
PhD THESIS

A dissertation submitted in partial fulfilment of the requirements

to obtain the title of

Doctor of Université Paris Descartes

UFR Mathématiques et Informatique

Analysis and Retrieval of Historical

Document Images

By

Khurram KHURSHID

2009

Defended on 15th of December 2009 in front of the following jury:

Dr Georges STAMON Université Paris Descartes Chair

Dr Salvatore TABBONE Université Nancy 2 Reviewer

Dr Michel CRUCIANU CNAM, Paris Reviewer

Dr J. Marc OGIER Université de la Rochelle Examiner

Dr Claudie FAURE CNRS, Télécom Paris Tech Supervisor

Dr Nicole VINCENT Université Paris Descartes Supervisor

 ii

 iii

Acknowledgements

This thesis is the result of three years of devoted work which would not have been possible

without the support of many. Here, I would like to express my thanks to people who have been

very helpful to me during the course of this work.

First of all, I would like to take this opportunity to gratefully acknowledge the wholehearted

supervision of my very learned advisors, Dr. Nicole Vincent and Dr. Claudie Faure, who

complemented each other wonderfully well. I count myself very lucky to have these two, who are

ranked amongst the best in the domain, as my supervisors. I was always led by their skillful

guidance and helpful suggestions, which made it possible for me to go this far. Dr. Nicole

Vincent, being my internal supervisor, was always there for help and long discussions whenever I

got stuck in something. The patience, dedication, and constant encouragement of my supervisors

made it possible for me to deliver a dissertation of appreciable quality and standard.

I would also like to thank Dr. Salvatore Tabbone and Dr. Michel Crucianu for accepting to

review my dissertation and providing me with valuable comments and suggestions which assisted

a great deal in improving the quality of this thesis considerably. Also many thanks to Dr. J. Marc

Ogier for accepting to be a part of jury to evaluate my work.

Special thanks are due to the co-director of research group SIP, Dr. Georges Stamon for

providing me with valuable guidance and support at various stages of my work. His continual

encouragement provided the much needed motivation, at every step, during the three years of my

stay in the lab.

My cordial appreciation extends to Dr. Nicolas Lomenie and Dr. Florence Cloppet for

providing a good research environment and extending worthful support and constructive

suggestions. My stay at SIP would not have been such a pleasurable one without the presence of

friendly colleagues, and here I have to specially mention Imran Siddiqi and Hassan Chouaib,

who helped me out in one way or another and exchanged fructuous views from time to time.

I owe my thanks to all my friends, specially, Shoaib, Hussain, all Kashif’s, Shehzad, Rauf sb,

Sarmad and Aamir for helping me get through difficult times, and for all the support,

camaraderie and care they provided.

 iv

I would also like to express my deepest gratitude to the Higher Education Commission of

Pakistan for financially supporting the study and to my employer Institute of Space Technology

Pakistan, and here I would like to mention the names of Mr Raza Hussain (Chairman

SUPARCO), Mr Imran Rehman (VC IST), Mr Ayyaz Aziz and Mr Arbab Mehmood, for

providing me their full support and backing as well as time, thus making it possible for me to

pursue my research in a prestigious institution of esteemed repute.

And finally, I am forever indebted to my extremely loving parents for their patience,

understanding and immense love, and my brother Khawar and my loving sister Kiran,

alleviating my family responsibilities and encouraging me to concentrate on my study.

Thank you all !

 v

Abstract

Libraries across the world hold huge numbers of historical printed documents. By digitizing these

documents, their content can be preserved and made available to a large community via the

internet or other electronic media. Such data can nowadays be shared relatively easily, but they

are often large, unstructured, and only available in image formats, which makes them difficult to

access. In particular, finding specific locations of interest in a historical document image

collection is generally very tedious without some sort of index or other direct access tool.

The current/obvious solution for this problem is to manually annotate a historical collection,

which is very costly in terms of time and money. In this work we explore some automatic

techniques that would allow the retrieval of document images with both ASCII as well word-

image queries, and would help in automatic indexing/annotation of the document images. For that

matter, Word spotting: an approach that finds all similar word images based on the query given to

the system, has been thoroughly examined along with different character’s string matching

techniques.

The main contributions of this work are a detailed examination of retrieval approaches for

historical documents, the development of a document image retrieval framework that allows text

and image queries for information searching, and also an automatic figure/caption pair indexing

model by employing a fusion of symbolic and spatial information in the document image.

Building such a system involves challenges on numerous levels: the noisy historical printed

documents require adequate image pre-processing, binarization, segmentation and representation

techniques, as well as a robust and scalable retrieval framework. We describe the construction of

a prototype system, which demonstrates the feasibility of the proposed techniques for a large

collection of document images. The system extends the field of document analysis and retrieval

and enhances the importance of digital libraries manifolds in the field of research

The work has been done in collaboration with BIUM (Bibliothèque Interuniversitaire de

Médecine, Paris) as they provided us with their historical Medic@ document base that gave us a

chance to work on documents of different periods of our choice and interest.

 vi

 vii

Table of Contents

Acknowledgements..iii

Abstract ... v

Table of Contents..vii

List of Figures ..xi

List of Tables...xvii

List of Abbreviations and Terminologies ..xix

Chapter 1 Introduction .. 1

1.1 Motivation behind the research ..1

1.2 Digital Libraries and Historical Documents...2

1.2.1 Document Preservation and Retrieval projects..6

1.2.2 Online access to Digital Documents..7

1.3 Context of our Work...8

1.3.1 Data Sets..8

1.3.2 Global Overview of our subject...11

1.3.3 Major Contributions ..13

1.3.4 Organization of the thesis..13

Chapter 2 State of the art .. 15

2.1 Document Image Segmentation ...16

2.1.1 Top-down Techniques ...16

2.1.2 Bottom-up Techniques ..17

2.1.3 Hybrid Techniques ..18

2.2 Information retrieval – word spotting...19

2.2.1 Holistic Analysis techniques ...20

2.2.2 Analytical Recognition techniques..27

2.2.3 Comparison of the Retrieval methods - Discussion ..31

Chapter 3 Document Image Indexing... 35

3.1 Document Image Binarization..35

3.1.1 Well known sliding-window-based methods in literature ...37

3.1.2 Proposed Method – NICK ...40

3.1.3 Comparison of the different methods ..42

3.2 Text/ Graphic segmentation and Extraction of Words ...49

3.2.1 Run Length Smoothing Algorithm..50

3.2.2 Component Height-Area Analysis...52

3.3 Character segmentation ..56

3.3.1 Post-processing for character extraction..57

 viii

3.3.2 Evaluation of Character Segmentation method... 61

3.4 Feature Extraction.. 64

3.4.1 Features ... 65

3.5 Image Indexing .. 72

3.6 Conclusion ... 73

Chapter 4 Information Retrieval - Word Spotting ... 75

4.1 Introduction.. 75

4.1.1 Overview – basic idea ... 76

4.2 Query Formation.. 77

4.2.1 Query image - Crisp selection using GUI... 77

4.2.2 ASCII Query ... 78

4.3 Length-ratio Filter .. 79

4.4 Information Retrieval - Word Spotting.. 81

4.5 S-character Matching ... 82

4.5.1 Dynamic Time Warping (DTW)... 85

4.5.2 Feature distance Normalization .. 89

4.6 Word Matching .. 94

4.6.1 Relative Position Correspondence (RPC) ... 95

4.6.2 Edit Distance... 100

4.6.3 Merge-Split Edit Distance... 103

4.6.4 Linear Displacement Matching... 110

4.6.5 Computational comparison: Linear Matching and Merge-Split Edit distance............ 114

4.7 Experimental Results ... 115

4.7.1 Performance Measures.. 115

4.7.2 Performance evaluation of the different feature sequences .. 117

4.7.3 Comparison of different Word matching methods.. 119

4.7.4 Experimental analysis using highly degraded 16th century documents....................... 128

4.8 Conclusion ... 134

Chapter 5 Multi-context Applications.. 135

5.1 Figure/Captions Retrieval .. 135

5.1.1 Selection of figure caption candidates .. 136

5.1.2 Spatio-symbolic information fusion.. 137

5.1.3 Caption Retrieval results... 139

5.1.4 Conclusion .. 140

5.2 Application on contemporary documents .. 141

5.3 Application on Cursive oriental scripts – Arabic/ Urdu... 143

Chapter 6 Conclusion and Perspectives... 147

 ix

6.1.1 Summary of the method ..147

6.1.2 Future work – perspectives..148

Appendix A Sample Images... 151

A.1 BIUM Sample images of the12 books of 18th and early 19th century................................151

