
Linear ODE’s with periodic coefficients

1 Examples

• y′ = sin(t)y, solutions Ce− cos t. Periodic, go to 0 as t→ +∞.
• y′ = −2 sin2(t)y, solutions Ce−t−sin(2t)/2. Not periodic, go to to 0 as t→ +∞.
• y′ = (1 + sin(t))y, solutions Cet−cos(t). Not periodic, do not go to 0 as t→ +∞.

2 Floquet’s theorem

We consider the ODE
Y ′ = A(t)Y, (2.1)

where t 7→ A(t) is a continuous, T -periodic map from (−∞,+∞) toMN (R) (N ×N matrices
with real coefficients).

For any t in (−∞,+∞), we introduce the resolvent R(t), which is nothing but the flow
of the ODE, i.e. for X in RN , we define R(t)X as the value at time t of the solution to (2.1)
which is equal to X at t = 0.

Lemma 2.1 (Properties of the resolvent). 1. R(0) = Id and R(t) is always invertible.
2. For any t, R(t) is a linear map from RN → RN .
3. For any t, we have R′(t) = A(t)R(t).

Proof. 1. By definition, and by the fact that R(t)R(−t) = R(0).
2. This follows from the linearity of the ODE.
3. Exercise.

Theorem 1 (Floquet). We have, for any t ∈ (−∞,+∞)

R(t+ T ) = R(t)R(T ), (2.2)

and R(t) can be written as

R(t) = U(t)etP , with t 7→ U(t) is T -periodic, (2.3)

and P is in MN (C).

Proof. Let us define S(t) := R(t + T )R(T )−1. We check that S(0) = Id and that S satisfies
the same equation as R, namely

S′(t) = R′(t+ T )R(T )−1 = A(t+ T )R(t+ T )R(T )−1 = A(t)S(t).
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By the uniqueness statement of Cauchy-Lipschitz, we see that S(t) = R(t) for all t, hence
(2.2) is true.

To find P , and U we observe that if (2.3) is true, we must have

U(0) = R(0) = Id, U(T ) = U(0) = Id, R(T ) = eTP .

We now use the following lemma:

Lemma 2.2. The exponential map for N ×N complex matrices exp :MN (C)→ GLN (C) is
onto. In other words, for every invertible N ×N complex matrix, there exists a pre-image by
the exponential map.

Since R(T ) is invertible, we may find a pre-image by exp, and dividing this pre-image by
T gives us a choice of P . Once P is fixed, we define for any t

U(t) := R(t)e−tP ,

and it remains to show that U is indeed T -periodic (exercise!).

Remark 2.3. You can look for a proof of Lemma 2.2 online, there are essentially two ap-
proaches: a purely “linear algebraic” one using the Dunford decomposition, and a “differential
calculus” one using the inverse function theorem and the fact that GLN (C) is arc-connected.
Let us observe that if M is an invertible matrix which is also diagonalizable, then it is easy
to find B such that eB = M . Indeed, we write

M = Qdiag(z1, . . . , zN )Q−1

with a certain change of basis matrix Q. Since M is invertible, all the zi’s are nonzero and
thus there exists a complex number wi such that ewi = zi. Then we let

B := Qdiag(w1, . . . , wN )Q−1.

The properties of the exponential of matrices imply that

eB = Qediag(w1,...,wN )Q−1 = Qdiag(ew1 , . . . , ewN )Q−1 = M.

Remark 2.4. Theorem 1 shows that solutions are, in general, not periodic. However, the
relation (2.2) implies that it is enough to know the resolvent R(t) for t ∈ [0, T ], thereafter we
can deduce R(t) for all t

3 Qualitative study from the resolvent

3.1 Generalities

In this section, we show that the knowledge of R(T ) (or, equivalently, of P ) provides some
information on the qualitative behavior of the solutions to (2.1) as t→ +∞.

Proposition 3.1. All the solutions go to 0 as t → +∞ if and only if all the eigenvalues of
R(T ) belong to {|z| < 1}.

If there is an eigenvalue whose modulus is strictly greater than 1, then there exists a
solution whose norm tend to +∞ as t→ +∞.
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Proof. We use the following fact: Let X be an eigenvector of R(T ) associated to an eigenvalue
λ. Then

R(T )X = λX, ∀k ≥ 1, R(kT ) = λkX.

Exercise: complete the proof (you may assume that R(T ) is diagonalizable, that should
help), by decomposing any X in a basis of eigenvectors, and observing that between R(kT )
and R((k + 1)T ) the system evolves “in a bounded way”.

