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1 Joint law of the fluctuations for several test functions

Let us work in the two-dimensional Coulomb case, with a quadratic potential so that the associated
equilibrium measure is the uniform measure on the unit disk. In this case, we have a central limit
theorem for fluctuations of linear statistics as follows: If ¢ is C*, compactly supported inside the disk,
then the quantity
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converges to a Gaussian random variable with
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Let &1, &5 be two smooth test functions supported in the unit disk.

1. Prove that any linear combination of the fluctuations of £; and & (with real coefficients) converges
to a Gaussian random variable, and specifiy the mean and variance.

2. Deduce that the vector (Flucty[£1], Flucty[£2]) converges to a Gaussian vector and specifiy the
covariance.

You may use the following result:

Theorem 1 (Cramér-Wold) Let X! X2 and X', X5 be random vectors. Then {(X}, X2)},, con-
verges to (X1, X2) in distribution if and only if {(a1 X} + a2 X?2)}, converges to a; X' + aaX? for
each ai,as.

3. Prove the Cramér-Wold theorem.

2 A large deviation principle

Let A =1[0,1] and g : A x A — [0, +-00) by a symmetric function. Assume that g is continuous on A x A.
We let Wy (Xn) be defined as
Wy(Xn) = Y. glaiz)).

1<i<j<N

We consider the Gibbs probability measure on A defined by
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with Zf\‘,’nﬁt the normalization factor
ZVy = / exp (—ﬂN WN(X_)N)> dXy.
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For a given Xy, we let uy[Xn] := L 5N | 64, be the empirical measure.



1. Let u be a probability measure on A. For € > 0, we let B(u,€) be a ball around u for some metric
compatible with weak convergence of probability measures (it is not very important here). Show
that
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and prove a converse inequality with lim inf instead of lim sup.

2. We recall the following result (Sanov’s theorem).

Theorem 2 (Sanov)
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Deduce that
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3. Using a finite covering by small balls B(u, €) of the space of probability measures on A, show that
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and deduce a large deviation principle for the law of uy [)? N
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