
A novel approach for Word Spotting using Merge-Split

Edit Distance

Khurram Khurshid1, Claudie Faure2 and Nicole Vincent
1

1 Laboratoire CRIP5 – SIP, Université Paris Descartes, 45 rue des Saints-Pères,

75006, Paris, France

{khurram.khurshid, nicole.vincent}@mi.parisdescartes.fr
2 UMR CNRS 5141 - GET ENST, 46 rue Barrault

 75634 Paris Cedex 13, France
cfaure@enst.fr

Abstract. Edit distance matching has been used in literature for word spotting

with characters taken as primitives. The recognition rate however, is limited by

the segmentation inconsistencies of characters (broken or merged) caused by

noisy images or distorted characters. In this paper, we have proposed a Merge-

split edit distance which overcomes these segmentation problems by

incorporating a multi-purpose merge cost function. The system is based on the

extraction of words and characters in the text and then attributing each character

with a set of features. Characters are matched by comparing their extracted

feature sets using Dynamic Time Warping (DTW) while the words are matched
by comparing the strings of characters using the proposed Merge-Split Edit

distance algorithm. Evaluation of the method on 19th century historical

document images exhibits extremely promising results.

Keywords: Word Spotting, Edit Distance, Dynamic Time warping

1 Introduction

Word spotting on Latin alphabets has received considerable attention over the last few

years. A wide variety of techniques have been proposed in literature but the field still

remains inviting and challenging specially if the document base comprises low quality

images of historical documents. There are plenty of issues and problems related to

ancient printed documents which are discussed in detail in [4] and [5]. These include

physical issues such as quality of the documents, the marks and strains of liquids, inks

and dust etc; and semantic issues such as foreground entity labeling. In this paper

though, we will concentrate only on the segmentation related problems. The main

focus of this paper will be the improvements in word spotting to make it clear of a

good character segmentation requirement, so that if we do not get a good

segmentation, we can still obtain better word retrieval rates. A brief account of some

state of the art methods in word spotting that inspired our own work is given here:

 Adamek et al. [2] introduced an approach based on the matching of word

contours for holistic word recognition in historical handwritten manuscripts. The

closed word contours are extracted and their multiscale contour-based descriptors are

matched using a Dynamic Time Warping (DTW) based elastic contour matching

technique. In [12], Rath et al. argued that word spotting using profile feature matching

gives better results. Words are extracted from the text and are represented by a set of

four profile features. Feature matching is performed using the scale invariant DTW

algorithm. In [9], we showed that, for historical printed documents, instead of using

word features, character features give a better and distinct representation of a word.

Two words are compared by matching their character features using DTW [8]. The

method can be improved by adding Edit distance matching for the words. It means

that the features of two characters are matched using DTW while track of these

character matching costs between the two strings is kept by Edit distance. Addition of

the Edit distance stage significantly reduced the number of false positives while

improving the recognition rate as later shown in results. However, if the character

segmentation is not good there will be a significant drop in retrieval rate as the classic

edit distance does not cater for merged and broken characters.

 Different variations of Edit distance have been proposed in literature for different

matching applications [3,7,11,13]. Kaygin et al. introduced a variation of Edit

distance for shape recognition in which polygon vertices are taken as primitives and

are matched using the modified Edit distance. The operations of inserting and deleting

a vertex represent the cost of splitting and combining the line segments respectively

[7]. A minimal edit distance method for word recognition has been proposed by [13].

Complex substitution costs have been defined for the Edit distance function and

string-to-string matching has been done by explicitly segmenting the characters of the

words. Another recent variant of Edit distance has been proposed in [11] where apart

from the classic substitution costs, two new operations namely combination and split

are supported.

This paper presents an effective way for word spotting in historical printed

documents using a combination of our merge-split Edit distance variant and an elastic

DTW algorithm. Main aim of this work is to be able to match words without the need

of having perfect character segmentation a priori. Paper is divided into multiple

sections beginning with the overview of the proposed system in the next section. This

is followed by description of method and its different stages and the results achieved.

2 Proposed Method

The model is based on the extraction of a multi-dimensional feature set for the

character images. As opposed to [12] where features are extracted at word level, we

define features at character level, thus giving more precision in word spotting [8].

