
HW 5 - some solutions

April 3, 2018

Time of existence

1. We consider the ODE
y′ = 36 cos

(√
1 + y2

)
,

where y is an unknown real-valued function. Show that the maximal solutions are
global, i.e. defined on R.

Let us introduce two functions f(x) := 36 cos
(√

1 + x2
)

and g(x) = 36. For any

real x we have f(x) ≤ g(|x|). The ODE that we consider can be written as
y′ = f(y), and by the consequence of Grönwall’s lemma mentioned in class,
the solution of y′ = f(y) (say, with initial condition y(0) = y0) is bounded by
the solution of y′ = g(y) with the same initial condition. Since the solutions of
y′ = 36 are affine maps, they exist for all times, and thus so are the solutions

of the ODE y′ = 36 cos
(√

1 + y2
)
.

2. Same question for the ODE
y′ = 36

√
1 + y2.

Here we introduce f(x) = 36
√

1 + x2 and we observe that, letting

g(x) := 36 (1 + |x|) ,

we have |f(x)| ≤ g(|x|) for any real x (because
√
a + b ≤

√
a +
√
b for a, b ≥ 0).

The solutions to y′ = g(x) are defined for all times, hence so are the solutions
to y′ = f(x).

3. Now we consider the ODE
y′ = 36(1 + y2)3/5,

with y(0) = 1. Give a lower bound on the time of existence of the maximal solution.

We set f(x) = 36(1 + x2)3/5 and we let g(x) = 36(1 + |x|6/5). Let us prove that
f(x) ≤ g(x) for all x. It is enough to show that

(1 + a)3/5 ≤ (1 + a3/5)

for any real a ≥ 0, which can be obtained e.g. by computing the derivative
of both functions (and observing that they are equal for a = 0). For any y0
fixed, the solution to the ODE

y′ = f(y), y(0) = y0
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is thus bounded by the solution to the ODE

y′ = g(y) = 36(1 + |y|6/5), y(0) = y0.

First, we solve the associated homogeneous equation z′ = 36|z|6/5. There is a
constant solution equal to 0. If z(0) > 0, we can easily solve and find

−5

(
1

z(t)1/5
− 1

z(0)1/5

)
= 36t,

hence

z(t) =

(
1

z(0)1/5
− 36

5
t

)−5
which is defined on (−∞, Tc) with a blow-up time

Tc =
5

36z(0)1/5
.

We can then check that this is the same time of existence for the solution to
the non-homogeneous equation. This provides a lower bound on the time of
existence of the solution to the original ODE.

Conserved quantities We consider the following ODE (with x the unknown function)

x′′ + x + x3 = 0, (1)

which is an autonomous, second-order scalar ODE.

1. Find a conserved quantity, i.e. find a function Q on R× R such that, if x is a solution
to (1) defined on I, we have

Q(x(t), x′(t)) = constant for t in I.

Hint: for these questions, it is often fruitful to multiply the ODE by x′ and to integrate.

Following the trick, we get

x′′x′ + xx′ + x3x′ = 0

hence the quantity

Q(x, x′) =
1

2
(x′)2 +

1

2
x2 +

1

4
x4

is conserved.

2. Show that the maximal solutions to (1) are global, i.e. they are all defined on R.

Since Q(x, x′) is conserved, the maximal solutions live on a level set of Q. It
is easy to check that these level sets are bounded, hence there is no blow-up
in finite time of (x, x′), which implies that the solutions are defined for all
time.

3. We want to prove that every solution is periodic. Let x0, x
′
0 be in R and let x be the

solution to (1) defined on R and satisfying x(0) = x0 and x′(0) = x′0.
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(a) Prove that if there exists T > 0 such that x(T ) = x0 and x′(T ) = x′0, then for all
t in R we have x(t + T ) = x(t) and x′(t + T ) = x′(T ), and thus the solution is
periodic.

This follows from the uniqueness result of Cauchy-Lipschitz. More pre-
cisely t 7→ x(t) and t 7→ x(t + T ) are both solutions of the ODE with the
same initial conditions hence are equal.

(b) Prove that there exists T > 0 such that x(T ) = x0 and x′(T ) = x′0. Hint: you may
need to use the result of question 1. Keep also in mind that x is continuous and
real-valued.

Since Q has been proven to be a conserved quantity in question 1., the
orbit of X0 = (x0, x

′
0) under the flow {Φt}t of our ODE is contained in the

set
C := {(a, b), Q(a, b) = Q(x0, x

′
0)}.

Let us observe that either X0 = (0, 0), in which case the solution is
constant (hence periodic) or (0, 0) does not belong to C. The set C is a
closed, simple curve (that looks like an ellipsis) - it is an example of a
smooth planar algebraic curve, and in this case it is not difficult to find
a parametrization for C. Let Γ be a continuous map from [0, 1] to C such
that Γ(0) = Γ(1) = X0 and Γ is one-to-one on [0, 1). We want to prove
that

T = inf{t ∈ (0,+∞), Φt(X0) = X0} < +∞.

Assume, for the sake of contradiction, that T is infinite, hence for all
t > 0, Φt(X0) belongs to C \ {X0}. For any t > 0, let Ct be defined as

Ct := Γ−1 ◦ Φt(X0).

The map t 7→ Ct is a continuous map from (0,+∞) to [0, 1]. We claim
that it is one-to-one. Indeed, if Ct1 = Ct2 with 0 < t1 < t2 it means that
Φt1(X0) = Φt2(X0) (because by assumption neither of these points is X0

and Γ−1 is one-to-one on C \ {X0}), hence Φt2−t1(X0) = X0, which yields a
contradiction. Any continuous, one-to-one map from (0,+∞) to [0, 1] is
monotonic and bounded, and thus admits a limit C∞ in [0, 1] as t → ∞.
Hence Γ(C∞) is a limit point of the flow, and thus must be a stationary
point (this was proven in class) and must belong to C, but the only
stationary point for our ODE is (0, 0) and we ruled out the case where
(0, 0) belongs to C. Contradiction.

4. We now consider the equation

x′′ + cx′x2 + x3 = 0,

where c is some constant. Are there periodic solutions?

Applying the same trick as above, we find that

d

dt
Q(x(t), x′(t)) = −c(x′)2x2,

and hence Q is increasing/decreasing with t, depending on the sign of t. The
constant solution x ≡ 0 is a periodic solution, but otherwise Q is strictly
increasing/decreasing along an orbit, and thus there is no periodic solution.
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