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Abstract

In this paper, we shall address the issue of semantic extraction of different regions of interest. The proposed approach is based on statistical
methods and models inspired from linguistic analysis. Here, the models used are Zipf law and inverse Zipf law. They are used to model
the frequency of appearance of the patterns contained in images as power law distributions. The use of these models allows to characterize
the structural complexity of image textures. This complexity measure indicates a perceptually salient region in the image. The image is first
partitioned into sub-images that are to be compared in some sense. Zipf or inverse Zipf law are applied to these sub-images and they are classified
according to the characteristics of the power law models involved. The classification method consists in representing the characteristics of the
Zipf and inverse Zipf model of each sub-image by a point in a representation space in which a clustering process is performed. Our method
allows detection of regions of interest which are consistent with human perception, inverse Zipf law is particularly significant. This method
has good performances compared to more classical detection methods. Alternatively, a neural network can be used for the classification phase.
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1. Introduction

Automatic detection of regions of interest in images is one
of the most critical problems in computer vision. For a human
observer, detecting a perceptually important region in an image
is a natural task which is done instantaneously, but for a ma-
chine it is far more difficult, as the machine lacks the cultural
references and knowledge to identify the content of the scene.
One of the causes for this difficulty is the subjective nature
of the notion of region of interest (ROI). In the most general
sense, a ROI, as its name suggests, is a part of the image for
which the observer of the image shows interest. Of course, the
interest shown by the observer in viewing the image is deter-
mined not only by the image itself, but also by the observer’s
own sensitivity. For a given image, different people could find
different regions of interest. However, it can be said, in most
cases, regions of interest generally have visually and struc-
turally distinctive features than the rest of the image. Then some
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structural characteristics can be used to detect the ROI of an
image without making hypotheses about the semantic content
of the picture. The detection of the ROI consists in finding a
region of the image which appears different from the back-
ground with respect to low-level features such as contrast,
colour, region size and shape, distribution of contours or tex-
ture pattern. Different methods have been proposed to detect
regions of interest in an image. Some are based on models of
low-level human vision, such as the method proposed by Os-
berger and Maeder [1] which detects perceptually important re-
gions on the image by building importance maps based on vari-
ous visual characteristics. The method proposed by Itti et al. [2]
is based on multiscale centre-surround contrast and the method
presented by Syeda-Mahmood [3] uses a segmentation in ho-
mogenous colour regions. Other methods are based on different
structural characteristics of the image without explicit reference
to the human vision. The method proposed by Di Gesu et al. [4]
uses symmetry transforms, Stentiford [5] uses dissimilarities in
local neighbourhoods, Kadir and Brady [6] use a local measure
of entropy to detect salient features in an image, Wang et al.
[7] use a wavelet transform and Carlotto and Stein [8] use a
fractal model.
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In this paper, we shall use a new approach based on a sta-
tistical model which originates in linguistic analysis: Zipf law.
This model proved efficient to represent the distribution of the
frequencies of words in the form of a power law. It has been
discovered in 1949 by Zipf [9] in written English texts, and
Zipf distributions have been found in every natural language.
Similar power laws have been put into evidence in different
domains of human and natural sciences, such as income distri-
bution by Pareto [10] and Gibrat [11], population of cities by
Zipf [12] and Gabaix [13], distribution of biological species by
Yule [14], distribution of galactic voids by Gaite and Manrubia
[15], Internet traffic by Breslau et al. [16] and Huberman et al.
[17] and in the structure of music by Manaris et al. [18] and
of natural noises by Dellandrea et al. [19]. In the domain of
digital images, Zipf law has been used by Vincent et al. [20]
to evaluate the distortion of compressed images and by Caron
et al. [21] to detect artificial objects in natural environments.
The method described in this paper aims to detect the regions
of interest in various digital images. A potential application is
automatic determination of the ROI for JPEG2000 compres-
sion. Some restrictive constrains have been assumed so that a
process is possible. We assume the ROI to be detected is a sin-
gle connected region in the image. The ROI must both have
a significant size and appear different from the background
with respect to its structural complexity. Most often, the ROI
is belonging to the foreground of the scene and contains more
details than the background but our method also handles the
case when the ROI is more uniform than the background.

The power law model will first be recalled, and then we
will present the adaptation that is needed to apply it to image
analysis. Then, the detection methods based on Zipf and inverse
Zipf laws will be presented, and the influence of initial image
segmentation will be discussed.