A.2 BIUM Sample images of the older books of the 16th century ...153

A.3 Contemporary document images ...154

Appendix B Graphical Interface of our system ... 155

Appendix C Summary in French .. 158

Bibliography.. 171

Author’s Publications... 181

 x

 xi

List of Figures

Figure 1.1 - Digitization process of a document image: from a) crude scan image to b) the

displayed gray image formed using commercial tools ...3

Figure 1.2 - Marco Polo's "Le Livre des Merveilles", Latin edition of 14th century3

Figure 1.3 - Picture of the Gutenberg Bible owned by the US Library of Congress........................4

Figure 1.4 - A degree issued by the University of Paris, 1739...5

Figure 1.5 - a) The oldest known document printed in Australia, a theatre playbill from the

former British colony dating back to 1796. b) A document image from a 19th century book

in medic@ digital library [BIUM]..5

Figure 1.6 - The Chinese Diamond Sutra, the oldest known dated printed book in the world.........6

Figure 1.7 - Screen shot of the Google book search service where a book is opened and its text

can be searched using the text search option..7

Figure 1.8 – An image from a 16th century book by Bassaei available on BIUM web10

Figure 1.9 - A BIUM document image of 19th century: a) in web resolution images the digitization

effects are more visible as compared to the b) original images..10

Figure 1.10 – Global overview of the document image retrieval system.......................................11

Figure 1.11 - Four stages of document image processing for indexing..12

Figure 1.12 – Examples of characters with segmentation inconsistencies; some T-characters are

divided into two S-characters (first four examples) or two T-characters are merged into one

S-character (last example) ..12

Figure 2.1 - Different artifacts occurring in historical document images (Rath, 2005)15

Figure 2.2 - Extraction of characters using a combination of vertical and horizontal projection

profiles (Antonacopoulos and Karatzas, 2005) ..16

Figure 2.3 - Segmentation of figures and figure caption candidates by connected component

analysis (Faure and Vincent, 2009)..17

Figure 2.4 - Curled text lines segmentation using Active contours (Bukhari et al. , 2008)18

Figure 2.5 - Segmentation in 3 and 4 classes by textural approach (Journet et al. , 2006)............18

Figure 2.6 - a) Shape map using connected component analysis b) Background map of the image

c) Combination of the two maps (Ramel and Leriche, 2005)...19

Figure 2.7 – a) Corners detected with the Harris corner detector on two gray level images, b)

Recovered correspondences in two words (Rothfeder et al. , 2003)21

Figure 2.8 - Synthetically generated query word from prototype character images (Konidaris et al.

, 2007)...22

 xii

Figure 2.9 - a) Normalized query word in a pre-defined bounding box b) Upper and lower

profiles c) extracted features, darker squares show higher pixel density d) Pixel density

based features in the defined zones (Konidaris et al. , 2007) .. 23

Figure 2.10 - DTW matching on the MCC-DCT representations of the two contours (Adamek et

al. , 2007) ... 24

Figure 2.11 - a) Original word image: slant/skew normalized and cleaned. The four features: b)

Normalized vertical projection profile, c) Normalized lower profile, d) Normalized upper

profile, e) Normalized number of ink/background transitions (Rath and Manmatha, 2003) 26

Figure 2.12 - a) Normalized character image, b) Features based on zones; darker squares indicate

higher density of character pixels, c) Area formed by upper and lower profiles and the

features extracted using them; darker areas indicate higher pixel density, d) Area formed by

left and right profiles and features extracted using them; darker areas indicate higher pixel

density (Vamvakas et al. , 2008) .. 28

Figure 2.13 - Use of a sliding window for extracting small fragments for which the features are

defined (Terasawa et al. , 2009) .. 29

Figure 2.14 - LGH features calculated for small overlapping windows of a word (Rodriguez-

Serrano and Perronnin, 2009) .. 30

Figure 2.15 - Guides and ZOIs for a template word image (Leydier et al. , 2005) 31

Figure 2.16 - A possible displacement of ZOIs (Leydier et al. , 2005) ... 31

Figure 3.1 - Different stages of Document Image Indexing in our implementation...................... 36

Figure 3.2 - Binarization using NICK with k = -0.1 and k = -0.2 at window size 19 41

Figure 3.3 - T and TNB thresholds for different average gray levels m... 42

Figure 3.4 - Comparison of binarization using Niblack and NICK methods for first three pages of

a book... 43

Figure 3.5 – Creation of a Scan Line Image: a) selection of a pixel line b) extending the pixel line

in vertical direction c) ground truth of the synthetic image binarization 45

Figure 3.6 - Local thresholds obtained by different methods for the scan line image above......... 46

Figure 3.7 – Portions of the four sample document images among the 25 used in the OCR test .. 47

Figure 3.8 - F-scores of 43 different methods in the ICDAR 2009 competition – NICK (7c) stands

at 16th position.. 49

Figure 3.9 – Distance between two words must be greater than RLSA threshold......................... 51

Figure 3.10 – Applying H-RLSA on portions of an image with C = 9.. 51

Figure 3.11 - H-RLSA on complete document images.. 52

Figure 3.12 - Areas and heights of all the bounding boxes of the 425 components in the document

above .. 53

 xiii

Figure 3.13 - Larger components are classified as graphics (red) and smaller ones as words (blue)

..54

Figure 3.14 - Stages of word extraction a) Original image b) Binary image c) H-RLSA image d)

Connected components (words) ...55

Figure 3.15 – Title word “CHAPITRE” is not extracted correctly ..55

Figure 3.16 - Concatenating the bounding boxes of two S-characters on top of each other57

Figure 3.17 – Example of pass-1, a) Raw S-characters b) S-characters after Pass158

Figure 3.18 - Concatenating two S-characters into one S-character ..59

Figure 3.19 - a) S-characters after pass1 b) S-characters after Pass 2..59

Figure 3.20 - Examples of bounding boxes overlapping in italic font ...60

Figure 3.21 - Examples of T-characters broken into two S-characters ..60

Figure 3.22 - Examples of S-characters comprising two T-characters...60

Figure 3.23 - Removal of punctuation marks ...61

Figure 3.24 - Recall percentages for T-characters in each document image..................................62

Figure 3.25 – a) A document image and b) its binarized image, where character segmentation is

not so good ...63

Figure 3.26 - Normalized vertical projection profile of character image ‘p’65

Figure 3.27 - Normalized Upper profile of S-character image 'p' ..66

Figure 3.28 - Normalized lower profile of S-character image 'p' ...66

Figure 3.29 - Ink Non-ink transitions for each column of an image ..67

Figure 3.30 – Normalized Vertical histogram for the S-character image 'p'67

Figure 3.31 - Mean Row using three central rows of the image...68

Figure 3.32 - Mid row ink to non-ink transitional sequence for two S-character images of widths

20 and 23 ..68

Figure 3.33 - Automatic clustering of S-characters in an image by matching the feature sequences

using DTW - Red blocks represent the end of a cluster ...70

Figure 3.34 - Top and base lines drawn on the text lines ...71

Figure 3.35 – S-characters of category 1 in red, 2 in green, 3 in blue and 4 in yellow71

Figure 3.36 - Indexing time for different document images...73

Figure 4.1 - Different stages of word retrieval system...76

Figure 4.2 - Selection of a query word image by clicking on the document image77

Figure 4.3 – Variations of a character in different books...79

Figure 4.4 - Percentage of words filtered out by the length-ratio filter..81

Figure 4.5 – The overall system - highlighted S-characters (in gray) of two words are matched

using DTW (matrix D) while two words are compared using different techniques...............82

 xiv

Figure 4.6 - Comparison of the features of S-character 'p' written two in different styles 84

Figure 4.7 – Vertical projection profiles of ‘p’ and ‘p’, aligned using linear scaling and Dynamic

Time Warping. DTW ensures that only corresponding locations will be compared 85

Figure 4.8 - Local continuity constraint, showing valid neighborhood relationships in a warping

path... 86

Figure 4.9 - The entry D(4,5) shows the distance between two sequences X and Y..................... 87

Figure 4.10 - Individual distances between S-characters using only a) Vertical projection b) Upper

profile c) Lower profile d) Ink/non-ink e) Histogram d) Mid row transitional sequence 90

Figure 4.11 - Distance histogram using all features for 85,718 comparisons................................ 91

Figure 4.12 - Individual normalized distances between S-characters using only a) Vertical

projection b) Upper profile c) Lower profile d) Ink/non-ink e) Histogram d) Mid row

transitional sequence.. 93

Figure 4.13 - Normalized distance histogram using all features.. 94

Figure 4.14 - RPC between S-characters of two words of length 12 with X = 1........................... 95

Figure 4.15 – S-character comparisons for a) query word of length 3 b) query word of length 15.

