Linear ODE’s with periodic coefficients

1 Examples

e y/ =sin(t)y, solutions Ce™ !, Periodic, go to 0 as t — +00.
—t—sin(2t)/2

e ' = —2sin?(t)y, solutions Ce Not periodic, go to to 0 as t — +o0.

t—cos(

e ' = (1 +sin(t))y, solutions Ce Y. Not periodic, do not go to 0 as t — +00.

2 Floquet’s theorem

We consider the ODE
Y' = A(t)Y, (2.1)

where ¢ — A(t) is a continuous, T-periodic map from (—oo, +00) to My (R) (N x N matrices
with real coefficients).

For any ¢ in (—o00, +00), we introduce the resolvent R(t), which is nothing but the flow
of the ODE, i.e. for X in RY, we define R(t)X as the value at time ¢ of the solution to (2.1)
which is equal to X at ¢t = 0.

Lemma 2.1 (Properties of the resolvent). 1. R(0) =1Id and R(t) is always invertible.
2. For any t, R(t) is a linear map from RN — RY,
3. For any t, we have R'(t) = A(t)R(t).

Proof. 1. By definition, and by the fact that R(t)R(—t) = R(0).
2. This follows from the linearity of the ODE.

3. Exercise.
O
Theorem 1 (Floquet). We have, for any t € (—oo, +00)
R(t+T)=R(t)R(T), (2.2)
and R(t) can be written as
R(t) =U(t)ett,  with t — U(t) is T-periodic, (2.3)

and P is in My (C).

Proof. Let us define S(t) := R(t + T)R(T)~!. We check that S(0) = Id and that S satisfies
the same equation as R, namely

S'(t)=R{t+T)R(T) = At +T)R(t + T)R(T)"! = A(t)S(t).



By the uniqueness statement of Cauchy-Lipschitz, we see that S(¢) = R(t) for all ¢, hence
(2.2) is true.
To find P, and U we observe that if (2.3) is true, we must have

We now use the following lemma:

Lemma 2.2. The exponential map for N x N complex matrices exp : My(C) — GLN(C) is
onto. In other words, for every invertible N x N complex matrix, there exists a pre-image by
the exponential map.

Since R(T) is invertible, we may find a pre-image by exp, and dividing this pre-image by
T gives us a choice of P. Once P is fixed, we define for any ¢

U(t) :== R(t)e
and it remains to show that U is indeed T-periodic (exercise!). O

Remark 2.3. You can look for a proof of Lemma 2.2 online, there are essentially two ap-
proaches: a purely “linear algebraic” one using the Dunford decomposition, and a “differential
calculus” one using the inverse function theorem and the fact that GLN(C) is arc-connected.
Let us observe that if M is an invertible matriz which is also diagonalizable, then it is easy
to find B such that e® = M. Indeed, we write

M = Qdiag(z1, ..., 2v)Q "

with a certain change of basis matriz (). Since M is invertible, all the z;’s are nonzero and
thus there exists a complex number w; such that e"i = z;. Then we let

B := Qdiag(wy, ..., wy)Q L.

The properties of the exponential of matrices imply that
P = Qeditewi - wn) Q=1 — Qdiag(e™, . .., ewy)Q 1 = M.

Remark 2.4. Theorem 1 shows that solutions are, in general, not periodic. However, the
relation (2.2) implies that it is enough to know the resolvent R(t) for t € [0,T], thereafter we
can deduce R(t) for allt

3 Qualitative study from the resolvent

3.1 Generalities

In this section, we show that the knowledge of R(T) (or, equivalently, of P) provides some
information on the qualitative behavior of the solutions to (2.1) as ¢t — +oc.

Proposition 3.1. All the solutions go to 0 as t — +oo if and only if all the eigenvalues of
R(T') belong to {|z| < 1}.

If there is an eigenvalue whose modulus is strictly greater than 1, then there exists a
solution whose norm tend to +00 as t — +oo.



Proof. We use the following fact: Let X be an eigenvector of R(T') associated to an eigenvalue
A. Then
R(T)X = \X, Vk>1,R(kT)=\X.

Exercise: complete the proof (you may assume that R(T) is diagonalizable, that should
help), by decomposing any X in a basis of eigenvectors, and observing that between R(kT)
and R((k + 1)T) the system evolves “in a bounded way”. O

3.2 A theorem by Liouville

In dimension 2, the knowledge of the determinant tells us something strong about the eigen-
values. We will often encounter cases where the determinant of the resolvent is 1, due to the
following result:

Theorem 2 (Liouville). If trace(A(t)) is always 0 in (2.1), then the resolvent R(t) always
has determinant 1.

Proof. Of course, since R(0) = Id, the resolvent has determinant 1 for ¢t = 0. We compute

%det(R(t)) = trace(R'(t)R(t) 1) = trace(A(t)R(t)R(t) 1) = trace(A(t)) = 0,

which proves the result. We have used the linear algebra fact that
det(M + eH) ~ det(M) + etrace(HM ') + O(¢?)
look up “differential of the determinant” for a proof (or, better, try to prove it yourself!). [

This fact is used often in incompressible fluid dynamics, and is some stated as: “the flow
of a divergence-free vector field is volume-preserving”.

3.3 The two-dimensional case

Assume that N = 2 and that the assumptions of Lemma 2 are satisfied. Then the eigenvalues
are either a couple A\, \™! of real numbers, or two complex numbers of the form e¢*?. In the
first case, we have |[trace(R(T'))| > 2, in the second case we have [trace(R(T))| < 2, and there
are two limit cases when R = =£Id, for which the trace is +2. In view of Proposition 3.1, we
see that

o If [trace(R(T))| < 2, the system is “stable” in the sense that all solutions converge to 0
as t gets large.

o If |trace(R(T'))| > 2, the system is “unstable” in the sense that there is a solution
diverging to 400 as t gets large.

4 Hill to Mathieu to the swing

4.1 Hill equation

Let «, 8 be two parameters, and let ¢ be a fixed continuous function. We assume that ¢ is
T-periodic and we consider the Hill equation

(Hop) 2"+ Vop(t)z =0, (4.1)



where V,, 3(t) = a+ Bp(t).
For 3 = 0, we obtain explicit solutions (exercise: find them!) and in particular we find

2 cos(y/aT) ifa>0
trace (Ra,0(T)) =< 2 ifa=0
2cosh(yv/—aT) ifa<0

Thus we see that if & > 0 and \/« is not of the form k;gz for an integer k, then

[trace (Ra,0(T))] < 2

and the system is “stable” in the previous sense.
It remains to extend these considerations to the case 8 # 0...
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