2. Power law models

The power law distribution model known as Zipf law or
rank-frequency law has been determined empirically by Zipf.
According to Zipf law, in a topologically ordered set of symbols
like a text, the frequency of occurrence of the different symbol
patterns, for example the words of the text, follows a power law.
To be more precise, different patterns occur in the signal, they
are n-tuples of symbols. Let us note as Pj, Pa, ..., Pg these
patterns. The frequencies of those patterns depend on the signal,
let us note them as Np, Na, ..., Ng. Then the patterns can be
sorted according to the decreasing order of their appearance
frequency. That is to say Ng(;) is frequency of pattern Py of
rank i.The frequency of appearance Ny(;) of the pattern P of
rank i is given by

Nogy =ki™*. (1)

In this formula, k£ and o are constants. k is linked to the total
length of the observed signal and the value of the exponent
o, in the case of English texts studied by Zipf is close to 1.
Similar results have been found in texts written in all natural
languages, as well as randomly generated texts. This power law
model is usually represented graphically in a bi-logarithmic

scale diagram, where the logarithm of the frequency of each
n-tuple is plotted with respect to the logarithm of its rank. Such
a graphical representation is called Zipf plot. This transform
allows to introduce a linear relation that can be estimated in an
easy way. The least-square regression of the plot can be used
to approximate the power law exponent.

Different interpretations have been proposed to explain the
existence of power law distributions. Zipf’s own explanation
was based on the principle of least effort: a power law distribu-
tion of the word frequencies tends to minimize the effort of both
the speaker and the listener in communication. However, not
all the phenomena where power law distributions are observed,
can be explained in that way. Therefore, other interpretations
have been proposed by Mandelbrot [22], Simon [23] and more
recently by Reed [24], where the existence of power laws is
explained by the properties of lexicographical trees, Brownian
motion and stochastic birth and death processes.

Another power law model has been discovered by Zipf [25]
in his work on natural texts. It is the so-called inverse Zipf law.
According to this law, the number I of distinct words which
have the frequency f is given by

I(f)y=af". )

In this formula, a and b are constants and the value of
exponent b is generally close to 2 in the case of natural texts. In
fact, this formula is verified only for the least frequent words.

As for Zipf law, inverse Zipf law can be represented in a
bi-logarithmic scale diagram. Such a representation is called
inverse Zipf plot. Inverse Zipf law has been used by Cohen et al.
[26] and Ferrer and Solé [27] to study the properties of natural
and random texts. Inverse Zipf law expresses the diversity of
the lexical spectrum of a text and it can be used to discriminate
between natural texts and artificially generated texts, as the
values of the parameters of the power law model are different
for the two types of texts.

Since power law models can discriminate between natural
and artificial texts, it might be possible to adapt those models
to image analysis and use them to detect some specific features
in an image, and therefore to detect a ROL.

3. Application to images

Some years ago, Lindsey and Stromberg [28] used the fre-
quencies of simple features. In this study, the approach finds
its base in some law that has been verified in different fields.
We show both Zipf law and inverse Zipf law can be used for
image analysis. To adapt the model to image analysis, it is nec-
essary to define the equivalent of the notion of word in the case
of images. In order to respect the usual topology that structure
the plane of the image, we will use image patterns defined as
blocks of 3 x 3 adjacent pixels, such as words are defined as
strings of adjacent letters. The two main differences between
words and image patterns is that the image is bi-dimensional,
unlike the text, and in our case the patterns will have a fixed
size, unlike the words which have a variable length. In usual
images where each pixel is coded on a byte, the grey levels
of the image cannot be used directly. Indeed, the number of
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possible different patterns would be too large for the statistical
repartition of the frequencies to be significant. It is therefore
necessary to define a pattern coding which reduces the number
of distinct patterns. It will eliminate also the influence of the
small variations of intensity. A simple way to achieve this is
to quantize the grey level that is to divide the grey scale into a
small number of classes and to assign at each pixel the value of
the class. The class value c(x, y) of the pixel g(x, y) is given
by the formula (3) where N is the number of classes:

3

c(x,y)=int |:—Ng(x, y)i| .

255

The number of classes must be chosen to minimize both the
number of distinct patterns and the distortion of the image, the
loss of information due to the coding process. The best results
have been obtained with nine classes, it is the lowest number
of classes which can be used without visible distortion of the
image. An example of pattern obtained with this method is
shown in Fig. 1.