S-character 1 & 15 (corner S-characters) are compared with three S-characters, S-character 2

& 14 are compared with four S-characters, while others are compared with five S-characters

in the test word... 96

Figure 4.16 - Example of a false positive for a small word with a non-zero ‘X’........................... 97

Figure 4.17 -Example of an unwanted match for a query word 'nette' .. 98

Figure 4.18 - Multistage system - features of two S-characters X and Y are matched using elastic

DTW (D) while the two words are matched using Edit matrix (W) 99

Figure 4.19 - Each entry of matrix W is dynamically calculated using a DTW matrix (D) 99

Figure 4.20 - The entry W(4, 4) is the cost of aligning the two words of length 4...................... 102

Figure 4.21 - Words not matched due to segmentation problems.. 103

Figure 4.22 - Character segmentation errors (Split as in first five examples and merge as in last

example) causing problems in matching stage... 104

Figure 4.23 - One S-character of query word matched against two S-characters of test word.... 105

Figure 4.24 - Two S-characters of query word are matched against one test S-character 106

Figure 4.25 - Calculating Edit Matrix W for two similar words of lengths 4 and 3 108

Figure 4.26 - Calculating Edit Matrix W for two similar words of lengths 6 and 7 109

Figure 4.27 - Area of interest for the matching of two words in Edit distance............................ 110

Figure 4.28 - Different operations for linear displacement matching.. 111

 xv

Figure 4.29 - First iteration of the algorithm for matching the S-characters of two words. We can

see that Merge-Q, the operation of matching S-characters ‘F’,‘I’ of the query word with S-

character ‘FI’ of the test word, yields the minimum cost ...113

Figure 4.30 - Time taken per 100 words searched, by linear displacement matching and Merge-

Split Edit distance, for query words of different lengths..114

Figure 4.31 – Example of relevant word and false positive word for given queries117

Figure 4.32 - Precision vs Recall at different thresholds for the six features...............................118

Figure 4.33 - F-Scores for different features at different thresholds ..118

Figure 4.34 - Recall rates for different methods on our data set ..122

Figure 4.35 - OCR result for a page where grean zones highlight the text areas while red zones

highlight the graphics. OCR problems : word 'FIG' has been misread as 'Fis', while some

words are taken as part of graphics and not as text ..123

Figure 4.36 - Label text completely misread by the OCR..124

Figure 4.37 - Precision percentages for different methods...125

Figure 4.38 - F-scores of different methods ...125

Figure 4.39 – Merge-Split Edit distance - Precision vs Recall at 8 different thresholds between

0.4 and 1.1 ..126

Figure 4.40 – Merge-Split Edit distance - F-score at different thresholds126

Figure 4.41 - R-scores showing the relevant word matches against total extra words detected ..127

Figure 4.42 - Portion of a 16th century document image - difficult to read even from the naked

eye due to document quality and also because of the old font styles128

Figure 4.43 - Extraction of text areas using ABBYY. Some text areas are taken as graphics (green

parts are segmented as text areas while red parts highlight the graphics)129

Figure 4.44 - Another example of text extraction and recognition by ABBYY software............129

Figure 4.45 - Text extraction using the proposed method. All text areas are detected................130

Figure 4.46 - Segmentation of words (in red bounding boxes) and S-characters (in blue bounding

boxes) ...130

Figure 4.47 - Word segmentation problems: Some words are merged together as the spacing

between them is very low...131

Figure 5.1 - Manual Figure/caption indexing on BIUM web base...135

Figure 5.2 – a, b) The nearest neighbors of each black square belong to the perceived a) row or b)

column. c) Filled in black, the NNH bounding boxes in horizontal text lines, d) and the

NNV in vertical text lines...136

Figure 5.3 - Close views of a page: a) After grouping NNV and NNH. b) Final detection137

Figure 5.4 - Different Caption Labels used in Medic@ books...138

 xvi

Figure 5.5 - a) Figure and caption candidates, true caption lines are filled in black. b) Three line

candidates, after word spotting of “Fig” candidates 1 and 2 are eliminated. c - d) Candidates

do not include the first caption line retrieved by word spotting .. 139

Figure 5.6 - Character segmentation issues in contemporary document images 141

Figure 5.7 - Examples of words broken down in two lines ... 143

Figure 5.8 - Sample page of the Quran with the text lines slanted .. 144

Figure 5.9 - Examples of S-characters for different words... 144

Figure 5.10 - Sequence of S-characters in a word ... 145

 xvii

List of Tables

Table 3.1 - : Portion of output images obtained by using different methods at windows size 19, a)

Niblack b) Sauvola c) Wolf d) Feng e) NICK..44

Table 3.2 - Recognition rates achieved by the ABBYY OCR ...48

Table 3.3 - Result summary of character segmentation process ..64

Table 4.1 – Length-ratio filter for different word lengths ..81

Table 4.2 - Pseudo code for the DTW algorithm ...87

Table 4.3 - Overall distance values using individual features as well as all the features for 85,718

different comparisons ...92

Table 4.4 - RPC pseudocode ..98

Table 4.5 - Pseudo code for the Edit distance algorithm..101

Table 4.6 - Pseudo code for the Merge-Split Edit distance algorithm..106

Table 4.7 - Pseudo code for linear displacement matching algorithm ...112

Table 4.8 - Different instances of query words from 12 different books119

Table 4.9 – Experimental analysis of the four proposed string comparison methods120

Table 4.10 - Results using word feature based method of Rath and Manmatha, and ABBYY OCR

software ..121

Table 4.11 - Performance evaluation of the different methods and the professional OCR software

based on their recognition rates..132

Table 5.1 - Results for figure caption retrieval...140

Table 5.2 - Summary of word retrieval results for different query words....................................142

Table 5.3 - Results of word spotting on Arabic text – Top 6 matches alongwith their distances

(the distance values of false positives and extra words are highlighted)..............................145

 xviii

 xix

List of Abbreviations and Terminologies

A list of commonly used abbreviations and the different terminologies that frequently are used

throughout the thesis:

BCC: Basic Connected Component

CC: Connected Component

DTW: Dynamic Time Warping

OCR: Optical Character Recognition

RLSA: Run Length Smoothing Algorithm

ROI: Region of Interest

RPC: Relative Position Correspondence

Document image: A page of a book

S-character: Segmented character

T-character: True/Actual character

1 – Introduction

 1

Chapter 1

Introduction

The importance of digital libraries for information retrieval cannot be denied. The ancient

historical books contain invaluable knowledge but it is very time consuming for the researchers to

search the required information in these books. Our work in this domain aims to facilitate this

information search by spotting different instances of a given query word in the text. With this

ability to search in ancient historical documents, digital libraries will further enhance their

importance. Research in word spotting on the Latin alphabet has received considerable attention

over the last few years. A wide variety of techniques have been proposed in literature. The field

however, remains inviting and challenging, especially if the document base comprises low quality

images, which in fact will be the subject of our research.

1.1 Motivation behind the research

Libraries and museums all across the world contain extensive collections of ancient historical

documents printed or hand written in their native languages. Typically, only a small group of

people are allowed access to such collections, because the preservation of the material is of great

concern. In recent years, libraries have begun to digitize historical document corpora that are of

interest to a wide range of people, with the goal of preserving the content and making the

documents available via electronic media.

Historical collections are of interest to a number of people, like historians, students and scholars

who need to study the historical originals. Unfortunately, digitization alone is not enough to

render historical document collections useful for such research purposes. Having the information

available in an electronic image format makes it possible to share it with many people across large

distances via the Internet, Digital Versatile Discs (DVDs) or other digital media. However, the

size of a collection is often substantial and the content is generally unstructured, which makes it

hard to quickly find particular documents or passages of interest.

Various solutions for this problem that rely entirely on human labor could be possible. A simple

way of structuring a collection of historical documents is by ordering them chronologically and

manually annotating each of the pages to construct an index from this annotation. A very high

level of detail in content annotation may be achieved with transcription. It allows full-text search

using a traditional text search engine. But the cost of transcription increases manifolds with the

1 – Introduction

 2

size of the database. Using an automatic recognition approach seems like an obvious solution.

There are professional OCR software designed from different languages especially Latin

alphabets which give excellent results on newly scanned images of contemporary documents in

good quality. But when used with ancient documents suffering from degradation due to faded ink,

stained paper, dust and other factors, the recognition results drop appreciably.

Word spotting is a relatively new alternative for information retrieval in ancient document

images. Word spotting means matching a query word image with all the words in the documents

and retrieve all the document images or passages containing similar words to the given query.

Research has been going on in this field for some time now and already different methods have

been proposed for efficient word spotting (which are discussed in detail in the next chapter) but

there is always some room for improvement. Moreover, mostly the word spotting methods require

a word image as query which is rather difficult for the users as giving an ASCII query is always

more feasible and easy. Main motivation and aim for us behind this research was to propose an

efficient information retrieval system that could work efficiently with good precision rates for

huge volumes of printed document images with word image or ASCII text queries to search

information in text areas which we call as regions of interest (ROI).

