, ‖∇E(x)‖ ≤ L.

• The gradient ∇E is Lipschitz, with a Lipschitz constant denoted by M . By definition,
it means

∀x, y ∈ Rd, ‖∇E(x)−∇E(y)‖ ≤M‖x− y‖.

• E is α-convex for some α. By definition, it means (we denote by 〈a, b〉 the scalar product
of two vectors).

∀x, y ∈ Rd, 〈∇E(x)−∇E(y), x− y〉 ≥ α‖x− y‖2.

Preliminary question
1. Show that, because E is α-convex, then E has at most one critical point.

In the following, we will denote by Xmin the unique critical point, we assume that it exists and
is the unique global minimizer of E.
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4.1 Gradient descent in continuous time (40)
In this section, we fix X0 in Rd and we study the ODE

X ′(t) = −∇E(X(t)), X(0) = X0 (2)

where X is an unknown function with values in Rd. This is known as a “gradient descent”.

4.1.1 Convergence to the minimizer

1. Explain why the maximal solution to the ODE (2) exists, is unique, and is defined for all
times t in (−∞,+∞).

2. Are there constant solutions to (2)? If yes, how many?

3. Show that either the solution is constant, or E(X(t)) is (strictly) decreasing in t.

4. Is the equilibrium solution X(t) ≡ Xmin stable?

5. Prove that limt+∞X(t) = Xmin (for an initial condition close enough to Xmin, or, more
difficult, for any choice of initial condition).

4.1.2 Speed of convergence

In this paragraph, we want to quantify the speed at which X(t) tends to Xmin. We suppose
that the initial condition (at time 0) X0 is not equal to Xmin. For t ≥ 0, we introduce the
quantity

D(t) := ‖X(t)−Xmin‖2.

1. Compute D′(t). You may use one of the auxiliary results.

2. Show that for t ≥ 0 we have
D′(t) ≤ −αD(t)

3. Prove that
D(t) ≤ ‖X0 −Xmin‖2e−αt

and conclude about the speed of convergence of X(t) to Xmin.
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4.2 Numerical study (40)
In this paragraph, we are interested in a numerical approach to gradient descent. It can be
described as a sequence {Xn}n≥0 defined as follows:

• We start at some point X0.

• At each step n ≥ 0, we chose a step-size sn ≥ 0 and we compute Xn+1 in terms of Xn by

Xn+1 := Xn − sn∇E(Xn). (3)

4.2.1 A model case

In this paragraph only, we take E(X) = ‖X‖2. For the two following choices of step-sizes,
show that the numerical scheme defined above does not converge to the minimizer of E (here
Xmin = 0 of course), unless we start at this point.

1. For a constant step-size sn = 1.

2. For a step-size sn = n−100.

It is thus important to chose the step-size carefully.
In applied maths classes, the usual heuristics for step-sizes is to chose sn such that

∑
n sn diverges∑
n s

2
n converges.

We will try to justify this heuristics.

4.2.2 Convergence to the minimizer

• We let {Xn}n be the sequence of points defined as above.

• We let t 7→ X(t) be the solution to the “gradient descent” ODE (2) with initial condition
X(0) = X0.

• We let t0 = 0 and we let
X̃0 := X(t0) = X(0) = X0.

• For any n ≥ 0, we define

tn+1 = tn + sn, X̃n+1 = X(tn+1).

In other words: tn is the time after n steps, X̃n is the value of the “real solution” at time tn
while Xn is the value of the numerical solution after n steps.

1. Explain why, if we assume that the series ∑n sn diverges, then X̃n tends to the minimizer
Xmin as n→ +∞.
In the following, we will always assume that ∑n sn diverges.
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2. Show that X̃n satisfies
X̃n+1 = X̃n −

∫ tn+1

tn
∇E(X(s))ds.

The next questions are devoted to the analysis of this numerical scheme, and are thus of
“real analysis” spirit.

3. Show that we have
X̃n+1 = X̃n − sn∇E(X̃n) + εn,

with an error term εn bounded by

‖εn‖ ≤
MLs2

n

2 ,

where L,M are the Lipschitz constants defined in the introduction.

4. Using α-convexity, show that

‖Xn − sn∇E(Xn)− X̃n + sn∇E(X̃n)‖2 ≤ ‖Xn − X̃n‖2
(
1− 2αsn + s2

nM
2
)
,

where α,M are the constants defined in the introduction.

5. For any n ≥ 0, we let Vn be the difference Vn := Xn − X̃n. Prove that

‖Vn+1‖ ≤ ‖Vn‖
√

1− 2αsn + s2
nM

2 + MLs2
n

2 .

6. Using the discrete version of Grönwall’s lemma recalled in the “Auxiliary results” section,
show that if ∑n s

2
n converges, then Xn tends to Xmin as n→ +∞.
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4.3 A noisy version (20)
In this section, we fix the dimension d = 1 and we consider the ODE

x′ε(t) = −E′(xε(t)) + εA(t), xε(0) = x0 (4)

where t 7→ xε(t) is an unknown function with real values, E satisfies the same assumptions as
before (but in addition, we assume E to be of class C2), ε is some fixed real parameter and A
is a continuous function such that

T 7→
∣∣∣∣∣
∫ T

0
A(t)dt

∣∣∣∣∣ is bounded.
Let x̄ be the solution to (4) when ε = 0. We look for an expression of xε as

xε = x̄+ εx̃+O(ε2).

1. Write down (without rigorous justification) the ODE satisfied by x̃.

2. Write down an expression for x̃.

3. Show that x̃(t) is bounded as t→ +∞.
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Auxiliary results
• (arctan)′ (x) = (1 + x2)−1

• If t 7→ F (t) is a C1 function with values in Rd, then the derivative of ‖F (t)‖2 is given by

d

dt
‖F (t)‖2 = 2〈F (t), F ′(t)〉

• For any real number x, we have

lim
n+∞

(
1 + x

n

)n
= ex

• Discrete Grönwall’s lemma. Let {un}n, {an}n, {bn}n be sequences of non-negative
numbers such that:

un+1 ≤ anun + bn,

then we have, for n ≥ 1

un ≤ e
∑n−1

k=0 ln(ak)
(
u0 +

n−1∑
k=0

bk

)

10