 Figure 1 illustrates the different stages of our system. Document image is

binarized using NICK algorithm [10]. Text in the document image is separated from

graphics and words in the text area are extracted by applying a horizontal RLSA [14]

and finding the connected components in that RLSA image. Characters in a word

image are found by performing its connected component analysis followed by a 3-

A novel approach for Word Spotting using Merge-Split Edit Distance

step post-processing stage. For each character, we define 6 feature sequences which

represents a character’s overall form. Query word is searched within candidate words

by a combination of our Merge-split Edit distance at word level and DTW at character

level which allows us to spot even the words with improper character segmentation.

Fig. 1. a) Document image Indexing involving character segmentation and feature extraction.

b) Word retrieval using a combination of DTW and Merge-split edit distance

3 Document Indexing

In this section, we only give an overview of the indexing process involving character

segmentation and feature extraction.

 The connected components (CCs) of the binary image do not always correspond

to characters. A character may be broken into multiple components or multiple

characters may form a single component. For that, we have a 3-pass processing stage

for the CCs in a word component to get the characters. In the first pass, components

on the top of each other are assigned to the same character (fig 2a). In the 2
nd
 pass,

overlapping components are merged into a single character (fig 2a). In the 3
rd
 pass,

the punctuation marks (like ‘,’ ‘.’) are detected using size and location criteria and are

removed from the word (fig 2b). After the three passes, there still remain some

improperly extracted characters which are of main interest in this paper (fig 2c,3).

For each

candidate word

(a)

(b)

Document Image

Binarization H-RLSA

Segmentation Text/Images

Word Components

3-pass fixation

Chars of each word

Feature Extraction

Indexation

2-DTW for char matching

Spotted words

1-Merge-split Edit distance for words

Connected Comps

Query word Image

ASCII query

Processing

Stages (As in

block a)

Query Image formation

(a) (b) (c)

Fig. 2. a) Pass 1 & 2 b) Pass 3 c) Some examples of the remaining unfixed characters

 Each character is represented by a sequence of six feature vectors. The length of

each of the six vectors associated with a character is equal to the width of the

character bounding box. The six features we use are Vertical projection profile (on

gray level image), Upper character profile position, Lower character profile position,

Vertical histogram, Number of ink/non-ink transitions and Middle row transition state

(on binary image). Document processing/indexing is done offline, creating an index

file for each document image. The coordinates of each word, number of characters in

the word, the position and the features of each character are stored in the index files.

One advantage of having an index file is that the query word can now be crisply

selected by just clicking on the word in the GUI of our document processing system.

This query word is processed in the same way to extract character features. We can

also type in the input query word instead of a click-selection. In that case, features of

the prototype characters (selected manually offline) are used for matching. The

segmentation of the query characters is perfect in this case.

4 Word Retrieval

For word spotting, we have proposed a two step retrieval system. In the first step, a

length-ratio filter finds all eligible word candidates for the query word. For two words

to be considered eligible for matching, we have set bounds on the ratio of their

lengths. If this ratio does not lie within a specific interval, we do not consider this

word as a candidate. Through this step, we are on average able to eliminate more than

65% of the words. In the second step, the query word and candidate word are matched

using a multi-stage method in which the characters of the two words are matched

using the Merge-Split Edit distance algorithm while features of the two characters are

matched using elastic DTW method coupled with Euclidean distance. The need for an

algorithm catering for the merge and split of characters arises because we may not

have 100% accurate segmentation of characters all the time (fig 3).

m (split)

FI (merged)

Fig. 3. Query words and some instances of them which were not spotted without Merge-split

A novel approach for Word Spotting using Merge-Split Edit Distance

4.1 Word Matching – Merge Split Edit Distance

To address character segmentation issues, we have introduced two new merge-based

character matching operations Merge1 and Merge2 that enable to model a merge and

split capability respectively in Edit distance, thus overcoming the limitation of having

a perfect character segmentation by catering for the broken and merged characters

during word matching.

 Consider 2 words A and B; A, the query word, having s characters while B, the

test word, having t characters. We treat both words as two series of characters, A = (a1

... as) and B = (b1 ... bt). To determine the distance/cost between these two character

series, we find the Edit matrix W which shows the cost of aligning the two

subsequences. Apart from the three classic Edit operations, we have introduced two

new operations ai→(bj+bj+1) and (ai+ai+1)→bj which represent merge1 and merge2

respectively. Merge1 function allows one character of the query word to be matched

against two characters of the current test word, while merge2 function allows one

character of the test word to be matched against a combination of two query word

characters thus modeling a split bj. Combination of two characters is done by

concatenating the 6 feature sequences of both of them. The entries of matrix W

initialized by +infinity are calculated as:

)(),1()0,(

)()1,(),0(

0)0,0(

Λ→+−=

→Λ+−=

=

i

j

ajiWiW

bjiWjW

W

γ

γ



























→Λ+−

Λ→+−

<→++−−

<+→+−−

→+−−

= +

+

)()1,(

)(),1(

)())(()1,1(

)())(()1,1(

)()1,1(

min),(1

1

j

i

jii

jji

ji

bjiW

ajiW

siforbaajiW

tjforbbajiW

bajiW

jiW

γ

γ

γ

γ

γ

(1)

Here, Λ is an empty character with all feature vector values set to 0. γ(ai → bj) is the

cost of changing ai to bj. γ(ai → Λ) is the cost of deleting ai and γ (Λ → bj) is the cost

of inserting bj.

 γ(ai→(bj+bj+1)) shows the cost of changing character ai of query word to two

character components bj+bj+1 of the test word. It means that if the character bj was

broken into two components bj and bj+1, we would be able to match this with ai using

Merge1 function. The feature sequences of bj and bj+1 are concatenated and are

matched with the feature vectors of ai to get W(i,j). Once W(i,j) is calculated, we copy

the same value of W(i,j) to the cell W(i,j+1) signifying that we had used the merge

function.

 Similarly, γ((ai+ai+1)→bj) shows the cost of changing two characters of query

word to one character of test word. It means that if bj was infact a component having

two characters merged into one, we would be able to detect and match that with

ai+ai+1using our Merge2 function. Here, instead of splitting the feature vectors of bj
(which is more difficult as we do not know exactly where to split), we merge the

query word characters, thus emulating the split function. W(i,j) is calculated the same

way and it is copied to the cell W(i+1,j) signifying the use of the split function.

4.2 Character matching cost - DTW

All the character matching costs are calculated by matching the feature sequences of

two character components using DTW. The advantage of using DTW here is that it is

able to account for the nonlinear stretch and compression of characters. Hence two

same characters differing in dimension will be matched correctly.

Two characters X and Y of widths m and n respectively are represented by vector

sequences X = (x1 ... xm) and Y = (y1 ... yn) where xi and yj are vectors of length 6 (=

No. of features). To determine the DTW distance between these two sequences, we

find a matrix D of m x n order which shows the cost of aligning the two

subsequences. The entries of the matrix D are found as:

),(

)1,1(

),1(

)1,(

min),(ji yxd

jiD

jiD

jiD

jiD +
















−−

−

−

=

(2)

Here for d (xi , yj), we have used the Euclidean distance in the feature space:

∑
=

−=
p

k

kjkiji yxyxd
1

2

,,)(),((3)

where p represents the number of features which in our case is six.

The entry D(m , n) of the matrix D contains the cost of matching the two characters.

To normalize this value, we divide the final cost D(m , n) by the average width of the

two characters.

Final char-cost = D(m,n) / [(m+n)/2] (4)

4.3 Final word distance

Once all the values of W are calculated, the warping path is determined by

backtracking along the minimum cost path starting from (s , t) while taking into the

account the number of merge/split functions used in the way. The normalization

factor K is found by subtracting the number of merge/split functions from the total
number of steps in the warping path. The final matching cost of the two words is:

Final word-cost = W(s,t) / K (5)

Two words are ranked similar if this final matching cost is less than an empirically

determined threshold.

Figure 4 shows an example of matching two words of lengths 4 and 3. The query

word is well segmented while the last two characters in the test word are merged into
one. While finding W, we see that one merge operation is used for matching ‘ur’ with

‘u’, thus decrementing the value of K by one.

A novel approach for Word Spotting using Merge-Split Edit Distance

W

Test word

Query Word Λ p o ur

Λ

p
o

u
r

0.00 1.79 3.39 5.56

1.78 0.02 1.62 3.79
3.47 1.72 0.04 2.05

5.51 3.75 2.08 0.09
 6.85 5.10 3.42 0.09

 Final Word Cost

 = W(4,3) / K

W(4,3) = 0.09

K= steps - merge/splits used

 = 4 – 1 = 3

Final cost = 0.09/3 =0.03

Fig. 4. Calculating Edit Matrix W for two similar words of lengths 4 and 3, and their final cost

5 Experimental Results

The comparison of character-feature based matching technique with other methods

(method in [12] and correlation based matching method) has already been done in [9].

