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Abstract. Edit distance matching has been used in literature for word spotting 

with characters taken as primitives. The recognition rate however, is limited by 

the segmentation inconsistencies of characters (broken or merged) caused by 

noisy images or distorted characters. In this paper, we have proposed a Merge-

split edit distance which overcomes these segmentation problems by 

incorporating a multi-purpose merge cost function. The system is based on the 

extraction of words and characters in the text and then attributing each character 

with a set of features. Characters are matched by comparing their extracted 

feature sets using Dynamic Time Warping (DTW) while the words are matched 
by comparing the strings of characters using the proposed Merge-Split Edit 

distance algorithm. Evaluation of the method on 19th century historical 

document images exhibits extremely promising results. 
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1   Introduction 

Word spotting on Latin alphabets has received considerable attention over the last few 

years. A wide variety of techniques have been proposed in literature but the field still 

remains inviting and challenging specially if the document base comprises low quality 

images of historical documents. There are plenty of issues and problems related to 

ancient printed documents which are discussed in detail in [4] and [5]. These include 

physical issues such as quality of the documents, the marks and strains of liquids, inks 

and dust etc; and semantic issues such as foreground entity labeling. In this paper 

though, we will concentrate only on the segmentation related problems. The main 

focus of this paper will be the improvements in word spotting to make it clear of a 

good character segmentation requirement, so that if we do not get a good 

segmentation, we can still obtain better word retrieval rates. A brief account of some 

state of the art methods in word spotting that inspired our own work is given here: 



        Adamek et al. [2] introduced an approach based on the matching of word 

contours for holistic word recognition in historical handwritten manuscripts. The 

closed word contours are extracted and their multiscale contour-based descriptors are 

matched using a Dynamic Time Warping (DTW) based elastic contour matching 

technique. In [12], Rath et al. argued that word spotting using profile feature matching 

gives better results. Words are extracted from the text and are represented by a set of 

four profile features. Feature matching is performed using the scale invariant DTW 

algorithm. In [9], we showed that, for historical printed documents, instead of using 

word features, character features give a better and distinct representation of a word. 

Two words are compared by matching their character features using DTW [8]. The 

method can be improved by adding Edit distance matching for the words. It means 

that the features of two characters are matched using DTW while track of these 

character matching costs between the two strings is kept by Edit distance. Addition of 

the Edit distance stage significantly reduced the number of false positives while 

improving the recognition rate as later shown in results. However, if the character 

segmentation is not good there will be a significant drop in retrieval rate as the classic 

edit distance does not cater for merged and broken characters.  

       Different variations of Edit distance have been proposed in literature for different 

matching applications [3,7,11,13]. Kaygin et al. introduced a variation of Edit 

distance for shape recognition in which polygon vertices are taken as primitives and 

are matched using the modified Edit distance. The operations of inserting and deleting 

a vertex represent the cost of splitting and combining the line segments respectively 

[7]. A minimal edit distance method for word recognition has been proposed by [13]. 

Complex substitution costs have been defined for the Edit distance function and 

string-to-string matching has been done by explicitly segmenting the characters of the 

words. Another recent variant of Edit distance has been proposed in [11] where apart 

from the classic substitution costs, two new operations namely combination and split 

are supported.  

This paper presents an effective way for word spotting in historical printed 

documents using a combination of our merge-split Edit distance variant and an elastic 

DTW algorithm. Main aim of this work is to be able to match words without the need 

of having perfect character segmentation a priori. Paper is divided into multiple 

sections beginning with the overview of the proposed system in the next section. This 

is followed by description of method and its different stages and the results achieved. 

2   Proposed Method 

The model is based on the extraction of a multi-dimensional feature set for the 

character images. As opposed to [12] where features are extracted at word level, we 

define features at character level, thus giving more precision in word spotting [8].  

        Figure 1 illustrates the different stages of our system. Document image is 

binarized using NICK algorithm [10]. Text in the document image is separated from 

graphics and words in the text area are extracted by applying a horizontal RLSA [14] 

and finding the connected components in that RLSA image. Characters in a word 

image are found by performing its connected component analysis followed by a 3-
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step post-processing stage. For each character, we define 6 feature sequences which 

represents a character’s overall form. Query word is searched within candidate words 

by a combination of our Merge-split Edit distance at word level and DTW at character 

level which allows us to spot even the words with improper character segmentation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. a) Document image Indexing involving character segmentation and feature extraction.  

b) Word retrieval using a combination of DTW and Merge-split edit distance 

3   Document Indexing 

In this section, we only give an overview of the indexing process involving character 

segmentation and feature extraction.  

