
ODE Final exam - Solutions

May 3, 2018

1 Computational questions (30)

For all the following ODE’s with given initial condition, find the expression of the solution as
a function of the time variable t. You do not have to justify existence, uniqueness, or to worry
about the time of existence of the solutions, but you need to explain your computations.

1.

x′ =
t

3 + x
, x(0) = 1.

2.
x′′ − x′ + x = 0, x(0) = 1, x′(0) = 0.

3.

X ′ =

(
0 1
1 0

)
X, X(0) =

(
1
0

)
.

4.
x′ = t+ tx2, x(0) = 0.

5.
x′ − x = et, x(0) = 1.

6.
tx′ = x+ tex/t, x(1) = 1.

1. As long as x(s) 6= 3 we may write

x′(3 + x(s)) = s.

Integrating between s = 0 and s = t and using the initial condition x(0) = 1, we obtain

3x(t) +
1

2
x2(t)− (3 +

1

2
) =

1

2
t2.

Hence we get
x2(t) + 6x(t)− (7 + t2) = 0,

so we must have

x(t) =
−6±

√
36 + 4(7 + t2)

2
.

1



Since x(0) = 1 and x cannot cross −3, the correct solution is

x(t) =
−6 +

√
36 + 4(7 + t2)

2
.

2. Let us consider the associated characteristic polynomial.

x2 − x+ 1 = 0

its roots are λ± = 1±i
√
3

2 . Thus we know that the general solution takes the form

x(t) = Aetλ+ +Betλ− ,

where A,B are coefficients to be determined. We have

x(0) = 1 = A+B, x′(0) = 0 = λ+A+ λ−B.

We obtain

A+B = 1, A−B =
i√
3
,

thus

A =
1

2
+

i

2
√

3
, B =

1

2
− i

2
√

3
.

3. The eigenvalues of the matrix are easily seen to be ±1, with eigenvectors(
1
±1

)
We do the standard thing: changing basis, computing the exponential of a diagonal
matrix, etc.

4. We write
x′

1 + x2
= t,

and integrate to get

tan−1(x(t))− tan−1(x(0)) =
t2

2
,

thus (since x(0) = 0) we have

x(t) = tan

(
t2

2

)
.

5. The associated homogeneous equation has general solution t 7→ Aet for A arbitrary.
Since the right-hand side is also of this form, we look for a particular solution as

t 7→ atet.

We find a = 1. Hence the general solution of the ODE is (t + C)et with C arbitrary.
The initial condition implies that C = 1, thus we obtain

x(t) = (t+ 1)et.
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6. This is an homogeneous equation (with the other meaning of homogeneous). For t 6= 0
we write it as

x′ − x

t
− ex/t = 0.

Introducing z = x
t we have x′ = z + tz′ and thus

z + tz′ − z − ez = 0,

so

z′e−z =
1

t
,

which gives, after integrating between 1 and t

−ez(t) + ez(1) = ln(t).

We have x(1) = 1 hence z(1) = 1 and we get

ez(t) = e− ln(t),

thus z(t) = ln(e− ln(t)) and finally

x(t) = t ln(e− ln(t))
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2 Time of existence (20)

We consider the ODE
x′ = t2x+ (1 + cos2(t))x2.

We denote by γ the maximal solution of this ODE with initial condition γ(0) = 1, defined on
some interval (α, β).

1. Show that γ(t) is always positive for t in (α, β).

2. Show that γ is increasing on (α, β).

3. Justify that α = −∞.

4. Justify that β is finite. You may use the ODE x′ = x2 for comparison.

1. We observe that x(t) ≡ 0 is solution to the ODE. By the uniqueness part of Cauchy-
Lipschitz theorem, any solution that vanishes for a certain time must thus be the zero
solution. In other words, any non-zero solution has a constant sign. Since γ(0) = 1, we
deduce that γ stays positive for all times.

2. Since γ(t) is always positive, the right-hand side of the ODE is positive and thus γ′(t)
is always positive, hence γ is increasing.