1.2 Digital Libraries and Historical Documents

There are libraries all across the world that are working on the preservation and digitization of

ancient historical books and document images. The promises and challenges of digital libraries

have been discussed in detail in [Jameson2004]. The digitization process of the document images,

which are made available for research purposes by these digital libraries, is not simple scanning. It

is because the crude scanned document images cannot be used directly for information retrieval.

Some post processing (like cropping, rotation, etc.) is done for each document to get them in

shape for use in information retrieval. An example of this processing is shown in Figure 1.1. This

sort of trivial post processing is usually done by the digital libraries before making the digitized

document images available for public reading and research purposes. In our work, we will be

using digitized document images of the digital medic@ library of Paris [BIUM].

1 – Introduction

 3

(a) (b)

Figure 1.1 - Digitization process of a document image: from a) crude scan image to b) the

displayed gray image formed using commercial tools

Figure 1.2 - Marco Polo's "Le Livre des Merveilles", Latin edition of 14
th
 century

1

1 http://en.wikipedia.org/wiki/Marco_Polo

1 – Introduction

 4

If we look at the history of printed documents, we learn that in the beginning, the fonts and the

layouts of the pages were very close to the handwritten books [Journet et al. 2005, Journet et al.

2006]. These printed documents were handcrafted and the technical constraints of the past

introduced irregularities in book production like variations in spacing, margins, random

alignments, etc. (see Figure 1.2).These documents contain many defects due to the manufacturing

process, the conditions in which these books were conserved and also because of the absence of

printing rules which came into practice much later on.

Johannes Gensfleisch Gutenberg was a German goldsmith and printer who is credited with

being the first European to use movable type printing, in around 1439, and the global inventor of

the mechanical printing press. His major work, the Gutenberg Bible (Figure 1.3) has been

acclaimed for its high aesthetic and technical quality.

Figure 1.3 - Picture of the Gutenberg Bible owned by the US Library of Congress
2

With time, more regularity came into printing as the printing rules were penned down. Joseph

Moxon, an English printer of 17th century and hydrographer of the King Charles II, is credited

globally for producing the first ever written manual on printing. His book Mechanick Exercises in

1683 provides detailed descriptions of contemporary printing methods that have proved to be

useful for bibliographers3. Another name which is equally important in this respect is the

frenchman Martin Dominique Fertel. His Book La Science pratique de l’imprimerie is

acknowledged by scholars to have been as important to French printers as its predecessor was to

English printers [Pankow2005].

2 http://en.wikipedia.org/wiki/Johannes_Gutenberg
3 http://en.wikipedia.org/wiki/Joseph_Moxon

1 – Introduction

 5

Some examples of 18th and 19th century historical printed documents of different countries are

shown in Figure 1.4 and Figure 1.5. We can see the variations in print styles, in different images.

These variations in printing styles along with quality issues of ancient documents pose major

problems for document analysis and information retrieval.

Figure 1.4 - A degree issued by the University of Paris, 1739
4
.

(a) (b)

Figure 1.5 - a) The oldest known document printed in Australia, a theatre playbill from the

former British colony dating back to 1796. b) A document image from a 19
th
 century book

in medic@ digital library [BIUM]

4 http://pergamentai.mch.mii.lt/DokPranc/indexen.en.htm

1 – Introduction

 6

Most of our work focuses on the 18th and 19th century document images in which we analyze

different problems these document images pose to information retrieval methods. We will see it

briefly in section 1.3.

1.2.1 Document Preservation and Retrieval projects

Many libraries across the globe are working to preserve the historical documents and books.

Different international collaborations also exist for this purpose. One such collaboration is

International Dunhaung project (IDP) [IDP]. IDP is a ground-breaking international collaboration

to make information and images of all manuscripts, paintings and textiles from Dunhuang and

archaeological sites of the Eastern Silk Road freely available on the Internet and to encourage

their use through educational and research programs. IDP partner institutions which provide data

and act as hosts to the multilingual web site and database include Bibliothèque Nationale de

France and the British Library in London, along with five other partners from different parts of

the world. British library has been at the fore front in preservation of the historical books. In fact

it is believed that the oldest complete survival book Diamond Sutra (see example in Figure 1.6)

printed in Buddhist text in 868 AD5, is also preserved there.

Figure 1.6 - The Chinese Diamond Sutra, the oldest known dated printed book in the world

5 http://en.wikipedia.org/wiki/Diamond_Sutra

1 – Introduction

 7

Apart from IDP, there are other different national projects as well that focus on the preservation

and indexing of document images. These include Madonne [Ogier and Tombre2006] which is

already finished and another bigger project NAVIDOMASS (NAVIgation in Document MASSes)

[NAVIDOMASS] which is currently underway in colloration with six major national laboratories

in this field. The general purpose of NAVIDOMASS is the construction of a framework to

digitally preserve the heritage document collections in libraries, museums and public archives and

provide universal access to them.

1.2.2 Online access to Digital Documents

Presently, online information access services in a large number of digitized books are provided

by many international organizations, companies and libraries across the world. The biggest such

project is undertaken by Google, called Google Book Search6. It is a service that searches the full

text of books that Google scans, converts to text using OCR, and stores in its digital database7.

Figure 1.7 shows the screen shot of this online access service.

Figure 1.7 - Screen shot of the Google book search service where a book is opened and its

text can be searched using the text search option

6 http://books.google.com
7 http://en.wikipedia.org/wiki/Google_Book_Search

1 – Introduction

 8

Other online document resourse access facilities include the Universal Digital Library8 which

is provided by Carnegie Mellon University in USA and Europeana9 which is co-funded by the

European Union. . Different national libraries are also working hard to provide online access of

their document resources. These include Gallica10 which is the digital library of the bibliothèque

nationale de France, BVH11 (Bibliothèques Virtuelles Humanistes) of the Centre d'Études

Supérieures de la Renaissance Tours and Digital library Medic@ of the bibliothèque

interuniversitaire de medicine Paris [BIUM]. Our present work is partly in collaboration with

BIUM which provides online access to a large number of historical medical books of different era

but the text search service is not provided for these documents.

1.3 Context of our Work

A document retrieval system holds great promise for providing access to historical printed

documents containing immense knowledge for a large set of audience. Given a word query, the

document retrieval system would find all document images containing relevant “answers” to the

query, which saves the user the tedious work of browsing or reading through an entire collection

of documents while looking for a particular document image or ROI. This work provides a

thorough examination of several retrieval techniques for historical document images that will

allow queries in the form of a word image or ASCII text. It is particularly appealing that the

queries can be textual, a fact that makes this system very practical.

1.3.1 Data Sets

A data set is very important for proper validation of some method. Unfortunately, there is no

standard benchmark data set available for historical printed documents, on which different

researchers could validate their algorithms. Every work has been done in a particular context and

so a particular data set has been used each time. For us, we have used document resources of the

Digital library Medic@, Paris [BIUM] for testing and validation of different stages. We built a

data set with historical document images gathered from the digital medical library of Paris

“Bibliothèque Interuniversitaire de Médecine, Paris”. The total experimental data set consists of

12 books of 19th century. For experimental validation of different individual stages as well as for

complete system testing and its applications (Chapter 5), we made three subsets from this

document base. We have named the data sets as data set A, data set B and data set C. Apart from

8 http://www.ulib.org/index.html
9 http://www.europeana.eu/portal/
10 http://gallica.bnf.fr
11 http://www.bvh.univ-tours.fr/

1 – Introduction

 9

that, the approach has later on been applied to ancient documents of 15th and 16th century to

analyze different challenges that are posed to the system by these ancient documents. The sample

images of the data sets are shown in Annex A.

a. Data Set A

In data set A, we have document images taken from 5 different books. The image sizes vary

from 1256 x 1939 to 1708 x 2721 for different books. From each book, four different pages are

selected making the size of the data set to 20 document images. A total of 6,632 words exist in

these pages. For query, five different words are selected from the images of each book thus giving

a total of 25 different query words having 175 instances in total. Instances of a query word are the

different occurences of the same word in similar or different sizes and styles. For example, the

instances of a word “query” could be “query”, “query”, “query”, “Query”, etc. (The word

“QUERY” is not counted as the instance of word “query”).

This data set is used to test individual stages of the system, for computational comparisons and

also for some performance measures.

b. Data Set B

In data set B, we selected four images from each of the 12 books thus giving a total of 48

document images. The image sizes vary from 1256 x 1939 to 1708 x 2721 for different books.

Total number of words in these pages is 17,010. For query, five different words of different

lengths are selected from the pages of each book thus giving a total of 60 (5x12=60) different

words having 435 instances in total. The query words have been selected on the basis of their

relevance to the book (i.e. key words).