        The connected components (CCs) of the binary image do not always correspond 

to characters. A character may be broken into multiple components or multiple 

characters may form a single component. For that, we have a 3-pass processing stage 

for the CCs in a word component to get the characters. In the first pass, components 

on the top of each other are assigned to the same character (fig 2a). In the 2
nd
 pass, 

overlapping components are merged into a single character (fig 2a). In the 3
rd
 pass, 

the punctuation marks (like ‘,’ ‘.’) are detected using size and location criteria and are 

removed from the word (fig 2b). After the three passes, there still remain some 

improperly extracted characters which are of main interest in this paper (fig 2c,3). 
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Fig. 2. a) Pass 1 & 2  b) Pass 3  c) Some examples of the remaining unfixed characters 

     Each character is represented by a sequence of six feature vectors. The length of 

each of the six vectors associated with a character is equal to the width of the 

character bounding box. The six features we use are Vertical projection profile (on 

gray level image), Upper character profile position, Lower character profile position, 

Vertical histogram, Number of ink/non-ink transitions and Middle row transition state 

(on binary image). Document processing/indexing is done offline, creating an index 

file for each document image. The coordinates of each word, number of characters in 

the word, the position and the features of each character are stored in the index files. 

One advantage of having an index file is that the query word can now be crisply 

selected by just clicking on the word in the GUI of our document processing system. 

This query word is processed in the same way to extract character features. We can 

also type in the input query word instead of a click-selection. In that case, features of 

the prototype characters (selected manually offline) are used for matching. The 

segmentation of the query characters is perfect in this case. 

4   Word Retrieval 

For word spotting, we have proposed a two step retrieval system. In the first step, a 

length-ratio filter finds all eligible word candidates for the query word. For two words 

to be considered eligible for matching, we have set bounds on the ratio of their 

lengths. If this ratio does not lie within a specific interval, we do not consider this 

word as a candidate. Through this step, we are on average able to eliminate more than 

65% of the words. In the second step, the query word and candidate word are matched 

using a multi-stage method in which the characters of the two words are matched 

using the Merge-Split Edit distance algorithm while features of the two characters are 

matched using elastic DTW method coupled with Euclidean distance. The need for an 

algorithm catering for the merge and split of characters arises because we may not 

have 100% accurate segmentation of characters all the time (fig 3).  
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Fig. 3. Query words and some instances of them which were not spotted without Merge-split 
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4.1   Word Matching – Merge Split Edit Distance 

To address character segmentation issues, we have introduced two new merge-based 

character matching operations Merge1 and Merge2 that enable to model a merge and 

split capability respectively in Edit distance, thus overcoming the limitation of having 

a perfect character segmentation by catering for the broken and merged characters 

during word matching.  

        Consider 2 words A and B; A, the query word, having s characters while B, the 

test word, having t characters. We treat both words as two series of characters, A = (a1 

... as) and B = (b1 ... bt). To determine the distance/cost between these two character 

series, we find the Edit matrix W which shows the cost of aligning the two 

subsequences. Apart from the three classic Edit operations, we have introduced two 

new operations ai→(bj+bj+1) and (ai+ai+1)→bj which represent merge1 and merge2 

respectively. Merge1 function allows one character of the query word to be matched 

against two characters of the current test word, while merge2 function allows one 

character of the test word to be matched against a combination of two query word 

characters thus modeling a split bj. Combination of two characters is done by 

concatenating the 6 feature sequences of both of them. The entries of matrix W 

initialized by +infinity are calculated as: 
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(1) 

Here, Λ is an empty character with all feature vector values set to 0. γ(ai → bj) is the 

cost of changing ai to bj. γ(ai → Λ) is the cost of deleting ai and  γ (Λ → bj) is the cost 

of inserting bj.  

        γ(ai→(bj+bj+1)) shows the cost of changing character ai of query word to two 

character components bj+bj+1 of the test word. It means that if the character bj was 

broken into two components bj and bj+1, we would be able to match this with ai using 

Merge1 function. The feature sequences of bj and bj+1 are concatenated and are 

matched with the feature vectors of ai to get W(i,j). Once W(i,j) is calculated, we copy 

the same value of W(i,j) to the cell W(i,j+1) signifying that we had used the merge 

function.  

      Similarly, γ((ai+ai+1)→bj) shows the cost of changing two characters of query 

word to one character of test word. It means that if bj was infact a component having 

two characters merged into one, we would be able to detect and match that with 

ai+ai+1using our Merge2 function. Here, instead of splitting the feature vectors of bj 
(which is more difficult as we do not know exactly where to split), we merge the 

query word characters, thus emulating the split function. W(i,j) is calculated the same 

way and it is copied to the cell W(i+1,j) signifying the use of  the split function. 