3.2 A theorem by Liouville

In dimension 2, the knowledge of the determinant tells us something strong about the eigen-
values. We will often encounter cases where the determinant of the resolvent is 1, due to the
following result:

Theorem 2 (Liouville). If trace(A(t)) is always 0 in (2.1), then the resolvent R(t) always
has determinant 1.

Proof. Of course, since R(0) = Id, the resolvent has determinant 1 for t = 0. We compute

d

dt
det(R(t)) = trace(R′(t)R(t)−1) = trace(A(t)R(t)R(t)−1) = trace(A(t)) = 0,

which proves the result. We have used the linear algebra fact that

det(M + εH) ≈ det(M) + εtrace(HM−1) +O(ε2)

look up “differential of the determinant” for a proof (or, better, try to prove it yourself!).

This fact is used often in incompressible fluid dynamics, and is some stated as: “the flow
of a divergence-free vector field is volume-preserving”.

3.3 The two-dimensional case

Assume that N = 2 and that the assumptions of Lemma 2 are satisfied. Then the eigenvalues
are either a couple λ, λ−1 of real numbers, or two complex numbers of the form ei±θ. In the
first case, we have |trace(R(T ))| > 2, in the second case we have |trace(R(T ))| < 2, and there
are two limit cases when R = ±Id, for which the trace is ±2. In view of Proposition 3.1, we
see that

• If |trace(R(T ))| < 2, the system is “stable” in the sense that all solutions converge to 0
as t gets large.
• If |trace(R(T ))| > 2, the system is “unstable” in the sense that there is a solution

diverging to +∞ as t gets large.

4 Hill to Mathieu to the swing

4.1 Hill equation

Let α, β be two parameters, and let ϕ be a fixed continuous function. We assume that ϕ is
T -periodic and we consider the Hill equation

(Hα,β) x′′ + Vα,β(t)x = 0, (4.1)
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where Vα,β(t) = α+ βϕ(t). We denote by Rα,β the resolvent with parameters α, β.
For β = 0, we obtain explicit solutions (exercise: find them!) and in particular we find

trace (Rα,0(T )) =


2 cos(

√
αT ) if α > 0

2 if α = 0
2 cosh(

√
−αT ) if α < 0

Thus we see that if α > 0 and α is not of the form k2π2

T 2 for an integer k, then

|trace (Rα,0(T ))| < 2

and the system is “stable” in the previous sense. The boundary cases between “stable”/“unstable”
are the α = k2π2

T 2 for some k.
It remains to extend these considerations to the case β 6= 0. This relies on a version “with

parameters” of Cauchy-Lipschitz.

4.2 Cauchy-Lipschitz and fixed point with parameters

Theorem 3 (Cauchy-Lipschitz with parameters). Let us consider the family of ODE’s

X ′ = F (t,X, γ), X(t0) = X0,

where γ is some parameter1 We denote by Xγ the solution to this ODE (it depends on γ
because the ODE depends on γ).

Roughly speaking, Cauchy-Lipschitz with parameters ensures that if F is regular enough
(typically, Cp) in t,X and depends on γ in a Cp way, then Xγ depends on γ in a Cp way.

You can read Section 2.5. of the “textbook”, in particular Theorem 2.12.

We will state and prove the key ingredient for Theorem 3 in the C0 regularity: a fixed
point theorem with parameters.

Theorem 4 (Picard’s fixed point theorem with parameters). Let (X, d) be a metric space
(d is the distance on X) and let {fγ}γ be a family of maps from X to X depending on a
parameter γ, that satisfies, for some k < 1, the contractivity property:

∀γ,∀(x, y) ∈ X ×X, d(fγ(x), fγ(y)) ≤ kd(x, y).

Hence for all γ, the map fγ is contractive on X, and thus by Picard’s fixed point theorem it
admits a unique fixed point. We denote by xγ this fixed point, such that

fγ(xγ) = xγ .

We claim that if the family of functions {fγ}γ depends continuously on γ, then xγ depends
continuously on γ.

1It can be just one real number, or a vector of parameters as in the example above where we have a family
of ODE’s depending on α, β.
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Remark: to precise what we mean by “fγ depends continuously on γ”, we would need a
notion of topology on the space of functions X → X. It is perhaps easier to consider the
problem as the data of a function

f : (Γ×X)→ X

where Γ is the space of parameters, and for any γ in Γ we let

fγ := f(γ, ·) : X → X.

In other words, we assume that fγ is always k-contractive for a fixed k independent on γ, and
we assume that the fucntion f depends continuously on the first variable (the one in Γ) in
the usual sense.

