Fixed point theorem and Cauchy-Lipschitz for linear ODE’s
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1 Fixed point theorem in complete metric spaces

Definition 1.1 (Metric space). Let X be a set and d a function from X to [0,400). We say
that d is a distance/metric on X when

e Forallz,y in X, d(x,y) = d(y,x).
o Forallxz,y,z in X, d(x,y) <d(x,z)+d(z,y) (triangle inequality).
o We have d(x,y) = 0 if and only if x = y.

If d is a distance on X, we say that (X,d) is a metric space.
Examples of metric spaces:

R with the distance d(z,y) = | — y|.

Q with the distance d(x,y) = |z — y|.

RV with the distance d(z,y) = ||z — y.

The Earth with the geodesic (7as the crow flies”) distance.

Z? with the "Manhattan distance” (see "Taxicab geometry” on Wikipedia).

The space C°([0, 1]) of real-valued continuous functions on [0, 1], with the distance

d(f,g) == sup |f(z) - g(=)l,

z€[0,1]

which is usually denoted by ||f — g|/cc (the "sup norm” or "uniform norm?”).

Definition 1.2 (Lipschitz functions). Let (X,dx) and (Y,dy) be two metric spaces and
F:X =Y. We say that F is k-Lipschitz when we have for all a,b in X

dy (F(a), F (b)) < kdx(a,b).
If k < 1, we say that F is a contraction.

Definition 1.3 (Cauchy sequence). Let (X,d) be a metric space and x = {xy}, be a sequence
of points in X. We say that x is a Cauchy sequence when

Ve > 0,dM > 0,YVm,n > M, d(zy, ) < €.

Definition 1.4 (Complete space). We say that (X, d) is a complete metric space when every
Cauchy sequence is convergent.

Examples of complete spaces: all the examples above, except Q which is not a complete
metric space when endowed with the usual distance.



Proposition 1.5 (Picard’s fixed point theorem). Let (X,d) be a complete metric space and
F : X — X be a contraction, then there exists a unique fized point for F' in X, i.e. there
exists a unique point x in X such that F(x) = x.

Proof. Since F' is a contraction, we can find k < 1 such that for any a,b in X,
d(F(a), F (b)) < kd(a,b).
Uniqueness is easy: if z,y are two fixed points, we have
d(w,y) = d(F(x), F(y)) < kd(z, ),

with & < 1, which is impossible except if d(z,y) = 0, which implies that z = y, so there is at
most one fixed point.

Existence. Let us define a sequence as follows: pick any point xg in X, and define x,, by
induction: for n > 0, we let x,, 41 := F(x,). By assumption on F' we have for any n > 1

d(xnvxn—i—l) = d(F(ZIIn_l), F(xn)) < kd(«rn—lymn)-
It is then easy to check that for n > 0,
d(zpn, nt1) < k"d(zg, 1), (1.1)

in other words, the successive distances are shrinking exponentially fast. It implies that {x, },
is a Cauchy sequence (exercise!) and since X is complete, we deduce that {x,, },, converges to
some point = in X. Passing to the limit n — oo (exercise: why can we?) in the equation

Tnt+1 = F(xn)
we see that x = F'(z) and thus z is a fixed point for F. O

Remark: if X is a vector space, we can write
Tp+1 = To + (xl — 330) + (.1‘2 — xl) +---+ ($n+1 — l‘n),

and the convergence of {z,}, can be interpreted as the convergence of the series

“+oo
Z Tpy1 — Tk-
k=0

The estimate (1.1) shows that this series is absolutely convergent. A consequence of complete-
ness is that in a complete normed vector space, any absolutely convergent series is convergent.

Proposition 1.6 (Clever Picard). Let (X,d) be a complete metric space and F : X — X be
a map such that for some | > 1, the map F° (the I-th iterate of F) is a contraction. Then
there exists a unique fived point for F' on X.