3. The function t 7→ γ(t) is continuous, increasing, and bounded below by 0. Thus for any
t ∈ (α, 0) we have 0 ≤ γ(t) ≤ 1 and this negates the “blow up in finite time” criterion,
thus α = −∞.

4. Since γ is positive, we have, for t ∈ (α, β)

γ′(t) = t2γ(t) + (1 + cos2(t))γ2(t) ≥ γ2(t).

In particular, integrating between 0 and t for t ∈ (α, β) we obtain

1− 1

γ(t)
≥ t,

so γ(t) ≥ 1

1− t
, which proves that γ blows-up in finite time.
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3 Qualitative study (30)

We consider the ODE
x′′ − sin(x) = 0. (1)

1. Re-write (1) as a first-order ODE with unknown function X = (x, x′).

2. Find a (non-trivial) conserved quantity.

3. Sketch the allure of the orbits in R2 with the system of coordinates (x, x′).

(a) Near the point (π/2, 0).

(b) Near the point (0, 2).

(Briefly justify your drawing.)

4. Explain why we can find a change of variables that would transform the two sketches
drawn in the previous question onto one another.

CANCELLED Explain why, near the point (0, 0), the flow of this ODE looks like

etA, A =

(
0 1
1 0

)
5. Sketch the allure of the orbits near (0, 0).

1.
X ′ = (x′, x′′) = (x′, sin(x))

2. We apply the usual trick, multiplying by x′ yields

x′′x′ − sin(x)x′ = 0,

and thus Q(x, x′) :=
(x′)2

2
+ cos(x) is conserved.

3. The orbits are contained in the level sets of Q. We can use the fact that

cos(x) ≈ (x− π/2) near π/2, cos(x) ≈ 1− x2/2 near 0

to sketch these level sets.

4. We are considering two points that are not stationary points. By the “straightening of vector fields”
theorem, the flow near both points can be mapped onto the flow of a constant vector
field (i.e. an ODE with constant speed). By transitivity, the two flows can be mapped
onto each other.

5. That would have been an application of Grobman-Hartman.

6. We use again the conserved quantity and the approximation cos(x) ≈ 1− x2/2 near 0.
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4 Around the gradient descent

Let d ≥ 1 be the dimension. In this problem, E is a function from Rd to R of class C1 such
that:

• E is Lipschitz, with a Lipschitz constant denoted by L. By definition, it means

∀x, y ∈ Rd, |E(x)− E(y)| ≤ L‖x− y‖.

You may use the following consequence: ∀x ∈ Rd, ‖∇E(x)‖ ≤ L.

• The gradient ∇E is Lipschitz, with a Lipschitz constant denoted by M . By definition,
it means

∀x, y ∈ Rd, ‖∇E(x)−∇E(y)‖ ≤M‖x− y‖.

• E is α-convex for some α. By definition, it means (we denote by 〈a, b〉 the scalar
product of two vectors).

∀x, y ∈ Rd, 〈∇E(x)−∇E(y), x− y〉 ≥ α‖x− y‖2.

Preliminary question

1. Show that, because E is α-convex, then E has at most one critical point.

1. By contradiction, if there were two critical points x and y, we would have ∇E(x) =
∇E(y) = 0 but α-convexity would give us

α‖x− y‖2 ≤ 0,

thus x = y.

In the following, we will denote by Xmin the unique critical point, we assume that it exists
and is the unique global minimizer of E.
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4.1 Gradient descent in continuous time (40)

In this section, we fix X0 in Rd and we study the ODE

X ′(t) = −∇E(X(t)), X(0) = X0 (2)

where X is an unknown function with values in Rd. This is known as a “gradient descent”.

4.1.1 Convergence to the minimizer

1. Explain why the maximal solution to the ODE (2) exists, is unique, and is defined for
all times t in (−∞,+∞).

2. Are there constant solutions to (2)? If yes, how many?

3. Show that either the solution is constant, or E(X(t)) is (strictly) decreasing in t.

4. Is the equilibrium solution X(t) ≡ Xmin stable?

5. Prove that limt+∞X(t) = Xmin (for an initial condition close enough to Xmin, or, more
difficult, for any choice of initial condition).