This data set is used to test word and character segmentation stages as well as for the detailed

comparisons of different word matching methods proposed later on.

c. Data Set C

In data set C, we have three books having a total of more than 500 document pages. This data set

is used to test the figure/caption retrieval application discussed in next chapter.

The same documents but in web-efficient resolution (images with relatively lower resolution than

the original ones), are available on the web and are open to access to other researchers. A couple

of examples are shown in Figure 1.8 and Figure 1.9. We can see that the document resolution is

not good and when zoomed in, the digitization problems in the words and the characters become

clearer and strong, which make it extremely hard to segment the characters properly. These

1 – Introduction

 10

digitization effects are not as strong in the original document images though, so a possible

character extraction may be thought of in the higher resolution images. Example images are

shown in Annex A.

Figure 1.8 – An image from a 16
th
 century book by Bassaei available on BIUM web

12

a.

b.

a.

b.

Figure 1.9 - A BIUM document image of 19
th
 century: a) in web resolution images the

digitization effects are more visible as compared to the b) original images

12 http://web2.bium.univ-paris5.fr/livanc/index.las?cote=00825&do=chapitre

1 – Introduction

 11

1.3.2 Global Overview of our subject

Our main objective is to propose a robust document image retrieval system based on word

spotting. The task of retrieval is to retrieve document images, that is, the pages of books in the

collection at hand according to their relevance to the given query. All document images

containing the given query instance are retrieved and are presented to the user in a chronological

order. Retrieval is not limited to document images; it can often be easily extended to other

retrieval units, such as paragraphs or lines. For example, lines are taken as unit to allow figure

captions to be retrieved from the document images to create figure’s index. (It is explained in

detail in Chapter 5). As the title of this work indicates, we are retrieving images of text, so the

user will always be presented with an image as the response to a query, be it of a line, a ROI or a

page.

In our implementation, we have divided the overall retrieval system into two distinct parts: the

document indexing part and the matching part for retrieval of relevant document images.

Figure 1.10 – Global overview of the document image retrieval system

For indexing, we have divided the whole indexing process into four sub-steps as depicted in

Figure 1.11.

Document

Indexing

Matching for

Retrieval

User’s Query

Retrieved

pages

1 – Introduction

 12

Figure 1.11 - Four stages of document image processing for indexing

The first step is the preprocessing stage involving an optimized document binarization

algorithm to crisply distinguish the foreground from the background. Second step involves the

word/graphic segmentation. As we are working on printed documents, where a high level of

granularity is possible, it prompted us to work at character image level thus allowing more

flexibility in the matching phase. For that, the third indexing step revolves around the connected

component analysis of words for the extraction of characters. We call these extracted connected

components as segmented characters or ‘S-characters’ while the actual (perfectly segmented

alphabetical) characters are termed as true characters or ‘T-characters’. The S-characters may or

may not be same as T-characters. To get better S-characters (which relate closely to T-characters),

S-characters of a word are post-processed using a 3-step process to get better S-characters, which

in most cases are the true characters. But still some character segmentation errors remain (see

Figure 1.12) which are handled in the matching part. In the last step, multidimensional features

are defined for each S-character of a word. These character features are used for matching

purposes. The feature values along with some other document image relevant information are

stored in an index file. For each document image, an index file is created.

Figure 1.12 – Examples of characters with segmentation inconsistencies; some T-characters

are divided into two S-characters (first four examples) or two T-characters are merged into

one S-character (last example)

Word/graphic segmentation

Binarization

Character extraction

Feature extraction

1 – Introduction

 13

For word spotting part of the system, we have proposed a two level character-feature based

retrieval system whose main aim is to retrieve relevant document images while catering for the

character segmentation errors that are left in the indexing process (see Figure 1.12). It makes sure

that only a 100% accurate character segmentation is not necessary to achieve good results. In our

two-level matching system, two S-characters are matched using elastic Dynamic Time Warping

(DTW) while the two words are matched using different string comparisons algorithms. We also

introduce an original Merge-Split Edit distance at this level that takes into account the character

segmentation inconsistencies in document images for correctly matching the two words.

1.3.3 Major Contributions

Major contribution of our work lies in the whole idea of representing the words based on S-

character features. It enables us to have multi-level matching, at word level and at character level,

which opens up different options for new and efficient implementations of word matching

algorithms, aiding to overcome the existing problems in the field. Our major contributions lie in

both the two phases of our system i.e. indexing and retrieval. In indexing phase, our contributions

lie in binarization algorithm (NICK algorithm), character segmentation and feature extraction.

Though we have used some features which are frequently used in literature [Rath and

Manmatha2007], [Kolcz et al. 2000], [Konidaris et al. 2008], we have introduced some of our

own as well (like mid row transitional vector, etc.) to improve character representation. In

retrieval phase, we have introduced a concept of multistage retrieval system based on dynamic

matching at two levels – word and character. To take into account the bad quality of the document

images that causes character segmentation problems, a new Merge-Split Edit distance has also

been proposed to match two words irrespective of the fact that their characters have been

segmented correctly or not.

Apart from that, we have discussed different applications of our system such as an automatic

figure caption retrieval system by fusion of spatial and perceptual information of the document

image.

An easy to use graphical user interface (GUI) has also been developed which facilitates us in

easily searching the required information by giving ASCII or word image queries and can be used

with any kind and number of document base for the purpose of document image indexing and

retrieval.

1.3.4 Organization of the thesis

The thesis is organized in a sequential way starting with the description of state of the art methods

in document retrieval in chapter 2. Different methods are categorized and discussed in detail to

give an overall idea of what is going on in the field right now.

1 – Introduction

 14

In chapter 3, we discuss in detail the document indexing part. It starts with document image

binzarization using the proposed NICK algorithm. It is followed by the description of text/graphic

segmentation using run length smoothing algorithm. Once the words from the text are extracted,

we discuss in detail the process of extraction of S-characters for each word using connected

component analysis followed by a 3 stage post processing. The description of the features selected

to represent the S-character images is given afterwards. Lastly we discuss the indexing of the

features in data files and the issues pertaining to that. These indexed files are later on used for

matching purposes.

In chapter 4, we discuss the document retrieval process. It starts with the explanation of the

different ways to input a query word to the system are explained. The multi-stage matching

process is then discussed in detail. It includes length-ratio filter, character matching and word

matching stages. Elastic Dynamic Time Warping is used for matching the features of the two

characters. For matching two words, different methods are discussed along with their pros and

cons. Experimental results are then elaborated in the last section showing the results of word

retrieval methods and also performance evaluation of different feature sequences representing the

S-character image.

In chapter 5, different multi-context applications of the retrieval process are shown. First the

automatic figure/caption retrieval system is discussed in detail. Another application pertaining to

contemporary document analysis and retrieval is shown afterwards.

In chapter 6 some perspectives of the work are discussed along with conclusion of the thesis.

A couple of annexes are given at the end. Annex A shows some sample images used in our

experimentation. In Annex B some screen shots of the graphical user interface of the document

retrieval system developed are shown.

Bibliography is given after the Annexes. A list of author’s publications is the last part of the

thesis.

2 – State of the art

 15

Chapter 2

State of the art

Lot of work has been done and plenty is in progress in the domain of information retrieval in

historical documents. There are a lot of issues and problems related to ancient printed documents

which are discussed in detail in [Baird2004], [Antonacopoulos et al. 2004] and [Zhang and

Tan2001]. These include the physical issues such as quality of the documents, the marks and

strains of liquids, inks and dust, etc.; and the semantic issues such as foreground entity labeling.

Also when document images are scanned from thick bound volumes of historical books, there

always occurs perspective distortion which causes shadow at the book spine area and also the

warping of the words in the shadow [Zhang and Tan2001]. Similar sort of spurious components

are observed in old manuscripts as discussed by [Rath2005] which are depicted in Figure 2.1. All

these problems provide a big challenge for researchers working in the domain to achieve better

results in information retrieval.

Figure 2.1 - Different artifacts occurring in historical document images (Rath, 2005)

Over the years, various methods have been proposed to deal with historical document images for

their segmentation (including image binarization, text/graphic segmentation, text words

2 – State of the art

 16

extraction, etc.)as well as for information retrieval. In this chapter, we will briefly discuss the state

of the art methods for document image segmentation and information spotting in historical

document images. Section 2.1 analyzes the different categories of document segmentation

methods and section 2.2 focuses on the different information retrieval methods in historical

documents.

2.1 Document Image Segmentation

Text/graphic segmentation and a fine extraction of words and characters in ancient document

images are very useful for applications such as information retrieval using word spotting or

optical character recognition. The degraded quality of these ancient documents poses different

problems such as characters broken into multiple components, text of the verso appearing on the

recto, etc., thus making the crisp extraction of the words and characters very difficult

[Antonacopoulos et al. 2004], [Baird2004]. Lot of work has been done earlier to cater for these

problems and provide a better way for document image segmentation for different applications.