Proof. Applying Picard’s theorem fo F° we find a unique fixed point for F°. Let 2 be this
fixed point, we have F'(x) = x. In particular, we have F(z) = F(F!(x)) = F'(F(x)) hence
F(z) is a fixed point of F!. Since we know that there is a unique fixed point for F!, namely
x, we must have F(z) = z, hence z is a fixed point for F'. This proves existence of a fixed
point for F. Uniqueness is obtained by a similar trick. O



2 Application to linear ODE’s

Our goal here is to prove the Cauchy-Lipschitz theorem in the linear case.

Theorem 1 (Cauchy-Lipschitz, linear case). Let I be an open interval of R, let N > 1 and
let t — A(t) be a continuous function from I to Myxn(R) and t — B(t) be a continuous
function from t to RN . Let to be in I and let Yy be in RN. There exists a unique solution
defined on I to the linear ODE with initial condition

Y' = A@)Y + B(t), Y(t) = Yo. (2.1)

Proof. We want to apply the fixed point theorem, and thus to re-write the ODE as a fixed
point problem. Let [a, ] be a line segment included in I, containing to. By integrating (2.1)
we see that Y is a solution on (a,b) if and only if, for any ¢ in (a, b), we have

Y(t)—Y(ty) = ttA(S)Y(S)dS + tt B(s)ds.

Let X be the space of continuous functions on [a,b] with values in RV and which have the
value Yy at 9. We turn X into a metric space by using the ”sup norm” as above

d(Y,Y) := sup |Y(t) =Y (1)
tela,b]

It is a classical fact that we obtain a complete metric space (you can try to think of a proof
of the completeness). We define F' on X by setting, for ¢ in [a, b]

t t
FY)t):=Yo+ | A(s)Y(s)ds+ | B(s)ds.

to to

It defines a map from X to X (exercise: why?) and if Y is a fixed point for F' then Y is a
solution of (2.1) on (a,b). In order to apply Proposition 1.5 or Proposition 1.6, we need to
see if F' (or one of its iterates) is a contraction. Let us chose Y,Y in X and compute the
distance d(F(Y), F(Y)). We have

d(F(Y),F(Y)) = Sup 1)) = FV)(®)I,

so we compute, for any ¢ in [a, b]

FY)(t) — F(V)(t) = / " AGs) (Y(5) ~ V(5)) ds.

to

Since s — A(s) is a continuous, matrix-valued map, there exists a constant C' such that for
any s in [a,b] and any vector U in RY we have

AU < ClU|l. (2.2)
We may thus write

IF(Y)(t) = FY) ()] < (t - to)Csil[Zpb} 1Y (s) = Y (s)Il



which implies that

S IE(Y)(t) = FY)(®)] < C b~ a) S 1Y (s) = Y(s)ll,

and thus d(F(Y), F(Y)) < C(b—a)d(Y,Y).
If it happens that C(b — a) < 1, then F' is a contraction and we are done. In general,
however, we need to study the iterates of F'. For example, we can write

CA) (Y (w) - T (w) du> ds

to

~ t
FR) () - R0 = [ 46)
to
(exercise: check that it is correct!). We obtain, by using (2.2) twice

IF°2(Y)(t) = F2(Y)(#)]| < C° e 1Y (w) = ¥ (w)| /t: |s — to|ds

(exercise: check that it is correct). We thus get

o 09 1 C?(b— a)? ~
sup [F2)(0) - F2)0) < SO sup V() - P,
tela,b] u€la,b]

which means that
d(F*(Y), F*(Y))

IN

By induction, we would show similarly, for any [ > 1

CHb — a) ~

d(FYY), F'Y)) < AV, Y).

Since the quantity M goes to zero as [ goes to infinity, it must be strictly less than one
for [ large enough. This ensures that one of the iterates of F' is a contraction, and Proposition
1.6 implies that there exists a fixed point for F', hence a solution to (2.1) on (a,b). Uniqueness
of the solution can either be deduced from the uniqueness of the fixed point (with a bit of
carefulness) or by a simple application of Gronwall’s lemma.

Since this is true for every (a,b) C I, we may find a unique solution defined on the whole
interval I. (Exercise: make this conclusion rigorous. In particular, if Y is a solution on an
interval J and Y is a solution on K C .J, why do Y and Y necessarily coincide on K ?7) ]
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