1. The function X 7→ −∇E(X) is Lipschitz, by assumption. The Cauchy-Lipschitz theo-
rem thus ensures existence and uniqueness of maximal solutions. Moreover over, it is
globally Lipschitz, still by assumption, thus the maximal solutions are global (defined
for all times - this is a result from class).

2. Constant solutions correspond to zeros of ∇E, thus to critical points, and we know that
there is only one such point. So there is exactly one constant solution, equal to Xmin.

3. If the solution is not equal to Xmin, we have

d

dt
E(X(t)) = 〈∇E(X(t)), X ′(t)〉 = −‖∇E(X(t)‖2 ,

and the right-hand side is always negative, so the quantity E(X(t)) is decreasing.

4. The quantity E(X(t)) is a Liapounov function for the equilibrium (as shown in the pre-
vious question), thus we know the equilibrium is asymptotically stable and, in particular,
it is stable.

5. Asymptotic stability implies that limt+∞X(t) = Xmin for an initial condition close
enough to Xmin. In fact this is true for all initial conditions - we could prove it here by
elementary methods, but the following questions will also provide a proof.

4.1.2 Speed of convergence

In this paragraph, we want to quantify the speed at which X(t) tends to Xmin. We suppose
that the initial condition (at time 0) X0 is not equal to Xmin. For t ≥ 0, we introduce the
quantity

D(t) := ‖X(t)−Xmin‖2.
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1. Compute D′(t). You may use one of the auxiliary results.

2. Show that for t ≥ 0 we have
D′(t) ≤ −αD(t)

3. Prove that
D(t) ≤ ‖X0 −Xmin‖2e−αt

and conclude about the speed of convergence of X(t) to Xmin.

1. We have, using the formula given to us and the fact that X satisfies the ODE

D′(t) = 2〈X ′(t), X(t)−Xmin〉 = −2〈∇E(X(t)), X(t)−Xmin〉 .

2. We may also write, since ∇E(Xmin) = 0,

−2〈∇E(X(t)), X(t)−Xmin〉 = −2〈∇E(X(t))−∇E(Xmin), X(t)−Xmin〉,

and by the α-convexity assumption we get

D′(t) ≤ −2α‖X(t)−Xmin‖2 = −2αD(t)

(the question is correct but not sharp, by a factor 2).

3. We may write
D′(t)

D(t)
≤ −2α

Integrating this inequality between 0 and t, we obtain

D(t) ≤ D(0)e−2αt = ‖X(0)−Xmin‖2e−2αt.

(again, the question is correct but not sharp, by a factor 2). We thus have

‖X(t)−Xmin‖ ≤ e−αt‖X(0)−Xmin‖,

thus X(t) converges to Xmin as t→ +∞, exponentially fast.
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4.2 Numerical study (40)

In this paragraph, we are interested in a numerical approach to gradient descent. It can be
described as a sequence {Xn}n≥0 defined as follows:

• We start at some point X0.

• At each step n ≥ 0, we chose a step-size sn ≥ 0 and we compute Xn+1 in terms of Xn

by

Xn+1 := Xn − sn∇E(Xn). (3)

4.2.1 A model case

In this paragraph only, we take E(X) = ‖X‖2. For the two following choices of step-sizes,
show that the numerical scheme defined above does not converge to the minimizer of E (here
Xmin = 0 of course), unless we start at this point.

1. For a constant step-size sn = 1.

2. For a step-size sn = n−100.

It is thus important to chose the step-size carefully.

1. In this case, we have
Xn+1 = Xn − 2Xn = −Xn,

and thus we have Xn = (−1)nX0 for all n. This does not converge to 0, unless X0 is 0.

2. In this case, we have

Xn+1 = Xn −
1

n100
Xn = Xn(1− n−100).