Traditionally, page segmentation methods are divided in three main groups: top-down, bottom-up

and hybrid approaches [Okun et al. 1999], [Duong et al. 2001], [Journet et al. 2005], [Shi and

Govindaraju2005], [Journet et al. 2006]. We discuss them briefly here.

2.1.1 Top-down Techniques

In top-down techniques, document images are recursively divided from entire image to smaller

regions. Theses techniques are often fast, but the efficiency depends on a prior knowledge about

the class of documents to be processed. Developments have been produced in early times. The

most well known methods are projection methods [Antonacopoulos and Karatzas2005](with

many variations like rectangulation, white streams method [Pavladis and Zhou1991], etc.),

histogram analysis, form definition languages [Tang et al. 1993], rule based systems [Lee et al.

2000], or space transforms [Jain1989](Fourier transform, Hough transform, etc.). Figure 2.2

shows the segmentation of characters using the projection method of [Antonacopoulos and

Karatzas2005]

Figure 2.2 - Extraction of characters using a combination of vertical and horizontal

projection profiles (Antonacopoulos and Karatzas, 2005)

2 – State of the art

 17

Though these top down methods generally perform well, they have a major drawback which is

the need to have a prior knowledge about the document class and type (number of columns, width

of margins, etc.) for them to be effective.

2.1.2 Bottom-up Techniques

Bottom-up methods start with the thinnest elements (pixels), merging them recursively in

connected components or regions, and then in larger structures. They are more flexible but may

suffer from accumulation of errors. They make use of methods like connected component analysis

[Mitchell and Yan2001], [Faure and Vincent2009], region-growing methods, run-length

smoothing [Wong et al. 1982], neural networks [Tan and Zhang2001] and active contours

[Bukhari et al. 2008]. Figure 2.3 shows the result of extraction of figures and the caption line

candidates for the extracted figures using the rule-based connected component position and area

analysis approach in [Faure and Vincent2009].

Figure 2.3 - Segmentation of figures and figure caption candidates by connected component

analysis (Faure and Vincent, 2009)

Curled and curved text lines are segmented by [Bukhari et al. 2008] using an active contour

method. Figure 2.4 shows an example of the segmentation of curled text lines in [Bukhari et al.

2008].

2 – State of the art

 18

Figure 2.4 - Curled text lines segmentation using Active contours (Bukhari et al. , 2008)

The advantage of bottom-up methods is that they are very flexible [Shi and Govindaraju2005].

On the other hand, although these methods are efficient for modern and contemporary books, they

are not so efficient for ancient medieval books because of the specificity of these ancient

documents such as non-constant spacing between characters, words and images, etc. Another

thing is that these methods make use of a lot of parameters that need to be adjusted precisely for

good results.

2.1.3 Hybrid Techniques

Many other methods that do not fit into either of these categories are therefore called hybrid

methods. Among these are the texture-based methods [Randen and Husøy1994], [Journet et al.

2006] (Figure 2.5). They include Gabor filter method [Ar and Karsligil2007], wavelet and fractal

analysis, auto correlation function [Journet et al. 2005], etc.

Figure 2.5 - Segmentation in 3 and 4 classes by textural approach (Journet et al. , 2006)

There are also some hybrid methods that combine and make use of both bottom-up and top-

down approaches. For example, connected component analysis for shape information and block

separation for background block map have been used in [Ramel and Leriche2005] in a hybrid

segmentation approach (Figure 2.6). Classification of these blocks is achieved according to the

scenarios defined by the user.

2 – State of the art

 19

 (a) (b) (c)

Figure 2.6 - a) Shape map using connected component analysis b) Background map of the

image c) Combination of the two maps (Ramel and Leriche, 2005)

Hybrid methods do not need prior knowledge about the page structure and work very well for

major text/graphic segmentation in historical and contemporary pages (news papers, journals,

etc.), but not for a very fine level segmentation in historical books (for example to segment words

and their individual characters, etc.).

Overall, we can see that every type of methods has some pros and cons and the final choice of a

method depends solely on the type of application for which the segmentation is required. If the

requirement is limited to text/graphic segmentation on the images for which we don’t have any

prior knowledge, then hybrid methods are more efficient for that. If, however, we have the prior

knowledge about the class of the documents that we are working on, then top-down methods are

more efficient and precise while if we want to segment on a smaller/finer level (e.g. characters,

etc.), then bottom-up methods seem to do the job better. In the present work, a multi-step bottom-

up method has been used by taking use of the classic Run Length Smoothing Algorithm (RLSA)

in horizontal direction followed by an analysis of the connected components in the image. The

main advantage here is that no prior knowledge of the page structure or character size is necessary

for segmentation. We will explore that in detail in chapter 3.

2.2 Information retrieval – word spotting

Most of the work in the field of word spotting has been done on handwritten manuscripts. The

reason for that mainly being the irregular writing styles that prevent commercial OCRs from

achieving higher recognition rates. Printed document images are usually considered ‘OCR

friendly’ as OCR software achieves relatively better on printed documents as compared to

handwritten ones. But if the printed text is from old historical ancient documents, then OCR

results on these document images degrade significantly. In that case, word spotting comes as a

2 – State of the art

 20

lucrative alternate of OCR as B. Gatos in [Gatos and Pratikakis2009] remarked “OCR is a very

difficult problem to solve, especially for historical [printed] documents”.

Historically, word spotting methods have been divided into different categories in multiple ways

by different researchers. For example, [Rothfeder et al. 2003] divided all word spotting

methodologies into two main categories based on matching techniques. These two main matching

techniques are image based matching techniques and feature based matching techniques. Image

based matching includes the methods that compute word distances directly on image pixels (such

as template matching using correlation [Lewis1995]) while the feature-based matching methods

first compute certain features for word images and then those features are matched. But as most

of the recent contributions use feature-based implements, so this division does not serve the

purpose for us. Another more popular categorization technique has been to divide the methods

into either segmentation-based methods or segmentation-free methods as in [Gatos and

Pratikakis2009], [Adamek et al. 2007], [Konidaris et al. 2007], [Rath et al. 2002], [Madhvanath

and Govindaraju2001], [Steinherz et al. 1999]. We have followed this categorization theme as

well and have divided the different approaches for word spotting into two broad categories:

a. Holistic analysis techniques

b. Analytical recognition techniques

Holistic word recognition techniques are basically segmentation-free techniques that view a

word image as a unit that will not be further segmented. Analytical techniques, on the other hand,

are segmentation-based techniques in which a document image or a word image is segmented into

smaller units which can be recognized independently or when grouped. As word spotting has

mostly been applied on hand-written documents where segmentation of characters is a big issue,

so most of the techniques in literature are based on the holistic analysis category but lately work is

also being done in analytical techniques as well with the objective of achieving higher recognition

rates. Here we will analyze both matching categories by discussing different existing methods

belonging to each of them.

2.2.1 Holistic Analysis techniques

Holistic word recognition techniques [Gatos and Pratikakis2009], [Rath and Manmatha2007],

[Adamek et al. 2007] view word images as a unit that will not be further segmented. They are

often motivated by the word superiority effect [Reicher1969] which tells that humans can

recognize characters faster if they appear in valid words than in isolation. In the domain of ancient

documents, other factors make a holistic approach attractive, such as their ability to deal with high

level of noise and the font variations in the text, which can complicate the character segmentation.

2 – State of the art

 21

Using a holistic approach helps to avoid character segmentation and whole words can be matched

directly with acceptable recognition rates. Here we will discuss some of the recent holistic

analysis techniques proposed in literature.

[Li et al. 2009] proposed a retrieval algorithm in which a simple local feature sequence is

extracted for each document image. The feature sequence contains the pixel length of each word

in the document image. A query which is a portion (a text line or a paragraph) of a document

image is given and the document images containing that patch are retrieved by matching the

feature sequences using suffix tree and dynamic programming. The method is tested on different

contemporary document images with a retrieval precision of 99.5%. Doubts remain though over

the performance of the method for ancient document images.

In [Rothfeder et al. 2003], certain points of interest are found out for each word image using

Harris Corner detector. An example of the corner points is shown in Figure 2.7a.

