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1 Fixed point theorem in complete metric spaces

Definition 1.1 (Metric space). Let X be a set and d a function from X to [0,+∞). We say
that d is a distance/metric on X when

• For all x, y in X, d(x, y) = d(y, x).
• For all x, y, z in X, d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).
• We have d(x, y) = 0 if and only if x = y.

If d is a distance on X, we say that (X, d) is a metric space.

Examples of metric spaces:

• R with the distance d(x, y) = |x− y|.
• Q with the distance d(x, y) = |x− y|.
• RN with the distance d(x, y) = ‖x− y‖.
• The Earth with the geodesic (”as the crow flies”) distance.
• Z2 with the ”Manhattan distance” (see ”Taxicab geometry” on Wikipedia).
• The space C0([0, 1]) of real-valued continuous functions on [0, 1], with the distance

d(f, g) := sup
x∈[0,1]

|f(x)− g(x)|,

which is usually denoted by ‖f − g‖∞ (the ”sup norm” or ”uniform norm”).

Definition 1.2 (Lipschitz functions). Let (X, dX) and (Y, dY ) be two metric spaces and
F : X → Y . We say that F is k-Lipschitz when we have for all a, b in X

dY (F (a), F (b)) ≤ kdX(a, b).

If k < 1, we say that F is a contraction.

Definition 1.3 (Cauchy sequence). Let (X, d) be a metric space and x = {xn}n be a sequence
of points in X. We say that x is a Cauchy sequence when

∀ε > 0, ∃M ≥ 0,∀m,n ≥M,d(xn, xm) ≤ ε.

Definition 1.4 (Complete space). We say that (X, d) is a complete metric space when every
Cauchy sequence is convergent.

Examples of complete spaces: all the examples above, except Q which is not a complete
metric space when endowed with the usual distance.
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Proposition 1.5 (Picard’s fixed point theorem). Let (X, d) be a complete metric space and
F : X → X be a contraction, then there exists a unique fixed point for F in X, i.e. there
exists a unique point x in X such that F (x) = x.

Proof. Since F is a contraction, we can find k < 1 such that for any a, b in X,

d(F (a), F (b)) ≤ kd(a, b).

Uniqueness is easy: if x, y are two fixed points, we have

d(x, y) = d(F (x), F (y)) ≤ kd(x, y),

with k < 1, which is impossible except if d(x, y) = 0, which implies that x = y, so there is at
most one fixed point.

Existence. Let us define a sequence as follows: pick any point x0 in X, and define xn by
induction: for n ≥ 0, we let xn+1 := F (xn). By assumption on F we have for any n ≥ 1

d(xn, xn+1) = d(F (xn−1), F (xn)) ≤ kd(xn−1, xn).

It is then easy to check that for n ≥ 0,

d(xn, xn+1) ≤ knd(x0, x1), (1.1)

in other words, the successive distances are shrinking exponentially fast. It implies that {xn}n
is a Cauchy sequence (exercise!) and since X is complete, we deduce that {xn}n converges to
some point x in X. Passing to the limit n→∞ (exercise: why can we?) in the equation

xn+1 = F (xn)

we see that x = F (x) and thus x is a fixed point for F .

Remark: if X is a vector space, we can write

xn+1 = x0 + (x1 − x0) + (x2 − x1) + · · ·+ (xn+1 − xn),

and the convergence of {xn}n can be interpreted as the convergence of the series

+∞∑
k=0

xk+1 − xk.

The estimate (1.1) shows that this series is absolutely convergent. A consequence of complete-
ness is that in a complete normed vector space, any absolutely convergent series is convergent.

Proposition 1.6 (Clever Picard). Let (X, d) be a complete metric space and F : X → X be
a map such that for some l ≥ 1, the map F ◦l (the l-th iterate of F ) is a contraction. Then
there exists a unique fixed point for F on X.

Proof. Applying Picard’s theorem fo F ◦l, we find a unique fixed point for F ◦l. Let x be this
fixed point, we have F l(x) = x. In particular, we have F (x) = F (F l(x)) = F l(F (x)) hence
F (x) is a fixed point of F l. Since we know that there is a unique fixed point for F l, namely
x, we must have F (x) = x, hence x is a fixed point for F . This proves existence of a fixed
point for F . Uniqueness is obtained by a similar trick.
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2 Application to linear ODE’s

Our goal here is to prove the Cauchy-Lipschitz theorem in the linear case.

