Linear ODE's with periodic coefficients

1 Examples

- $y^{\prime}=\sin (t) y$, solutions $C e^{-\cos t}$. Periodic, go to 0 as $t \rightarrow+\infty$.
- $y^{\prime}=-2 \sin ^{2}(t) y$, solutions $C e^{-t-\sin (2 t) / 2}$. Not periodic, go to to 0 as $t \rightarrow+\infty$.
- $y^{\prime}=(1+\sin (t)) y$, solutions $C e^{t-\cos (t)}$. Not periodic, do not go to 0 as $t \rightarrow+\infty$.

2 Floquet's theorem

We consider the ODE

$$
\begin{equation*}
Y^{\prime}=A(t) Y \tag{2.1}
\end{equation*}
$$

where $t \mapsto A(t)$ is a continuous, T-periodic map from $(-\infty,+\infty)$ to $\mathcal{M}_{N}(\mathbb{R})(N \times N$ matrices with real coefficients).

For any t in $(-\infty,+\infty)$, we introduce the resolvent $R(t)$, which is nothing but the flow of the ODE, i.e. for X in \mathbb{R}^{N}, we define $R(t) X$ as the value at time t of the solution to (2.1) which is equal to X at $t=0$.

Lemma 2.1 (Properties of the resolvent). 1. $R(0)=\mathrm{Id}$ and $R(t)$ is always invertible.
2. For any $t, R(t)$ is a linear map from $\mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$.
3. For any t, we have $R^{\prime}(t)=A(t) R(t)$.

Proof. 1. By definition, and by the fact that $R(t) R(-t)=R(0)$.
2. This follows from the linearity of the ODE.
3. Exercise.

Theorem 1 (Floquet). We have, for any $t \in(-\infty,+\infty)$

$$
\begin{equation*}
R(t+T)=R(t) R(T) \tag{2.2}
\end{equation*}
$$

and $R(t)$ can be written as

$$
\begin{equation*}
R(t)=U(t) e^{t P}, \quad \text { with } t \mapsto U(t) \text { is } T \text {-periodic }, \tag{2.3}
\end{equation*}
$$

and P is in $\mathcal{M}_{N}(\mathbb{C})$.
Proof. Let us define $S(t):=R(t+T) R(T)^{-1}$. We check that $S(0)=$ Id and that S satisfies the same equation as R, namely

$$
S^{\prime}(t)=R^{\prime}(t+T) R(T)^{-1}=A(t+T) R(t+T) R(T)^{-1}=A(t) S(t) .
$$

By the uniqueness statement of Cauchy-Lipschitz, we see that $S(t)=R(t)$ for all t, hence (2.2) is true.

To find P, and U we observe that if (2.3) is true, we must have

$$
U(0)=R(0)=\mathrm{Id}, \quad U(T)=U(0)=\mathrm{Id}, \quad R(T)=e^{T P} .
$$

We now use the following lemma:
Lemma 2.2. The exponential map for $N \times N$ complex matrices $\exp : \mathcal{M}_{N}(\mathbb{C}) \rightarrow \mathcal{G}_{N}(\mathbb{C})$ is onto. In other words, for every invertible $N \times N$ complex matrix, there exists a pre-image by the exponential map.

Since $R(T)$ is invertible, we may find a pre-image by exp, and dividing this pre-image by T gives us a choice of P. Once P is fixed, we define for any t

$$
U(t):=R(t) e^{-t P}
$$

and it remains to show that U is indeed T-periodic (exercise!).
Remark 2.3. You can look for a proof of Lemma 2.2 online, there are essentially two approaches: a purely "linear algebraic" one using the Dunford decomposition, and a "differential calculus" one using the inverse function theorem and the fact that $\mathcal{G} \mathcal{L}_{N}(\mathbb{C})$ is arc-connected. Let us observe that if M is an invertible matrix which is also diagonalizable, then it is easy to find B such that $e^{B}=M$. Indeed, we write

$$
M=Q \operatorname{diag}\left(z_{1}, \ldots, z_{N}\right) Q^{-1}
$$

with a certain change of basis matrix Q. Since M is invertible, all the z_{i} 's are nonzero and thus there exists a complex number w_{i} such that $e^{w_{i}}=z_{i}$. Then we let

$$
B:=Q \operatorname{diag}\left(w_{1}, \ldots, w_{N}\right) Q^{-1} .
$$

The properties of the exponential of matrices imply that

$$
e^{B}=Q e^{\operatorname{diag}\left(w_{1}, \ldots, w_{N}\right)} Q^{-1}=Q \operatorname{diag}\left(e^{w_{1}}, \ldots, e_{w_{N}}\right) Q^{-1}=M
$$

Remark 2.4. Theorem 1 shows that solutions are, in general, not periodic. However, the relation (2.2) implies that it is enough to know the resolvent $R(t)$ for $t \in[0, T]$, thereafter we can deduce $R(t)$ for all t

3 Qualitative study from the resolvent

3.1 Generalities

In this section, we show that the knowledge of $R(T)$ (or, equivalently, of P) provides some information on the qualitative behavior of the solutions to (2.1) as $t \rightarrow+\infty$.