(a) (b)

Figure 2.7 – a) Corners detected with the Harris corner detector on two gray level images,

b) Recovered correspondences in two words (Rothfeder et al. , 2003)

Relative corner correspondences are found using Sum of Squared distances (SSD) error measure

for comparing the gray level intensity windows centred around the detected corner point. Two

words need to be of same size to retrieve the correspondences, so all candidate words are first

resized to the size of the query word. An example of retrieved correspondences between the two

words is shown in Figure 2.7b. For comparing two words A and B, the two sets of corner points

are matched using Euclidean distance of correspondences as:

 where A and B are the query and test word images respectively and (xbi, xai) and (ybi ,yai) are the

co-ordinates of a pair of corresponding feature points, in the query image and the test image

2 – State of the art

 22

respectively. Using this approach, the authors were able to achieve about 63% recognition rate on

good quality images and 16% on poor quality images. Similar work has been done in [Rusinol

and Llados2008] where key point features are determined for words and symbols and comparison

is done using cross-correlation matching. [Andreev and Kirov2009] have discussed a customized

Hausdorff distance for matching two words in image space.

[Marinai et al. 2006] described a general system for performing word image retrieval using Self

organizing maps (SOM) based on word image clustering combined with Principal component

analysis (PCA). The words are extracted using RLSA and are divided into six index partitions

based on their aspect ratio. Vectorial representation of the words is obtained by average gray

value of the grid cells. Clustering is performed on each subset of the partition. SOM which is a

kind of artificial neural network is used for clustering of the word images. The restriction of SOM

clustering though is the need to compute a new set of clusters when dealing with different

documents. Query words are generated using Times font and are searched in the clusters to get the

top three clusters which are then analyzed using PCA in projected space to get the final top 20

ranked words. The testing of the method has been done on 2 books of 19th century. This work has

been extended in [Marinai et al. 2007] to build a framework for document retrieval in digital

libraries.

In [Zagoris et al. 2006], query word is synthetically generated using character images written in

Arial font. A fixed length feature vector is defined for each word using nine features comprising

six scalar characteristics and initial coefficients of the discrete cosine transform of three profile

features). Two words are matched using Euclidean distance on the two feature vectors. For a total

of 30 searches on a document set created automatically from different printed documents, the

system achieves a mean Precision of 53.43% and a mean recall of 94.78%. Similar work has been

done in [Konidaris et al. 2007] where authors use synthetically generated query word images from

the manually selected prototype characters in Greek historical documents. The spacing between

characters has been set to 10% of the average character height in the images for query generation

as shown in Figure 2.8.

Figure 2.8 - Synthetically generated query word from prototype character images (Konidaris

et al. , 2007)

2 – State of the art

 23

These query words are normalized to fit in a pre-defined bounding box (Figure 2.9a). Two types

of features are defined for a word image. In the first type, the area formed by the upper and lower

profiles of the word is calculated in 30 small zones each (see Figure 2.9b, c). In the second type,

the image is divided into a set of 90 zones and density of character pixels is calculated in each

zone (see Figure 2.9d). So it makes a total of 150 features for each word

 (d)

Figure 2.9 - a) Normalized query word in a pre-defined bounding box b) Upper and lower

profiles c) extracted features, darker squares show higher pixel density d) Pixel density

based features in the defined zones (Konidaris et al. , 2007)

For word matching, a simple distance measure is used between the features of the two words. For

experiments, 25 query words are searched in 100 Greek printed document images. A recall rate of

65% with about 60% precision is achieved with user feed back. The problem with this approach is

that there are usually lot of ‘unused’ zones and thus ‘non-features’ and they are compared in any

case in the distance which is not very efficient (though it will not have any impact on the results).

Word shape coding technique has been used in [Adamek et al. 2007], [Bai et al. 2009] and

[Bertolami et al. 2008] for word image matching. [Adamek et al. 2007] proposed a closed contour

matching technique in which the contours of the two word images are matched using DTW. The

bounding boxes of the words in the document images are already known. Separated parts in the

2 – State of the art

 24

words are connected using position of words base line and height. Connected components are

labelled and smaller components are removed from each word. The problem in this approach is

that all the diacritic marks are removed as well which may not be useful for us as we are working

on French language documents which have plenty of accents and diacritic marks. Successive

components in the word are connected by manually adding a synthetic ink line in the binary

image. This is followed by a contour tracing procedure which extracts a single order contour for

each word. Multi-scale convexity concavity (MCC) representation is used to describe the word

contours. This representation gives information about the amount of convexity and concavity at

different scale levels for each contour point. 1D discrete cosine transform (DCT) is applied to

each multi-scale contour point to get an MCC-DCT representation. A DTW technique is used to

find the alignment along the two contours upon which the dissimilarity measure is defined. Figure

2.10 shows an example of DTW matching on the MCC-DCT representations of the two contours

of word “Orders” taken from the paper itself. Word spotting results were computed on 20

document images and performance was measured in terms of average word error rate (WER).

Excluding out of vocabulary errors, the system obtained an average WER of 17.4% and if these

errors are included, the WER increases to 30.6%.

Figure 2.10 - DTW matching on the MCC-DCT representations of the two contours

(Adamek et al. , 2007)

2 – State of the art

 25

Gatos et al. in [Gatos and Pratikakis2009] have presented a segmentation free approach where

the query word image is searched in the regions of interest in the test document image. For each

query image, 15 different query instances are obtained by applying different rotation and scaling

variations. Five different set of feature vectors are found for the query word. These features are

based on all 5x5 non-overlapping window pixel density calculations and applying word image

translation at (-2,2), (2,2), (2,-2) and (-2,-2). For test image, regions of interest (which are the text

lines in the image) are found by using RLSA in horizontal direction. At the word matching step,

query word is compared with rectangular text areas in the test by moving a rectangular window

over the region of interest in the test image. The corresponding feature vectors of the query word

and test rectangular area are compared using a distance measure. In the end all matching results

are combined. If there are several intersecting rectangular areas that correspond to successful

matching results then authors select only that rectangular area which corresponds to the lower

distance value. The evaluation of the method was performed on a late 18th century book. Five

query words were manually selected and were searched in 100 pages of the book. Overall, the

system achieved a recall rate of 93.2% with 75.1% precision.

In [Kluzner et al. 2009], the authors propose an adaptive OCR system based on clustering

together all the similar words in a book and simultaneously handling an entire class. The image is

segmented into words using the FineReader engine. The system then finds the word clusters with

each cluster containing images presumed to show different instances of the same word. This

allows recognition to be performed simultaneously for a cluster. The main problem that the

authors address is the comparison of word images determining which words are the same. A two-

step methodology has been used that comprises: Image Distortion Compensation and Difference

Detection. Image distortion compensation first uses a coarse registration based on cross-

correlation and then performs fine registration using a modified optical flow method. The

difference between the two binary images is computed using a non-linear difference measure. On

a data set of 101 scanned pages from a book printed in 18th century, the authors demonstrate that

the commercial OCR results improve by more than 4% by adding the proposed adaptive OCR

system.

The main motivation of our work came from the work of Rath and Manmatha [Rath and

Manmatha2007]. In fact, Manmatha first used the notion of word spotting for indexing the

document images and information retrieval in his early work [Manmatha et al. 1996a],

[Manmatha et al. 1996b]. Later on, Rath continued the research in word spotting in historical

document images for document image retrieval as well as indexing in which word images are

grouped together into clusters of similar words [Rath and Manmatha2007]. Already processed

word images (cleaned and with no skew/slant) are given as input to the system. Different features

2 – State of the art

 26

were already evaluated by authors in [Rath and Manmatha2003] and only the best four are

selected here for representing a word image. These include vertical projection, upper and lower

profiles, and background/ink transitions which are depicted in Figure 2.11.

a.

b.

c.

d.

e.

Figure 2.11 - a) Original word image: slant/skew normalized and cleaned. The four features:

b) Normalized vertical projection profile, c) Normalized lower profile, d) Normalized upper

profile, e) Normalized number of ink/background transitions (Rath and Manmatha, 2003)

For matching, DTW with Euclidean distance is used to match the features of the two words.

Experiments were carried out using two data sets of words taken from 10 pages each. First data

set comprising good quality document images while other one not so good. For each data set, two

tests were performed, test-one with small number of query words (15 and 32 for the two data

sets), and test-two with all words in the data set taken as query. For data set 1, the overall

2 – State of the art

 27

precision rates reported in the paper are 73.71% and 65.34% for the two tests. Same percentages

for data set 2 come out to be 58.81% and 51.81% for test-one and test-two respectively.

Similar methods have been proposed in literature, which we will mention briefly here. [Kolcz et

al. 2000] have matched word images from hand written document images using DTW algorithm.

Three profile features are found out for each word. For experiments, 19 model images for four

most common words are selected. Word image comparison algorithm is based on matching the

provided templates to segmented manuscript lines. The model words are searched in a data base

consisting of 13 hand written documents with a conclusion that the system works better for longer

words as compared to shorter words. In [Konidaris et al. 2008] query words are generated

synthetically from the manually selected character prototypes. Four profile feature set of [Rath

and Manmatha2007] are used here as well which are matched using DTW. The method uses word

portions located at the beginning and end of each segmented word to estimate the position of the

first and last characters in order to reduce the list of candidate words. A recall rate of 50% with

84% precision is achieved on 100 Greek printed documents for 25 query words.