We deduce that

Xn = X0

n∏
k=1

(1− k−100) = X0 exp

(
n∑
k=1

ln(1− k−100)

)
.

The series
∑+

k=1∞ ln(1−k−100) converges, thus Xn converges to CX0 for some constant
C 6= 0, and in particular Xn does not converge to X0.

In applied maths classes, the usual heuristics for step-sizes is to chose sn such that{∑
n sn diverges∑
n s

2
n converges.

We will try to justify this heuristics.
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4.2.2 Convergence to the minimizer

• We let {Xn}n be the sequence of points defined as above.

• We let t 7→ X(t) be the solution to the “gradient descent” ODE (2) with initial condition
X(0) = X0.

• We let t0 = 0 and we let
X̃0 := X(t0) = X(0) = X0.

• For any n ≥ 0, we define

tn+1 = tn + sn, X̃n+1 = X(tn+1).

In other words: tn is the time after n steps, X̃n is the value of the “real solution” at time tn
while Xn is the value of the numerical solution after n steps.

1. Explain why, if we assume that the series
∑

n sn diverges, then X̃n tends to the minimizer
Xmin as n→ +∞.

In the following, we will always assume that
∑

n sn diverges.

2. Show that X̃n satisfies

X̃n+1 = X̃n −
∫ tn+1

tn

∇E(X(s))ds.

The next questions are devoted to the analysis of this numerical scheme, and are thus
of “real analysis” spirit.

3. Show that we have
X̃n+1 = X̃n − sn∇E(X̃n) + εn,

with an error term εn bounded by

‖εn‖ ≤
MLs2n

2
,

where L,M are the Lipschitz constants defined in the introduction.

4. Using α-convexity, show that

‖Xn − sn∇E(Xn)− X̃n + sn∇E(X̃n)‖2 ≤ ‖Xn − X̃n‖2
(
1− 2αsn + s2nM

2
)
,

where α,M are the constants defined in the introduction.

5. For any n ≥ 0, we let Vn be the difference Vn := Xn − X̃n. Prove that

‖Vn+1‖ ≤ ‖Vn‖
√

1− 2αsn + s2nM
2 +

MLs2n
2

.

6. Using the discrete version of Grönwall’s lemma recalled in the “Auxiliary results” sec-
tion, show that if

∑
n s

2
n converges, then Xn tends to Xmin as n→ +∞.
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1. Since tn =
∑n

k=0 sk, the divergence of the series is equivalent to the fact that limn→∞ tn =
+∞, but we know from previous questions that

lim
t→∞

X(t) = Xmin,

so, since X̃n = X(tn), we have

lim
n→∞

X̃n = lim
n→∞

X(tn) = Xmin.

2. We use the fundamental theorem of calculus and the fact thatX is a solution to the ODE:

tXn+1 = X(tn+1) = X(tn) +

∫ tn+1

tn

X ′(s)ds = X̃n −
∫ tn+1

tn

∇E(X(s))ds.

3. We need to show that

‖
∫ tn+1

tn

∇E(X(s))ds− sn∇E(X(tn))‖ ≤ MLs2n
2

.

We may write∣∣∣∣∫ tn+1

tn

∇E(X(s))ds− sn∇E(X(tn))

∣∣∣∣ =

∫ tn+1

tn

‖∇E(X(s))−∇E(X(tn))‖ds.

Since ∇E is Lipschitz, we have

‖∇E(X(s))−∇E(X(tn))‖ ≤M‖X(s)−X(tn)‖.

The mean value theorem gives

‖X(s)−X(tn)‖ ≤ (s− tn) sup
‖X′(t)‖

,

and, since E is assumed to be Lipschitz, we have

sup
t
‖X ′(t)‖ = sup

t
‖∇E(X(t))‖ ≤ sup

x
‖∇E(x)‖L.

So we obtain

‖
∫ tn+1

tn

∇E(X(s))ds− sn∇E(X(tn))‖ ≤
∫ tn+sn

tn

ML(s− tn)ds =
MLs2n

2
.