Proposition 3.1. All the solutions go to 0 as $t \rightarrow+\infty$ if and only if all the eigenvalues of $R(T)$ belong to $\{|z|<1\}$.

If there is an eigenvalue whose modulus is strictly greater than 1 , then there exists a solution whose norm tend to $+\infty$ as $t \rightarrow+\infty$.

Proof. We use the following fact: Let X be an eigenvector of $R(T)$ associated to an eigenvalue λ. Then

$$
R(T) X=\lambda X, \quad \forall k \geq 1, R(k T)=\lambda^{k} X .
$$

Exercise: complete the proof (you may assume that $R(T)$ is diagonalizable, that should help), by decomposing any X in a basis of eigenvectors, and observing that between $R(k T)$ and $R((k+1) T)$ the system evolves "in a bounded way".

3.2 A theorem by Liouville

In dimension 2, the knowledge of the determinant tells us something strong about the eigenvalues. We will often encounter cases where the determinant of the resolvent is 1 , due to the following result:

Theorem 2 (Liouville). If trace $(A(t))$ is always 0 in (2.1), then the resolvent $R(t)$ always has determinant 1 .

Proof. Of course, since $R(0)=\mathrm{Id}$, the resolvent has determinant 1 for $t=0$. We compute

$$
\frac{d}{d t} \operatorname{det}(R(t))=\operatorname{trace}\left(R^{\prime}(t) R(t)^{-1}\right)=\operatorname{trace}\left(A(t) R(t) R(t)^{-1}\right)=\operatorname{trace}(A(t))=0
$$

which proves the result. We have used the linear algebra fact that

$$
\operatorname{det}(M+\epsilon H) \approx \operatorname{det}(M)+\epsilon \operatorname{trace}\left(H M^{-1}\right)+O\left(\epsilon^{2}\right)
$$

look up "differential of the determinant" for a proof (or, better, try to prove it yourself!).
This fact is used often in incompressible fluid dynamics, and is some stated as: "the flow of a divergence-free vector field is volume-preserving".

3.3 The two-dimensional case

Assume that $N=2$ and that the assumptions of Lemma 2 are satisfied. Then the eigenvalues are either a couple λ, λ^{-1} of real numbers, or two complex numbers of the form $e^{i \pm \theta}$. In the first case, we have $|\operatorname{trace}(R(T))|>2$, in the second case we have $|\operatorname{trace}(R(T))|<2$, and there are two limit cases when $R= \pm \mathrm{Id}$, for which the trace is ± 2. In view of Proposition 3.1, we see that

- If $|\operatorname{trace}(R(T))|<2$, the system is "stable" in the sense that all solutions converge to 0 as t gets large.
- If $|\operatorname{trace}(R(T))|>2$, the system is "unstable" in the sense that there is a solution diverging to $+\infty$ as t gets large.

4 Hill to Mathieu to the swing

4.1 Hill equation

Let α, β be two parameters, and let φ be a fixed continuous function. We assume that φ is T-periodic and we consider the Hill equation

$$
\begin{equation*}
\left(H_{\alpha, \beta}\right) \quad x^{\prime \prime}+V_{\alpha, \beta}(t) x=0, \tag{4.1}
\end{equation*}
$$

where $V_{\alpha, \beta}(t)=\alpha+\beta \varphi(t)$.
For $\beta=0$, we obtain explicit solutions (exercise: find them!) and in particular we find

$$
\operatorname{trace}\left(R_{\alpha, 0}(T)\right)= \begin{cases}2 \cos (\sqrt{\alpha} T) & \text { if } \alpha>0 \\ 2 & \text { if } \alpha=0 \\ 2 \cosh (\sqrt{-\alpha} T) & \text { if } \alpha<0\end{cases}
$$

Thus we see that if $\alpha>0$ and $\sqrt{\alpha}$ is not of the form $\frac{k^{2} \pi^{2}}{T^{2}}$ for an integer k, then

$$
\left|\operatorname{trace}\left(R_{\alpha, 0}(T)\right)\right|<2
$$

and the system is "stable" in the previous sense.
It remains to extend these considerations to the case $\beta \neq 0 \ldots$