Proof. Let γ in Γ be fixed. We want to prove that

lim
λ→γ

xλ = xγ ,

which would prove that the fixed point depends continuously on the parameter. More pre-
cisely, we want to prove that

d(xλ, xγ)→ 0 as λ→ γ.

For that, we first use the fact that xλ (resp. xγ) is a fixed point of fλ (resp. fγ) and write

d(xλ, xγ) = d(fλ(xλ), fγ(xγ)).

Next, we use the triangular inequality and write

d(fλ(xλ), fγ(xγ)) ≤ d(fλ(xλ), fλ(xγ)) + d(fλ(xγ), fγ(xγ)).

The first term in the right-hand side can be bounded using the contractivity of fλ, we have

d(fλ(xλ), fλ(xγ)) ≤ kd(xλ, xγ),

and thus we obtain
d(xλ, xγ) ≤ kd(xλ, xγ) + d(fλ(xγ), fγ(xγ)),

which can be re-written (since k < 1) as

d(xλ, xγ) ≤ 1
1− kd(fλ(xγ), fγ(xγ)).

The right-hand side can be expressed as

d (f(λ, xγ), f(γ, xγ)) ,

which tends to 0 as λ → γ because f is continuous in the first variable. This concludes the
proof.
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4.3 Perturbations considerations

From Cauchy-Lipschitz with parameters, we easily deduce

Lemma 4.1. The quantity (α, β) 7→ trace (Rα,β(T )) is continuous.

In particular, if (α, 0) is inside a stability (resp. unstability) region, characterized by
trace (Rα,0(T )) < 2 (resp. > 2) then for β small enough the inequality trace (Rα,β(T )) < 2
(resp. < 2) will remain true, and thus the system remains stable (resp. unstable). We are
thus interested to understand what happens near the boundary between stable and unstable
regions, and we will see that the presence of a β 6= 0 may change the expected behavior.

Perturbative expansion For this, we need to have a more precise understanding on the
dependency of trace (Rα,β(T )) with respect to the parameters. The result of Cauchy-Lipschitz
with parameters guarantees that we may find an asymptotic expansion of this quantity as a
power series in β. How do we find it?

Let us observe that R(T ) can be computed by finding the value at time T of any two
independent solutions of the ODE (because they form a basis), and it is usually convenient
to look at the solutions Uα,β, Vα,β defined by{

Uα,β(0) = 1
U ′α,β(0) = 0

{
Vα,β(0) = 0
V ′α,β(0) = 1

We look for expansions of Uα,β, Vα,β in powers of β, as

Uα,β(t) = Uα,0(t) + βR1,α(t) + β2R2,α(t) + · · ·

The zeroth-order term can be computed by solving the ODE with β = 0, we obtain for
example

Uα,0(t) = cos(
√
αt).

Then the next-order coefficients are obtained recursively by solving

R′′N,α + αRN,α = −ϕ(t)RN−1,α,

where ϕ is the function appearing in the initial ODE. For some particular forms of ϕ, this is
doable - at least for a computer.

4.4 Mathieu equation

In the case ϕ(t) = cos(2t), the period is T = π, and the expansion above can be computed.
We obtain e.g.

• Order O(β4)

trace (Rα,β(T )) = 2 cos(π
√
α) + β2π

8
sin(π

√
α)

(α− 1)
√
α

+O(β4)

• Order O(β6)

trace (Rα,β(T )) = 2 cos(π
√
α) + β2π

8
sin(π

√
α)

(α− 1)
√
α

+ β4
[

−π2

256α(α− 1)2 cos(π
√
α) + π

512
(15α2 − 35α+ 8) sin(π

√
α)

(α− 4)(α− 1)3α3/2

]
+O(β6)
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• Close to α ≈ 0 and for β small, we have

trace (Rα,β(T )) ≈ 2− π2α− π2

8 β
2.

If α is small but negative, we would expect the system to be unstable, but if β satisfies

β2 > 8|α|,

then the trace is < 2 and thus we have stability.
• Close to α ≈ 1, and for β small, we have

trace (Rα,β(T )) ≈ −2 + π2

4 (α− 1)2 − π2

16β
2.

If β > 2(α − 1), the trace is > 2 and thus we have unstability, even though we are in
the zone α > 0.

4.5 Swing, inverted pendulum

This can be used as a toy model to explain a swing (stretching one’s legs introduced a
periodic variation of the length of the swing, and for a good choice of the parameters the
equilibrium position becomes unstable) or an inverted pendulum (Kapitsa pendulum: the
unstable equilibrium becomes stable).
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