In order to verify that either Zipf law or inverse Zipf law
hold on an image, the image is scanned with a 3 x 3 mask,
the patterns are encoded and the occurrence frequency for each
different pattern is computed. The patterns are coded according
to the pixels grey level in the considered window. In the case
of Zipf law, the patterns are sorted in the decreasing order of
their appearance frequency, and the frequency for each pattern
is plotted with respect to its rank in a double-logarithmic scale
diagram. In fact, only the frequencies of the patterns which
appear at least twice in the picture are represented on the plot.
Such a graphical representation is called Zipf plot. In the case of
inverse Zipf law, the number of distinct patterns having a given
frequency is counted, and the results are also represented in a
double-logarithmic scale diagram, known as inverse Zipf plot.

255|210 | 210 8 7 7
25| 2 | 34 0 0 1
40 | 2 | 40 1 0 1

Fig. 1. Original pattern (left) and pattern coded with nine-class method (right).

2523

An example of Zipf and inverse Zipf plots associated with a
photographic image is shown in Fig. 2. We can notice inverse
Zipf law is a very good model for the image. Besides, as far as
Zipf law is concerned, the quality of the model is not so good.
A close look at the graph shows two linear zones. Two power
laws models reveal different characteristics of the image. With
Zipf law, the graphical representation can be divided into two
parts, corresponding to different patterns types. The most fre-
quent patterns represented by the left part of the plot correspond
to the most frequent patterns. They are present in the homoge-
nous zones of the image. The right part of the plot corresponds
to smaller details and contours. The two parts of the curve,
taken separately are linear, so the distribution of the image pat-
tern frequency is modelled by two independent power laws,
one for homogenous regions and the other for small regions.
Two different structures are highlighted. In the case of the in-
verse Zipf law, the plot is linear for the least frequent patterns
and means the distribution of the number of distinct patterns,
with respect to their frequencies, follows a power law. There-
fore, inverse Zipf law holds in the case of grey level images
encoded through 3 x 3 windows in the neighbourhood of each
pixel.

We are now to analyse the differences of the characteristics
of Zipf and inverse Zipf plots according to the structural content
of the image. Fig. 3 shows two different zones of the same
image and the associated Zipf plots. In the case of a uniform
background zone, there is high number of homogenous patterns,
so the slope of the left part of the plot is higher, and the right
part of the plot appears comparatively flat. On the contrary, in
regions containing more details, the plot is more linear and with
a larger slope.

The inverse Zipf plots of both types of zones also show no-
ticeable differences. In image zones containing many details
such as foreground objects, the number of patterns which have a
low frequency of appearance is considerably higher, and there-
fore the inverse Zipf plot has a higher slope than in the case of
more uniform regions.

The characteristics of Zipf and inverse Zipf plots are different
according to the amount of detail in the image. Since the regions
of interests generally contain more details than the background
of images, Zipf and inverse Zipf laws can be used to detect
regions of interest in images (Figs. 3 and 4).
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Fig. 2. Inverse Zipf plot (b) and inverse Zipf plot (c) associated with the image (a).
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Fig. 3. Zipt plots of a uniform region (a) and of a region containing many details (b).

4. Detection using Zipf law

The ROI of the image can be defined as a part of the im-
age whose structural content differs from the background of
the picture. Power law models can provide an indication on the
structural content of the picture, however, they provide no spa-
tial information by themselves. Therefore, we are introducing
a more local study followed by a global analysis of the local
results. In order to reveal some local information, it is neces-
sary to divide the image into sub-images as shown in Fig. 5.
In each of the sub-images, Zipf or inverse Zipf law parameters
can be estimated. Then the sub-images are classified accord-
ing to the characteristics of the corresponding Zipf plot. The
classification method consists in representing the sub-images
in a multidimensional space of characteristics. Then the set of
points is clustered in two classes in order to detect the ROI.

In the case of Zipf law, the characteristics to be used are
the slopes of the two parts of the plot. The two zones are de-
termined on the graph by point P being the most distant point
from the line connecting the two extreme points of the plot as
shown in Fig. 6.

For example, the horizontal coordinate x of each point of the
cluster represents the slope of the left part of the corresponding

Zipf plot and the vertical coordinate y represents the slope of
the right part of the plot. The slopes are computed using least-
square regression method on a re-scaled representation to give
equal weight to each point.

