Université Paris Descartes UFR de Mathématiques et Informatique 45 rue des Saints-Pères 75006 Paris

Séries temporelles

DM1

- Exercice 1 1. Soit $(X_t)_{t\in\mathbb{Z}}$ et $(Y_t)_{t\in\mathbb{Z}}$ deux processus du second ordre faiblement stationnaires. On suppose que $\text{Cov}(X_s,Y_t)=0$, pour tout $s,t\in\mathbb{Z}$. Montrer que $Z_t=X_t+Y_t$ est un processus faiblement stationnaire et exprimer sa fonction d'auto-covariance en fonction de celles des processus $(X_t)_{t\in\mathbb{Z}}$ et $(Y_t)_{t\in\mathbb{Z}}$.
 - 2. Soit $(\varepsilon_t)_{t\in\mathbb{Z}}$ un bruit blanc BB $(0,\sigma^2)$. On pose $X_t=(-1)^t\varepsilon_t,\,t\in\mathbb{Z}$. Montrer que $(X_t)_{t\in\mathbb{Z}}$ est encore un bruit blanc BB $(0,\sigma^2)$.
 - 3. La somme de deux processus stationnaires est elle toujours stationnaire?

Exercice 2 Soit $\{A_k\}_{1 \le k \le n}$ des variables aléatoires de carré intégrable vérifiant

$$Cov(A_k, A_l) = \sigma_k^2 \delta_0(k - l)$$

et $\{\phi_k\}_{1\leq k\leq n}$ des variables aléatoires i.i.d. de loi uniforme sur $[-\pi,\pi[$, indépendantes des $\{A_k\}_{1\leq k\leq n}$. On définit le processus

$$X_t = \sum_{k=1}^n A_k \cos(\lambda_k t + \phi_k), \qquad t \in \mathbb{R}$$

où les $\{\lambda_k\}$ sont des réels.

- 1. Montrer que X est un processus du second ordre.
- 2. Déterminer la fonction moyenne m_X et la fonction de covariance C_X de X. Justifier que le processus X est faiblement stationnaire et que sa fonction d'autocovariance est

$$\gamma_X(h) = \sum_{k=1}^n \sigma_k^2 \cos(\lambda_k h), \qquad h \in \mathbb{R}.$$

3. On suppose maintenant que n=2, que $\sigma_1^2=\sigma_2^2=\sigma^2$ et que $\lambda_1=\frac{\pi}{2}$ et $\lambda_2=\frac{\pi}{3}$. Calculer la prédiction linéaire $\mathbb{EL}[X_t|X_{t-1},X_{t-2}]$.

Exercice 3 Soit $(\varepsilon_t)_{t\in\mathbb{Z}}$ une famille de variables aléatoires indépendantes et identiquement distribuées de carré sommable et telles que $\mathbb{E}[\varepsilon_t] = 0$ et $\mathbb{E}[\varepsilon_t^2] = \sigma^2$, pour tout $t \in \mathbb{Z}$.

- 1. Montrer que si ξ est une variable aléatoire indépendante de $(\varepsilon_t)_{t\in\mathbb{Z}}$ et telle que $\mathbb{E}[\xi^2] = \alpha^2$ alors le processus $(Z_t)_{t\in\mathbb{Z}}$ défini par $Z_t = \xi \varepsilon_t$, $t \in \mathbb{Z}$, est un bruit blanc centré de variance $\alpha^2 \sigma^2$.
- 2. On suppose que U^2 est non constante. Les variables $(Z_t)_{t\in\mathbb{Z}}$ sont elles toujours indépendantes? On pourra calculer $\mathbb{E}[Z_0^2Z_1^2]$.
- 3. Soit $\theta \in]-1,1[$. On pose $\psi_k=\theta^k$ si $k\geq 0$ et $\psi_k=0$ si k<0. Justifier que pour tout $t\in \mathbb{Z}$, la variable $X_t=\sum_{k\in \mathbb{Z}}\psi_k Z_{t-k}$ est bien définie et que le processus $(X_t)_{t\in \mathbb{Z}}$ est du second ordre, stationnaire, centré et causal. On fera précisément référence aux résultats et notions vues en cours
- 4. Calculer la fonction d'auto-covariance γ_X du processus X.
- 5. Déterminer $\mathbb{EL}(X_t|X_{t-1},X_{t-2},\ldots,X_{t-n})$.