Syllabus for the final exam (ODE 2018)

- Computations: solving linear scalar ODE's, scalar ODE's with separated variables / homogeneous coefficients, linear ODE's with constant coefficients, finding particular solutions (by variation of the constant or with the "guessing" strategy). Linear algebraic techniques in simple cases: diagonalizing a matrix, computing its exponential, or finding a pre-image by the exponential map.
- Cauchy-Lipschitz, notion of maximal solutions, time of existence, the blow-up in finite time criterion, how to prove bounds on the time of existence by comparing an ODE to a simpler one (e.g. with Grönwall's lemma).
- Qualitative study: notion of flow (especially for autonomous systems), orbits, conserved quantities and how to use them to sketch phase portraits. Allure of the orbits near a non-stationary point ("straightening theorem for vector fields") and near a stationary point (HartmanGrobman).
- Numerical study: what is a numerical scheme, how do we proceed to compare a numerical solution to the real one? Note that it usually involves some "hands-on" analysis using various techniques of Calculus.
- Stability: definition, use of Liapounov functions. The special case of linear ODE's with constant, or periodic, coefficients.

Concerning the final.

- Every answer must be precisely justified, unless stated otherwise.
- Every answer must use words, and must take the form of one or several full sentences. It is good practice to underline or to box the key steps of an argument and the final result of a computation (perhaps using a different color).
- Please use a real pen, not a pencil. Use scratch paper for your trial-and-error process and for uncertain computations. It is, of course, OK to strike out a paragraph (pro tip: use a pencil for this, you may end up realizing that the answer was correct).
- It is always OK to skip a question and to admit the result of a previous question. Indicate it clearly. In general, always refer precisely to the result(s) you are using, may it be the answer to a previous question (By question 2.4, we know that...) or a result from class (Since $(t, x) \mapsto$ $F(t, x)$ is continuous in both variables and C^{1} in x, the theorem of Cauchy-Lipschitz implies...).

Example 1: a computational question

Question: Find the solution of the following ODE with given initial condition:

$$
x^{\prime}=\frac{\sin (x)+3 x}{3+\cos (x)}\left(1+t^{2}\right), \quad x(0)=\pi / 4
$$

You may look for an equation defining $x(t)$ implicitly for any t, without trying to find $x(t)$ explicitly.
Answer: First, let us observe that $3+\cos (x)$ is never 0 because $|\cos |$ is bounded by 1, so that the right-hand side of the equation is always defined.

By elementary calculus, we see that the function $x \mapsto \sin (x)+3 x$ is strictly increasing and vanishes only for $x=0$. On the other hand, the constant function equal to 0 is a solution to the ODE. By the uniqueness part of the Cauchy-Lipschitz's theorem, we deduce that any other solution will never vanish. In particular, with the initial condition $x(0)=\pi / 4$ the term $\sin (x(t))+3 x(t)$ will always be positive and we may write

$$
\frac{3+\cos (x(t))}{\sin (x(t))+3 x(t)} x^{\prime}(t)=1+t^{2}
$$

Integrating this equality between 0 and t, we obtain

$$
\int_{0}^{t} \frac{3+\cos (x(s))}{\sin (x(s))+3 x(s)} x^{\prime}(s) d s=\int_{0}^{t}\left(1+s^{2}\right) d s=t+\frac{t^{3}}{3}
$$

and the integral in the left-hand side can be computed as

$$
\begin{aligned}
\int_{0}^{t} \frac{3+\cos (x(s))}{\sin (x(s))+3 x(s)} x^{\prime}(s) & d s=\int_{0}^{t} \ln (\sin (x(s))+3 x(s))^{\prime} d s \\
= & \underline{\ln (\sin (x(t))+3 x(t))-\ln (\sin (\pi / 4)+3 \pi / 4)}
\end{aligned}
$$

We thus have, for any t

$$
\sin (x(t))+3 x(t)=(\sin (\pi / 4)+3 \pi / 4) e^{t+\frac{t^{3}}{3}}
$$

which defines $x(t)$ implicitly.

Example 2: a more theoretical question

Question: Let $X \mapsto F(X)$ be a continuous, locally Lipschitz function on \mathbb{R}^{d}, let $Q: X \mapsto Q(X)$ be a continuous function on \mathbb{R}^{d} such that

$$
\forall X \in \mathbb{R}^{d}, \quad\|X\|^{3} \leq|Q(X)|
$$

We assume that Q is "periodically conserved" in the following sense: if X is a solution to the ODE $X^{\prime}=F(X)$ and if X is defined at times t and $t+T$, then we have

$$
\begin{equation*}
Q(X(t))=Q(X(t+T)) \tag{1}
\end{equation*}
$$

Prove that if a solution to $X^{\prime}=F(X)$ is defined on $[0, T]$ then it is defined for all times.
Answer: Let X be a solution to $X^{\prime}=F(X)$, and let us assume that X is defined on $[0, T]$. Let us argue by contradiction and assume that the time of existence of X is finite (e.g. as t increases), let us denote it by β. Since F is defined on \mathbb{R}^{d}, the "blow-up in finite time" criterion implies that

$$
\lim _{t \rightarrow \beta^{-}}\|X(t)\|=+\infty
$$

By assumption, we have $\|X(t)\|^{3} \leq|Q(X(t))|$, hence we get

$$
(*) \lim _{t \rightarrow \beta^{-}}|Q(X(t))|=+\infty .
$$

However, from the assumption (1), it is clear that for any t in $(0, \beta)$, we have, letting $s=t-T\left\lfloor\frac{t}{T}\right\rfloor$ (where $\lfloor x\rfloor$ denotes the integer part of x, or "floor" function)

$$
Q(X(t))=Q(X(s))
$$

But $s=t-T\left\lfloor\frac{t}{T}\right\rfloor$ is a value in $[0, T]$, and $s \mapsto Q(X(s))$ is bounded on $[0, T]$ (as the composition of two continuous functions), which yields a contradiction in view of Equation $(*)$.