4. Expand the square as

‖Xn − sn∇E(Xn)− X̃n + sn∇E(X̃n)‖2 = ‖Xn − X̃n‖2 + s2n‖∇E(X̃n)−∇E(Xn)‖2

+ 2sn〈Xn − X̃n,∇E(X̃n)−∇E(Xn)〉.

The α-convexity assumption implies that

〈Xn − X̃n,∇E(X̃n)−∇E(Xn)〉 ≤ −α‖Xn − X̃n‖2,

and the Lipschitz-ness of ∇E gives

‖∇E(X̃n)−∇E(Xn)‖2 ≤M2‖X̃n −Xn‖2

and thus we get

‖Xn − sn∇E(Xn)− X̃n + sn∇E(X̃n)‖2 ≤ ‖Xn − X̃n‖(1− 2αsn +M2s2n).
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5. We simply combine the results of question 3 and question 4.

6. Applying the lemma, we obtain

‖Vn‖ ≤ exp

(
n−1∑
k=0

ln

(√
1− 2αsk + s2kM

2

))(
‖V0‖+

n−1∑
k=0

MLs2k
2

)
.

We assumed that
∑

k s
2
k is finite (and in particular the step-sizes tend to 0). We may

thus write (
‖V0‖+

n−1∑
k=0

MLs2k
2

)
≤ C,

for some constant C, and on the other hand a first-order expansion of ln(1− x) yields

ln

(√
1− 2αsk + s2kM

2

)
=

1

2

(
−2αsk +O(s2k)

)
.

Since
∑

k sk diverges and
∑

k s
2
k converges a well-known theorem about comparison of

series with positive terms implies

lim
n→∞

n∑
k=0

ln

(√
1− 2αsk + s2kM

2

)
= −∞.

So since limx→−∞ exp(x) = 0, we obtain lim
n→∞

‖Vn‖ = 0 .

12



4.3 A noisy version (20)

In this section, we fix the dimension d = 1 and we consider the ODE

x′ε(t) = −E′(xε(t)) + εA(t), xε(0) = x0 (4)

where t 7→ xε(t) is an unknown function with real values, E satisfies the same assumptions as
before (but in addition, we assume E to be of class C2), ε is some fixed real parameter and A
is a continuous function such that

T 7→
∣∣∣∣∫ T

0
A(t)dt

∣∣∣∣ is bounded.

Let x̄ be the solution to (4) when ε = 0. We look for an expression of xε as

xε = x̄+ εx̃+O(ε2).

1. Write down (without rigorous justification) the ODE satisfied by x̃.

2. Write down an expression for x̃.

3. Show that x̃(t) is bounded as t→ +∞.

1. We have
x̄′(t) + εx̃′(t) +O(ε2) = −E′

(
x̄+ εx̃+O(ε2)

)
+ εA(t),

so
x̄′(t) + εx̃′(t) +O(ε2) = −E′(x̄(t))− εE′′ (x̃(t)) + εA(t) +O(ε2).

Formally, x̃ must satisfy

x̃′(t) = −E′′ (x̃(t)) +A(t).

2. The α-convexity assumption translates into the fact that E′′ is positive, and bounded
below by α. We may thus consider the map x 7→ −1

E′′(x) , and we denote by G an

antiderivative of this map. Since G′ has a sign, G is a one-to-one continuous map and
we denote by G−1 its inverse bijection (defined on the codomain).

We have
G′(x̃(t))x̃′(t) = A(t),

and thus, integrating between 0 and t, we obtain

G(x̃(t))−G(x̃(0)) =

∫ t

0
A(s)ds,

so we obtain the formal expression

x̃(t) = G−1
(∫ t

0
A(s)ds+G(x̃(0))

)
.

3. Since
∫ t
0 A(s)ds stays bounded as t varies (by assumption), and since G−1 is continuous,

we see that x̃(t) stays bounded as t varies.
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