Park City GSS 2017 - "Microscopic description of Log and Coulomb gases" - Problem Session 1

1 Variational principle for the canonical Gibbs measure

Let $d \ge 1$, let $\mathcal{P}([0,1]^d)$ denote the space of all probability measures on $[0,1]^d$. For μ in $\mathcal{P}([0,1]^d)$, we define the *relative entropy* of μ with respect to the Lebesgue measure on $[0,1]^d$ as

$$\mathsf{Ent}[\mu] := \int_{[0,1]^d} \left(\frac{d\mu}{dx}\right) \log\left(\frac{d\mu}{dx}\right) dx,$$

if μ is absolutely continuous (with respect to the Lebesgue measure dx), and $+\infty$ otherwise.

Let W be a continuous function on $[0,1]^d$. For any $\beta > 0$, we consider the free energy functional \mathfrak{f}_β defined on $\mathcal{P}([0,1]^d)$ by

$$\mathfrak{f}_{\beta}(\mu) := \beta \mathbf{E}_{\mu} [W] + \mathsf{Ent}[\mu], \tag{1}$$

where \mathbf{E}_{μ} denotes the expectation under μ .

We want to prove the following *variational principle*: the unique minimiser of \mathfrak{f}_{β} is the canonical Gibbs measure at (inverse) temperature β , whose density with respect to the Lebesgue measure is given by

$$\rho_{\beta}(x) = \frac{\exp(-\beta W(x))}{\int_{[0,1]^{\mathsf{d}}} \exp(-\beta W(x)) dx}$$

1. Argue that the variational principle amounts to minimising the following quantity among probability densities ρ .

$$\bar{\mathfrak{f}}_{\beta}(\rho) := \beta \int_{[0,1]^{\mathsf{d}}} W(x)\rho(x)dx + \int_{[0,1]^{\mathsf{d}}} \rho(x)\log\rho(x)dx.$$

- 2. Show that the derivative of $t \mapsto \overline{\mathfrak{f}}_{\beta}(\rho_{\beta} + t(\rho \rho_{\beta}))$ at t = 0 vanishes for any probability density ρ .
- 3. Show that $\overline{\mathfrak{f}}_{\beta}$ is strictly convex, and conclude that ρ_{β} is its unique global minimiser.

2 Properties of the logarithmic energy

Let E be the space of compactly supported, continuous functions on \mathbb{R}^2 , with mean 0.

1. Show that

$$D: (f,g) \mapsto \iint_{\mathbb{R}^2 \times \mathbb{R}^2} -\log|x-y|f(x)g(y)|$$

is a bilinear symmetric positive definite form on E.

Hint for positivity: introduce the logarithmic potential $h^f(x) := \int -\log |x - y| f(y) dy$ associated to f and express D(f, f) in terms of ∇h^f .

2. Let μ , ν be two probability measures on \mathbb{R}^2 , with a continuous density with respect to the Lebesgue measure. Show that

$$\begin{split} 2 \iint_{\mathbb{R}^2 \times \mathbb{R}^2} &-\log |x - y| d\mu(x) d\nu(y) \\ &\leq \iint_{\mathbb{R}^2 \times \mathbb{R}^2} -\log |x - y| d\mu(x) d\mu(y) + \iint_{\mathbb{R}^2 \times \mathbb{R}^2} -\log |x - y| d\nu(x) d\nu(y). \end{split}$$

3. Deduce that the logarithmic energy functional (as in Section 2.1 of the lecture notes)

$$\mathcal{I}_{V}(\mu) := \iint_{\mathbb{R}^{2} \times \mathbb{R}^{2}} -\log|x - y|d\mu(x)d\mu(y) + \int_{\mathbb{R}^{2}} V(x)d\mu(x)$$

is strictly convex in μ .

3 Equilibrium measure

We refer to Section 2.1 in the lecture notes.

- 1. Let μ_{circ} be the *circular law* whose density is the uniform measure $\frac{1}{\pi}dx$ on the unit disk of \mathbb{R}^2 .
 - (a) Compute the logarithmic potential generated by μ_{circ} , i.e. compute the following quantity for any x in \mathbb{R}^2

$$h^{\mu_{circ}}(x) := \int -\log |x - y| d\mu_{circ}(y).$$

(b) Show that μ_{circ} satisfies the Euler-Lagrange equations for the quadratic potential $V(x) = |x|^2$, that is, prove that the quantity

$$x \mapsto h^{\mu_{circ}}(x) + \frac{|x|^2}{2}$$

is equal to a constant c on the unit disk and is larger than this constant outside the disk.

- 2. Show that the arcsine law of density $\frac{1}{\pi} \frac{1}{\sqrt{1-x^2}}$ on [-1,1] is the equilibrium measure associated (in the Log1 case) to the potential V that is constant on [-1,1] and $+\infty$ outside.
- 3. (**) Let μ_{sc} be the Wigner's semi-circular distribution whose density is given by $\frac{1}{2\pi}\sqrt{4-x^2}$ on the line segment [-2, 2]. Show that μ_{sc} satisfies the Euler-Lagrange equations for the quadratic potential $V(x) = x^2$ (in the Log1 case).
- 4. Let μ be the equilibrium measure associated to a potential V (in the Log1 case). We assume that V is C^1 and that μ has a smooth density with respect to the Lebesgue measure and is supported on a line segment.
 - (a) Show that for any bounded continuous fonction h we have

$$\iint \frac{h(x) - h(y)}{x - y} d\mu(x) d\mu(y) = \int V'(x) h(x) d\mu(x).$$

(b) Show that, for x in the interior of the support of μ , we have

$$2\int \frac{1}{x-y}d\mu(y) = V'(x),$$

where the integral in the left-hand side is to be understood in the principal value sense.

4 Large deviation principles

We refer to Definition 2.5 in the lecture notes.

1. Let $\{x_N\}_N$ be a sequence of independent random variables on a space X, and P_N be the law of x_N . Assume that $\{P_N\}_N$ satisfies a LDP at speed N with rate function I, and that I has a unique minimiser x_{min} on X. Show that almost surely $\{x_N\}_N$ converges to x_{min} as $N \to \infty$, namely

$$\forall \epsilon > 0, P(\liminf_{N \to \infty} |x_N - x_{\min}| \le \epsilon) = 1,$$

where P is the product measure of the $\{P_N\}_N$'s.

- 2. Is the same result true for any speed?
- 3. (*) What is the asymptotic (as $N \to \infty$) macroscopic behavior of a system of N particles in the unit disk of \mathbb{R}^2 without interaction (i.e. their law is the Bernoulli point process with N points in the disk)? Is there almost sure convergence? A large deviation principle?