4.2   Character matching cost - DTW 

All the character matching costs are calculated by matching the feature sequences of 

two character components using DTW. The advantage of using DTW here is that it is 

able to account for the nonlinear stretch and compression of characters. Hence two 

same characters differing in dimension will be matched correctly.  

Two characters X and Y of widths m and n respectively are represented by vector 

sequences X = (x1 ... xm) and Y = (y1 ... yn) where xi and yj are vectors of length 6 (= 

No. of features). To determine the DTW distance between these two sequences, we 

find a matrix D of m x n order which shows the cost of aligning the two 

subsequences. The entries of the matrix D are found as: 
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Here for d (xi , yj), we have used the Euclidean distance in the feature space:  
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where p represents the number of features which in  our case is six.  

 

The entry D(m , n) of the matrix D contains the cost of matching the two characters. 

To normalize this value, we divide the final cost D(m , n) by the average width of the 

two characters.  

Final char-cost = D(m,n) / [(m+n)/2] (4) 

4.3   Final word distance  

Once all the values of W are calculated, the warping path is determined by 

backtracking along the minimum cost path starting from (s , t) while taking into the 

account the number of merge/split functions used in the way. The normalization 

factor K is found by subtracting the number of merge/split functions from the total 
number of steps in the warping path. The final matching cost of the two words is:  

Final word-cost = W(s,t) / K (5) 

Two words are ranked similar if this final matching cost is less than an empirically 

determined threshold. 

Figure 4 shows an example of matching two words of lengths 4 and 3. The query 

word is well segmented while the last two characters in the test word are merged into 
one. While finding W, we see that one merge operation is used for matching ‘ur’ with 

‘u’, thus decrementing the value of K by one. 
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0.00   1.79   3.39   5.56    

1.78   0.02   1.62   3.79    
3.47   1.72   0.04   2.05    

5.51   3.75   2.08   0.09    
  6.85   5.10   3.42   0.09  

 Final Word Cost 

       = W(4,3)  /  K 

W(4,3) = 0.09 

K= steps - merge/splits used 

    = 4 – 1 = 3 

Final cost = 0.09/3 =0.03 

Fig. 4. Calculating Edit Matrix W for two similar words of lengths 4 and 3, and their final cost 

5   Experimental Results 

The comparison of character-feature based matching technique with other methods 

(method in [12] and correlation based matching method) has already been done in [9]. 

Here we compare our merge-split Edit distance based matching method with a similar 

method but using classic Edit distance in place (we will refer to it as [Ed]) and also 
with [9] to show the improvement in results. We also give the results of a professional 

OCR software Abbyy FineReader [1] on the same data set. Experiments were carried 

out on the document images provided by BIUM [6]. For experiments, we chose 48 

pages from 12 different books (4 images from each book), having a total of more than 

17,000 words in all. For testing, 60 different query lexiques having 435 instances in 

total were selected based on their varied lengths, styles and also context of the book. 
Table 1 summarizes the results of word spotting. 

Table 1. Result Summary of Word matching algorithms 

 Method 

in [9] 

Classic 

Edit [Ed] 

Our 

method 

ABBYY 

[1] 

#query word instances 435 435 435 435 

#words detected perfectly 401 406 427 422 

#words missed 34 29 8 13 

#False positives 51 16 4 0 

Precision % 88.71% 96.20% 99.01% 100% 

Recall % 92.18% 93.34% 98.16% 97.01% 

F-Measure 90.41% 94.75% 98.58% 98.48% 

 

        We can see from the above table that the presented  merge-split Edit distance 

based method achieves a much higher recognition rate while maintaining a better 

precision than [9] and [Ed]. This is due to the fact that we are able to spot even those 

words where the segmentation of characters is not good. The layout of the pages used 
was not difficult to manage for a professional OCR. So on the same data-set, [1] 

produced a precision of 100% but we still obtained a better recall rate than it. 

      We also analyzed the effect of word length on the Edit distance threshold, 

learning that for smaller words (with lesser number of characters), a lower threshold 

gives better precision and recall rates, while for longer words, a higher threshold 



value proves to be more effective. This is because for longer words, it is more 

unlikely to find similar words; so we can allow a bit more relaxation in threshold 

value. Another thing we learned is that the time taken to search a query increases 

linearly with the number of documents searched.  

Considering optimum threshold values (found empirically), our system achieves a 

precision of 99% while obtaining an overall recognition rate of 98.16%. 

6   Conclusion 

We have proposed a new approach for word spotting based on the matching of 
character features by employing a combination of DTW and Merge-Split Edit 

distance. The main objective of this approach is to cater for the improper segmented 

characters during the matching process. Results obtained using this method are very 

encouraging. The number of query words missed is very less as compared to [9] and 

[Ed] which shows the prospects of taking this method even further by improving 

different stages and adding more features to achieve even higher percentages.  
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