It has been determined experimentally that in most images,
the sub-images containing more detailed objects have Zipf plots
where the slope of the right part is slightly lower than the slope
of the left part. They are represented on the graph by points
for which y <x and x < G, /1.2 hold, with G the horizontal
coordinate of the centre of gravity of the cluster. Nevertheless,
not every sub-image satisfying these conditions is part of the
main ROI. Therefore, the largest connected component of those
sub-images is the only one to be considered as “the” ROI. This
region may contain holes. They can be filled by including the
sub-images which have all their neighbouring sub-images be-
longing to the ROIL. An example of detection using this method
is shown in Fig. 7.

5. Detection using inverse Zipf law

Like Zipf law, inverse Zipf law can be used to detect
regions of interest in an image. The image is again partitioned
into sub-images and the characteristics of the inverse Zipf plots
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Fig. 4. Zipf plots of a uniform region (a) and of a region containing many details (b).

Fig. 5. Segmentation of the image in sub-images.

corresponding to the sub-image are represented graphically by
points in a graph. The significant characteristics of an inverse
Zipf plot we are using are its slope and the number of patterns
which appear only once in the picture. On the graphical rep-
resentation, the horizontal coordinate represents the slope and
the vertical coordinate represents the number of unique pat-
terns. The set of points associated with sub-images is clustered

Log (frequency)

1.5 2.0 2.5 3.0

Log (rank)

0.0 0.5

Fig. 6. Separation between the two parts of Zipf plot.

into two classes, respectively, the ROI and the background,
according to the values of the slope of the distribution and the
number of unique patterns. In most images, the ROI contains
more details than the background, so it will be represented
by the part of the sub-images corresponding to the highest
values of the slope and/or of the number of unique patterns.
The separation between the two classes can be defined by the
centre of gravity of the set. If we use the number of unique
patterns as a detection criterion, the ROI is defined as the
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Fig. 7. In (a) region of interest extracted using Zipf law, in (b) the sub-images are figured in the representation space with the clustering in two classes ROIL

and background.
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Fig. 8. Region of interest detection indicated in (a) using inverse Zipf law.
The representation of the sub-images is figured in (b) where the clustering
is shown.

largest connected component of the sub-images represented by
points situated above the centre of gravity of the cluster. If the
ROI contains holes, as with Zipf law, they can be filled by
including the sub-images with all neighbours already belonging
to the region. The discrimination between the two classes can
be adjusted dynamically in order to maintain the surface of the
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Fig. 9. Detection of an object more uniform than the background in (a) the
representation of the sub-images is figured in (b) where the clustering is
shown.

ROI between 20% and 50% of the total area of the image. An
example of ROI detected using this method is shown in Fig. 8.
The blue area in this case seems too large.

Unlike in the previous case, the ROI consists of a more
uniform object on a textured background. It is still possible to
detect the ROI using the same method and detecting the case
in an automatic way. This case occurs if more than 50% of the
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patterns of the whole image appear only once in the picture. The
ROl is associated with the lower part of the graph. An example
of such a ROI detected in such a way is shown in Fig. 9.

It is also possible to use the slope of the inverse Zipf plots
instead of the number of unique patterns as a detection criterion.
In this case, the ROI is represented by the points situated at
the right of the gravity centre of the set, or at the left in the
case of uniform object in textured backgrounds. The results are
similar to those obtained with the previous criterion. In both
cases, the regions of interest detected with this method tend

Fig. 10. Region of interest detected based on the number of unique patterns
(a) and on the two characteristics (b).

to be larger than those which would be considered as such by
human observers and often includes parts of the background.
An improvement can be made by using the two characteristics
of the inverse Zipf plot to determine the ROI. In this case,
the ROI is the largest connected component of the sub-images
represented by the points in upper right part of the cluster. This
method allows the detection of more precise ROI as shown in
Fig. 10.