Theorem 1 (Cauchy-Lipschitz, linear case). Let I be an open interval of R, let N ≥ 1 and
let t 7→ A(t) be a continuous function from I to MN×N (R) and t 7→ B(t) be a continuous
function from t to RN . Let t0 be in I and let Y0 be in RN . There exists a unique solution
defined on I to the linear ODE with initial condition

Y ′ = A(t)Y +B(t), Y (t0) = Y0. (2.1)

Proof. We want to apply the fixed point theorem, and thus to re-write the ODE as a fixed
point problem. Let [a, b] be a line segment included in I, containing t0. By integrating (2.1)
we see that Y is a solution on (a, b) if and only if, for any t in (a, b), we have

Y (t)− Y (t0) =
∫ t

t0
A(s)Y (s)ds+

∫ t

t0
B(s)ds.

Let X be the space of continuous functions on [a, b] with values in RN and which have the
value Y0 at t0. We turn X into a metric space by using the ”sup norm” as above

d(Y, Ỹ ) := sup
t∈[a,b]

‖Y (t)− Ỹ (t)‖.

It is a classical fact that we obtain a complete metric space (you can try to think of a proof
of the completeness). We define F on X by setting, for t in [a, b]

F (Y )(t) := Y0 +
∫ t

t0
A(s)Y (s)ds+

∫ t

t0
B(s)ds.

It defines a map from X to X (exercise: why?) and if Y is a fixed point for F then Y is a
solution of (2.1) on (a, b). In order to apply Proposition 1.5 or Proposition 1.6, we need to
see if F (or one of its iterates) is a contraction. Let us chose Y, Ỹ in X and compute the
distance d(F (Y ), F (Ỹ )). We have

d(F (Y ), F (Ỹ )) = sup
t∈[a,b]

‖F (Y )(t)− F (Ỹ )(t)‖,

so we compute, for any t in [a, b]

F (Y )(t)− F (Ỹ )(t) =
∫ t

t0
A(s)

(
Y (s)− Ỹ (s)

)
ds.

Since s 7→ A(s) is a continuous, matrix-valued map, there exists a constant C such that for
any s in [a, b] and any vector U in RN we have

‖A(s)U‖ ≤ C‖U‖. (2.2)

We may thus write

‖F (Y )(t)− F (Ỹ )(t)‖ ≤ (t− t0)C sup
s∈[a,b]

‖Y (s)− Ỹ (s)‖,
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which implies that

sup
t∈[a,b]

‖F (Y )(t)− F (Ỹ )(t)‖ ≤ C(b− a) sup
s∈[a,b]

‖Y (s)− Ỹ (s)‖,

and thus d(F (Y ), F (Ỹ )) ≤ C(b− a)d(Y, Ỹ ).
If it happens that C(b − a) < 1, then F is a contraction and we are done. In general,

however, we need to study the iterates of F . For example, we can write

F ◦2(Y )(t)− F ◦2(Ỹ )(t) =
∫ t

t0
A(s)

(∫ s

t0
A(u)

(
Y (u)− Ỹ (u)

)
du

)
ds

(exercise: check that it is correct!). We obtain, by using (2.2) twice

‖F ◦2(Y )(t)− F ◦2(Ỹ )(t)‖ ≤ C2 sup
u∈[a,b]

‖Y (u)− Ỹ (u)‖
∫ t

t0
|s− t0|ds

(exercise: check that it is correct). We thus get

sup
t∈[a,b]

‖F ◦2(Y )(t)− F ◦2(Ỹ )(t)‖ ≤ C2(b− a)2

2 sup
u∈[a,b]

‖Y (u)− Ỹ (u)‖,

which means that
d(F ◦2(Y ), F ◦2(Ỹ )) ≤ C2(b− a)2

2 d(Y, Ỹ ).

By induction, we would show similarly, for any l ≥ 1

d(F ◦l(Y ), F ◦lỸ )) ≤ C l(b− a)l

l! d(Y, Ỹ ).

Since the quantity Cl(b−a)l

l! goes to zero as l goes to infinity, it must be strictly less than one
for l large enough. This ensures that one of the iterates of F is a contraction, and Proposition
1.6 implies that there exists a fixed point for F , hence a solution to (2.1) on (a, b). Uniqueness
of the solution can either be deduced from the uniqueness of the fixed point (with a bit of
carefulness) or by a simple application of Grönwall’s lemma.

Since this is true for every (a, b) ⊂ I, we may find a unique solution defined on the whole
interval I. (Exercise: make this conclusion rigorous. In particular, if Y is a solution on an
interval J and Ỹ is a solution on K ⊂ J , why do Y and Ỹ necessarily coincide on K?)
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