Here we compare our merge-split Edit distance based matching method with a similar

method but using classic Edit distance in place (we will refer to it as [Ed]) and also
with [9] to show the improvement in results. We also give the results of a professional

OCR software Abbyy FineReader [1] on the same data set. Experiments were carried

out on the document images provided by BIUM [6]. For experiments, we chose 48

pages from 12 different books (4 images from each book), having a total of more than

17,000 words in all. For testing, 60 different query lexiques having 435 instances in

total were selected based on their varied lengths, styles and also context of the book.
Table 1 summarizes the results of word spotting.

Table 1. Result Summary of Word matching algorithms

 Method

in [9]

Classic

Edit [Ed]

Our

method

ABBYY

[1]

#query word instances 435 435 435 435

#words detected perfectly 401 406 427 422

#words missed 34 29 8 13

#False positives 51 16 4 0

Precision % 88.71% 96.20% 99.01% 100%

Recall % 92.18% 93.34% 98.16% 97.01%

F-Measure 90.41% 94.75% 98.58% 98.48%

 We can see from the above table that the presented merge-split Edit distance

based method achieves a much higher recognition rate while maintaining a better

precision than [9] and [Ed]. This is due to the fact that we are able to spot even those

words where the segmentation of characters is not good. The layout of the pages used
was not difficult to manage for a professional OCR. So on the same data-set, [1]

produced a precision of 100% but we still obtained a better recall rate than it.

 We also analyzed the effect of word length on the Edit distance threshold,

learning that for smaller words (with lesser number of characters), a lower threshold

gives better precision and recall rates, while for longer words, a higher threshold

value proves to be more effective. This is because for longer words, it is more

unlikely to find similar words; so we can allow a bit more relaxation in threshold

value. Another thing we learned is that the time taken to search a query increases

linearly with the number of documents searched.

Considering optimum threshold values (found empirically), our system achieves a

precision of 99% while obtaining an overall recognition rate of 98.16%.

6 Conclusion

We have proposed a new approach for word spotting based on the matching of
character features by employing a combination of DTW and Merge-Split Edit

distance. The main objective of this approach is to cater for the improper segmented

characters during the matching process. Results obtained using this method are very

encouraging. The number of query words missed is very less as compared to [9] and

[Ed] which shows the prospects of taking this method even further by improving

different stages and adding more features to achieve even higher percentages.

References

1. ABBYY FineReader professional v6.0

2. Adamek, T., O'Connor N.E., Smeaton, A.F.: Word matching using single closed contours for
indexing handwritten historical documents, IJDAR (2007).

3. Ambauen R., Fischer S., Bunke H.: Graph Edit Distance with Node Splitting and Merging

and its Application to Diatom Identification, Lecture Notes in CS, (2003).

4. Antonacopoulos, A., Karatzas, D., Krawczyk, H. , Wiszniewski, B.: The Lifecycle of a

Digital Historical Document: Structure and Content. ACM Symposium on DE, 2004.

5. Baird, H.S.: Difficult and urgent open problems in document image analysis for libraries, 1st

International workshop on Document Image Analysis for Libraries, (2004).

6. Digital Library of Bibliothèque Interuniversitaire de Médecine, Paris, http://www.bium.univ-

paris5.fr/histmed/medica.htm

7. Kaygin, S. & Bulut, M. M.: Shape recognition using attributed string matching with polygon

vertices as the primitives, Pattern Recognition Letters, (2002).
8. Keogh E., Pazzani M.: Derivative Dynamic Time Warping, First SIAM International

Conference on Data Mining, Chicago, IL (2001).

9. Khurshid K., Faure C., Vincent N.: Feature based word spotting in ancient printed

documents. In proceedings of PRIS (2008).

10. Khurshid K., Siddiqi I., Faure C., Vincent N.: Comparison of Niblack inspired binarization

techniques for ancient document images. 16th International conference DDR, (2009).
11. Manolis, C. & Brey, G.: Edit Distance with Single-Symbol Combinations and Splits

Proceedings of the Prague Stringology Conference, (2008).

12. Rath, T. M., Manmatha, R.: Word Spotting for historical documents. IJDAR (2007)

13. Waard, W.P.: An optimised minimal edit distance for hand-written word recognition,

Pattern Recognition Letters, (1995).

14. Wong K. Y., Casey R. G., Wahl F. M.: Document analysis system. IBM J. Res.
Development, (1982).