6. Influence of initial segmentation

The size of the ROI depends on the size of the whole image.
Here we are going to study the influence of the image size on
the characteristics of its pattern distribution. Indeed, the size of
the sub-images must be chosen properly. They must be large
enough to present a statistically significant pattern distribution
but also be small enough to allow a precise determination of the
ROI. As an image always aims to show something, and to bring
some information to the observer, we have chosen to consider
sub-images with no absolute dimension but relative dimension,
related to the initial dimension of the image. The whole image
is divided in a certain number of sub-images. To determine
the best size of the image, a series of tests was conducted
with the same images segmented into different numbers of sub-
images. An example of test result is shown in Fig. 11. The
image has been segmented in 64 (=8 x 8), 361 =(19 x 19) and
1024 = (32 x 32) sub-images, and the inverse Zipf detection
method has been applied. When segmented in 8 x 8 sub-images,
the object is not detected because the image is misclassified
as having an object of interest which is more uniform than
the background. With segmentation in 361 sub-images the ROI
is correctly detected, and with the segmentation in 1024 sub-
images, some uniform parts of the object are not detected as
parts of the background and textured background regions are
classified as regions of interest. In most digital photographic
images, the best detection results are obtained when the surface
of each sub-frame is about 5000 pixels, which correspond in
the case of the image presented in Fig. 11 to a segmentation in
19 x 19 sub-images of the initial image. Indeed, the number of
pixel must be large enough as we consider a statistical approach.

7. Experimental results
The method has been tested on a base of 100 digital photo-

graphic images containing a distinct ROI which has been de-
termined by a human observer. The images have been gathered

Fig. 11. Regions of interest detected using inverse Zipf law with an initial segmentation in 8 x 8, 19 x 19 and 32 x 32 sub-images.
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Table 1
Detection results with different methods

Method Detection rate (%)
Zipf law 56

Inverse Zipf law

Number of unique patterns 80

Slope of the distribution 78

Both parameters 84

among different public image databases. The images are un-
compressed or mildly compressed and their size varies from
256 x 256 to 2000 x 1500. The images have been segmented
into the optimal number of sub-images according to their size.
The detection is considered to be successful if the subjective
ROI is included in the region detected by the process. The
results of the different methods are detailed in Table 1 below.

We may observe that the use of inverse Zipf law gives con-
siderably better performances than Zipf law for detecting the
ROI in images. However, the ROI detected with inverse Zipf
law is often larger than the true ROI of the picture. Our method
has been compared with two other detection methods, a fractal
method adapted from those developed by Carlotto and Stein
[8] and the method of importance maps proposed by Osberger
and Maeder [1]. The fractal method consists in partitioning the
image in blocks of size 32 x 32 and computing the fractal di-
mension D of the grey level elevation surface of each block
using a box-counting approach. The ROI consists in the largest
connected component of blocks which satisfy

D<[)—aD or D>D+O‘D,

where D is the average value and o p is the standard deviation
of the fractal dimension on all the image blocks. The ROI has
been detected in only 58% of the test images.

The method of importance maps consists in segmenting the
image into regions using a split-and-merge segmentation algo-
rithm and in computing for each region perceptual importance
factors based on contrast, size, shape and position of the re-
gion with respect to the centre and the border of the picture.
The importance value of each region is the squared sum of
the five importance factors, normalized in the [0..1] interval,
the most important region having an importance value of 1.
This method allows the detection of the ROI in 83% of the
test images. However, this method often allows to detect a part
of the subjective ROI, particularly when several regions are
involved.

8. Conclusion

Power law models such as Zipf and inverse Zipf laws can
be used to characterize the structural complexity of an image.
Our former nonconstrainable hypotheses show that the use of
a method based on those models allows to detect automatically
the ROI of an image, given that this ROI appears sufficiently
distinct from the background. Both Zipf law and inverse Zipf
law can be used to detect ROI, however, the method based on

inverse Zipf law produces better results for our application.
The method allows the detection of ROI not only when the ob-
ject to be detected is more detailed than the background, but
also when it appears more uniform and our method is able to
adapt to both cases. Our detection method based on inverse Zipf
law has better performances than box-counting fractal meth-
ods and equivalent with importance map perceptual method.
A neural network can be used for the classification, however,
this method is not very adapted to our application due to the
disparity of the images, a no-explicit reference classification
method gives better results in our case. A possible improve-
ment of the method would be to operate a fusion of all the
parameters we have extracted or the fusion of the characteris-
tics of power law models with the measures of more classical
perceptual features of the image such as edge detection or con-
trast measures. Indeed, our goal was to show the interest of
applying Zipf law model rather than proposing a final process
for ROI detection. Other applications of power law models in
images can be found, such as image indexation and content-
based image retrieval, as well as the segmentation of video
sequences.
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