Fixed point theorem and Cauchy-Lipschitz for linear ODE's

February 7, 2018

1 Fixed point theorem in complete metric spaces

Definition 1.1 (Metric space). Let X be a set and d a function from X to $[0,+\infty)$. We say that d is a distance/metric on X when

- For all x, y in $X, d(x, y)=d(y, x)$.
- For all x, y, z in $X, d(x, y) \leq d(x, z)+d(z, y)$ (triangle inequality).
- We have $d(x, y)=0$ if and only if $x=y$.

If d is a distance on X, we say that (X, d) is a metric space.
Examples of metric spaces:

- \mathbb{R} with the distance $d(x, y)=|x-y|$.
- \mathbb{Q} with the distance $d(x, y)=|x-y|$.
- \mathbb{R}^{N} with the distance $d(x, y)=\|x-y\|$.
- The Earth with the geodesic ("as the crow flies") distance.
- \mathbb{Z}^{2} with the "Manhattan distance" (see "Taxicab geometry" on Wikipedia).
- The space $C^{0}([0,1])$ of real-valued continuous functions on $[0,1]$, with the distance

$$
d(f, g):=\sup _{x \in[0,1]}|f(x)-g(x)|,
$$

which is usually denoted by $\|f-g\|_{\infty}$ (the "sup norm" or "uniform norm").
Definition 1.2 (Lipschitz functions). Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be two metric spaces and $F: X \rightarrow Y$. We say that F is k-Lipschitz when we have for all a, b in X

$$
d_{Y}(F(a), F(b)) \leq k d_{X}(a, b) .
$$

If $k<1$, we say that F is a contraction.
Definition 1.3 (Cauchy sequence). Let (X, d) be a metric space and $x=\left\{x_{n}\right\}_{n}$ be a sequence of points in X. We say that x is a Cauchy sequence when

$$
\forall \epsilon>0, \exists M \geq 0, \forall m, n \geq M, d\left(x_{n}, x_{m}\right) \leq \epsilon .
$$

Definition 1.4 (Complete space). We say that (X, d) is a complete metric space when every Cauchy sequence is convergent.

Examples of complete spaces: all the examples above, except \mathbb{Q} which is not a complete metric space when endowed with the usual distance.

Proposition 1.5 (Picard's fixed point theorem). Let (X, d) be a complete metric space and $F: X \rightarrow X$ be a contraction, then there exists a unique fixed point for F in X, i.e. there exists a unique point x in X such that $F(x)=x$.

Proof. Since F is a contraction, we can find $k<1$ such that for any a, b in X,

$$
d(F(a), F(b)) \leq k d(a, b) .
$$

Uniqueness is easy: if x, y are two fixed points, we have

$$
d(x, y)=d(F(x), F(y)) \leq k d(x, y),
$$

with $k<1$, which is impossible except if $d(x, y)=0$, which implies that $x=y$, so there is at most one fixed point.

Existence. Let us define a sequence as follows: pick any point x_{0} in X, and define x_{n} by induction: for $n \geq 0$, we let $x_{n+1}:=F\left(x_{n}\right)$. By assumption on F we have for any $n \geq 1$

$$
d\left(x_{n}, x_{n+1}\right)=d\left(F\left(x_{n-1}\right), F\left(x_{n}\right)\right) \leq k d\left(x_{n-1}, x_{n}\right)
$$

It is then easy to check that for $n \geq 0$,

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq k^{n} d\left(x_{0}, x_{1}\right), \tag{1.1}
\end{equation*}
$$

in other words, the successive distances are shrinking exponentially fast. It implies that $\left\{x_{n}\right\}_{n}$ is a Cauchy sequence (exercise!) and since X is complete, we deduce that $\left\{x_{n}\right\}_{n}$ converges to some point x in X. Passing to the limit $n \rightarrow \infty$ (exercise: why can we?) in the equation

$$
x_{n+1}=F\left(x_{n}\right)
$$

we see that $x=F(x)$ and thus x is a fixed point for F.
Remark: if X is a vector space, we can write

$$
x_{n+1}=x_{0}+\left(x_{1}-x_{0}\right)+\left(x_{2}-x_{1}\right)+\cdots+\left(x_{n+1}-x_{n}\right),
$$

and the convergence of $\left\{x_{n}\right\}_{n}$ can be interpreted as the convergence of the series

$$
\sum_{k=0}^{+\infty} x_{k+1}-x_{k}
$$

The estimate (1.1) shows that this series is absolutely convergent. A consequence of completeness is that in a complete normed vector space, any absolutely convergent series is convergent.

Proposition 1.6 (Clever Picard). Let (X, d) be a complete metric space and $F: X \rightarrow X$ be a map such that for some $l \geq 1$, the map $F^{\circ l}$ (the l-th iterate of F) is a contraction. Then there exists a unique fixed point for F on X.

Proof. Applying Picard's theorem fo $F^{\circ l}$, we find a unique fixed point for $F^{\circ l}$. Let x be this fixed point, we have $F^{l}(x)=x$. In particular, we have $F(x)=F\left(F^{l}(x)\right)=F^{l}(F(x))$ hence $F(x)$ is a fixed point of F^{l}. Since we know that there is a unique fixed point for F^{l}, namely x, we must have $F(x)=x$, hence x is a fixed point for F. This proves existence of a fixed point for F. Uniqueness is obtained by a similar trick.

2 Application to linear ODE's

Our goal here is to prove the Cauchy-Lipschitz theorem in the linear case.
Theorem 1 (Cauchy-Lipschitz, linear case). Let I be an open interval of \mathbb{R}, let $N \geq 1$ and let $t \mapsto A(t)$ be a continuous function from I to $M_{N \times N}(\mathbb{R})$ and $t \mapsto B(t)$ be a continuous function from t to \mathbb{R}^{N}. Let t_{0} be in I and let Y_{0} be in \mathbb{R}^{N}. There exists a unique solution defined on I to the linear ODE with initial condition

$$
\begin{equation*}
Y^{\prime}=A(t) Y+B(t), \quad Y\left(t_{0}\right)=Y_{0} \tag{2.1}
\end{equation*}
$$

Proof. We want to apply the fixed point theorem, and thus to re-write the ODE as a fixed point problem. Let $[a, b]$ be a line segment included in I, containing t_{0}. By integrating (2.1) we see that Y is a solution on (a, b) if and only if, for any t in (a, b), we have

$$
Y(t)-Y\left(t_{0}\right)=\int_{t_{0}}^{t} A(s) Y(s) d s+\int_{t_{0}}^{t} B(s) d s
$$

Let X be the space of continuous functions on $[a, b]$ with values in \mathbb{R}^{N} and which have the value Y_{0} at t_{0}. We turn X into a metric space by using the "sup norm" as above

$$
d(Y, \tilde{Y}):=\sup _{t \in[a, b]}\|Y(t)-\tilde{Y}(t)\|
$$

It is a classical fact that we obtain a complete metric space (you can try to think of a proof of the completeness). We define F on X by setting, for t in $[a, b]$

$$
F(Y)(t):=Y_{0}+\int_{t_{0}}^{t} A(s) Y(s) d s+\int_{t_{0}}^{t} B(s) d s
$$

It defines a map from X to X (exercise: why?) and if Y is a fixed point for F then Y is a solution of (2.1) on (a, b). In order to apply Proposition 1.5 or Proposition 1.6, we need to see if F (or one of its iterates) is a contraction. Let us chose Y, \tilde{Y} in X and compute the distance $d(F(Y), F(\tilde{Y}))$. We have

$$
d(F(Y), F(\tilde{Y}))=\sup _{t \in[a, b]}\|F(Y)(t)-F(\tilde{Y})(t)\|,
$$

so we compute, for any t in $[a, b]$

$$
F(Y)(t)-F(\tilde{Y})(t)=\int_{t_{0}}^{t} A(s)(Y(s)-\tilde{Y}(s)) d s
$$

Since $s \mapsto A(s)$ is a continuous, matrix-valued map, there exists a constant C such that for any s in $[a, b]$ and any vector U in \mathbb{R}^{N} we have

$$
\begin{equation*}
\|A(s) U\| \leq C\|U\| \tag{2.2}
\end{equation*}
$$

We may thus write

$$
\|F(Y)(t)-F(\tilde{Y})(t)\| \leq\left(t-t_{0}\right) C \sup _{s \in[a, b]}\|Y(s)-\tilde{Y}(s)\|,
$$

which implies that

$$
\sup _{t \in[a, b]}\|F(Y)(t)-F(\tilde{Y})(t)\| \leq C(b-a) \sup _{s \in[a, b]}\|Y(s)-\tilde{Y}(s)\|
$$

and thus $d(F(Y), F(\tilde{Y})) \leq C(b-a) d(Y, \tilde{Y})$.
If it happens that $C(b-a)<1$, then F is a contraction and we are done. In general, however, we need to study the iterates of F. For example, we can write

$$
F^{\circ 2}(Y)(t)-F^{\circ 2}(\tilde{Y})(t)=\int_{t_{0}}^{t} A(s)\left(\int_{t_{0}}^{s} A(u)(Y(u)-\tilde{Y}(u)) d u\right) d s
$$

(exercise: check that it is correct!). We obtain, by using (2.2) twice

$$
\left\|F^{\circ 2}(Y)(t)-F^{\circ 2}(\tilde{Y})(t)\right\| \leq C^{2} \sup _{u \in[a, b]}\|Y(u)-\tilde{Y}(u)\| \int_{t_{0}}^{t}\left|s-t_{0}\right| d s
$$

(exercise: check that it is correct). We thus get

$$
\sup _{t \in[a, b]}\left\|F^{\circ 2}(Y)(t)-F^{\circ 2}(\tilde{Y})(t)\right\| \leq \frac{C^{2}(b-a)^{2}}{2} \sup _{u \in[a, b]}\|Y(u)-\tilde{Y}(u)\|
$$

which means that

$$
d\left(F^{\circ 2}(Y), F^{\circ 2}(\tilde{Y})\right) \leq \frac{C^{2}(b-a)^{2}}{2} d(Y, \tilde{Y})
$$

By induction, we would show similarly, for any $l \geq 1$

$$
\left.d\left(F^{\circ l}(Y), F^{\circ l} \tilde{Y}\right)\right) \leq \frac{C^{l}(b-a)^{l}}{l!} d(Y, \tilde{Y})
$$

Since the quantity $\frac{C^{l}(b-a)^{l}}{l!}$ goes to zero as l goes to infinity, it must be strictly less than one for l large enough. This ensures that one of the iterates of F is a contraction, and Proposition 1.6 implies that there exists a fixed point for F, hence a solution to (2.1) on (a, b). Uniqueness of the solution can either be deduced from the uniqueness of the fixed point (with a bit of carefulness) or by a simple application of Grönwall's lemma.

Since this is true for every $(a, b) \subset I$, we may find a unique solution defined on the whole interval I. (Exercise: make this conclusion rigorous. In particular, if Y is a solution on an interval J and \tilde{Y} is a solution on $K \subset J$, why do Y and \tilde{Y} necessarily coincide on K ?)