2.2.2 Analytical Recognition techniques

Analytical recognition techniques segment a whole document image or word images into

smaller units that can be recognized in isolation or when grouped [Vamvakas et al. 2008], [Marti

and Bunke2001], [Terasawa et al. 2009]. Characters are a natural unit in alphabetical languages,

so a word should be segmented into characters. However, accurately determining the

segmentation points cannot be done without first recognizing the characters. This constraint has

led researchers to consider multiple segmentation hypotheses by over segmenting images into

smaller units, such as strokes, image columns or connected components. In these approaches, the

correct segmentation into characters typically arises implicitly from the recognition process,

which attributes segments to recognized characters. Other approaches use explicit word

segmentation to break a word into smaller units that are believed to be characters, which are then

recognized [Lu and Shridhar1996].

Though segmentation into characters is difficult, the analytical approaches tend to give better

recognition results due to their ability to focus on the local intrinsic characteristics of the words

and lower level matching. Another major advantage of all segmentation-based methods is their

flexibility with respect to the size and nature of the lexicon which is due to the fact that these

methods are being letter-oriented [Steinherz et al. 1999]. Here we discuss some of the recent

segmentation based recognition approaches in literature.

[Vamvakas et al. 2008] have proposed an OCR methodology to generate ASCII files for a new

document image based on the training set. Document image is segmented into words, and for each

2 – State of the art

 28

word its characters are extracted by a bottom up approach using connected component analysis

and skeleton features. Each character image is, first, normalized to fit in a pre-defined window

size and then it is represented by a fixed length feature vector based on the character’s zone and

area properties as described in detail in Figure 2.12.

(a) (b)

(c) (d)

Figure 2.12 - a) Normalized character image, b) Features based on zones; darker squares

indicate higher density of character pixels, c) Area formed by upper and lower profiles and

the features extracted using them; darker areas indicate higher pixel density, d) Area

formed by left and right profiles and features extracted using them; darker areas indicate

higher pixel density (Vamvakas et al. , 2008)

A total of 25 zone feature values and 40 area feature values are defined for each character

image thus making the size of the feature vector equal to 65. A k-means based semi-automated

clustering algorithm is applied to cluster similar characters together. Number of clusters is

hypothetically set to 65. The feature vectors of two characters are compared using support vector

algorithm (SVM). Experimental validation is done using 10 printed document images. 4/5 of the

total characters in these 10 documents are used in training while the remaining 1/5 are used for

testing. Character recognition rate of 95.44% is achieved by the system. The recognition rate

however drops to 83.66% for 5 other unknown printed document images which are not used in

training.

[Moghaddam and Cheriet2009] presented a connected component based method for word

spotting on cursive Arabic scripts. All the connected components in the document image are

found and a basic connected component (BCC) library is generated which contains the basic

2 – State of the art

 29

connected components found in the text. This library is extended by matching new CCs to the

existing ones in the BCC. Matching is done using dynamic time warping by matching the

normalized horizontal and vertical histograms of the two CCs. In order to increase the accuracy of

comparison and also to reduce the computational cost, a clustering of BCCs in a set of meta-

classes is done. The clustering is performed using six feature characteristics of CCs like aspect

ratio, horizontal frequency, scaled vertical center of mass, number of branch points, height ratio to

line height, and presence of holes. SOM are used for clustering. Each CC is compared to all

clusters and then based on the number of target clusters, the nearest BCCs are selected as

matching BCCs of that CC. The evaluation of the method has been performed on 85 images and

an F-measure of 74% is achieved if the dots in the text are ignored. With the dots included, the

same value drops to 57%.

In [Terasawa et al. 2009], authors have introduced a slit style HOG (Histogram of oriented

gradient) feature based method. A narrow rectangular sliding window is applied on each text line

(see Figure 2.13) which slides along the writing direction. For each sub-image clipped by the

window, a HOG feature vector is calculated. HOG computes a histogram of gradient orientations

in a certain local region, with the orientation bins evenly spaced over 0 – 360 degrees. The most

effective number of bins is reported to be either 12 or 16.

Figure 2.13 - Use of a sliding window for extracting small fragments for which the features

are defined (Terasawa et al. , 2009)

A block optimization is applied to each slit window. It means that each slit window is further

divided into small blocks which overlap in vertical direction. The dimensions of the slit window

and inner blocks depend upon the text. For Latin text, slit window dimension is set to 16 x 80

pixels while that for each block in the slit window is 4x20. Gradient features are calculated at

block level. For matching, query word is searched using the look up table technique by matching

the feature vectors of the slit windows using DTW. Though there is a lot of redundancy in using

block features, it is reported that these redundancies improve the word recognition rates. For Latin

text, an average precision of 79.14% is reported for an average recognition rate of about 74%.

A similar gradient-feature based method has been proposed in [Rodriguez-Serrano and

Perronnin2009] where the authors use modern fonts to create synthesized queries for matching

with handwritten text. Local gradient histogram (LGH) based features are used to encode word

shape robustly. A sliding window is used to divide word image into T overlapping windows. Each

2 – State of the art

 30

window is further divided into a 4x4 grid, and gradient histogram is calculated for each of these

16 cells. Thus for a window, a total of 16x8 features are defined (see Figure 2.14).

Figure 2.14 - LGH features calculated for small overlapping windows of a word (Rodriguez-

Serrano and Perronnin, 2009)

For word modeling, a semi-continuous Hidden Markov Model (SC-HMM) is used in which the

feature space is clustered using a Gaussian mixture model (GMM). GMM is trained offline with a

large set of LGH feature extracted from many windows in actual handwritten images. For the

synthetic query words, an LGH feature sequence is extracted for each word and SC-HMM is

trained using these sequences. 25 different fonts are used for generating 10 keywords which are

searched in a document base of 101 pages. Results obtained using some of the fonts (which are

handwritten-like) giving better recognition results than others.

In [Leydier et al. 2005], authors present two alternative methods for textual indexation of old

documents, the computer assisted transcription and the word spotting. Computer assisted

transcription is based on character pattern redundancy in document images. Characters are first

segmented and compared to one another to create a pattern dictionary. All characters within a

class have a same label which removes the requirement to recognize all the characters of a class.

Manual transcription of 50% of the pattern dictionary, the authors achieved a correct transcription

of 80% of an entire book (200 pages and 2000 characters per page) in 3 hours.

For word spotting, the authors tested a number of differential features and selected the gradient

angle on the basis of the best P-R curve on a validation set. The authors suggest selecting the

relevant Zones of Interest (ZOI) to increase efficiency and improve the accuracy. Morphological

2 – State of the art

 31

operations are performed on the word image to get the guides and the enlarged bounding boxes of

these guides are identifed as the zones of interest (see Figure 2.15).

Figure 2.15 - Guides and ZOIs for a template word image (Leydier et al. , 2005)

The template is thus split into pieces using the ZOIs and the distance and orientation between the

centers of these zones are stored.The first ZOI of the template is matched sequentially with each

ZOI of the test image while the other ZOIs of the template are matched with small displacement

possibility as shown in Figure 2.16.

Figure 2.16 - A possible displacement of ZOIs (Leydier et al. , 2005)

The authors report results of two experiments. The first one is carried out on 185 images of two

column pages with 20 lines per column where the search of the word ‘fyon’ found 28 good hits

out of 28 and the time of execution was 260mins. On the same document images, the authors then

searched the word ‘egypt’ and found 15 occurrences out of 15 with the first bad hit at rank 13 and

the last good hit at rank 68 and this search took 400mins. Overall, we can say that the results

achieved by this approach are satisfactory but the excution time is too long which makes this

approach less lucrative.

Having presented an overview of some of the recent and notable studies in the area, we will

now sum up with a comparative analysis of these methods in the following section.

2.2.3 Comparison of the Retrieval methods - Discussion

There have been no standard criteria for the evaluation of different information retrieval / word

spotting algorithms. [Terasawa et al. 2009] have recently proposed an automatic evaluation frame

work for word spotting algorithms which provides certain guidelines and protocols for obtaining a

uniform standard in the evaluation process. If followed globally, it can prove to be useful in future

2 – State of the art

 32

for a better and fair comparison of different methods. Traditionally, retrieval techniques have

generally been evaluated by running a set of queries and analyzing the list of retrieved words.

Two most common measures for judging the quality of the retrieved-words list are recall and

precision. But as all these methods have been evaluated in different conditions on different

proprietary databases sets with different number of test and query images, comparing the listed

precision and recall rates portrays no true picture of the performance and efficiency of a particular

method with respect to others, thus rendering a quantitative analysis irrelevant. A way though

could be to program all these algorithms and then run the tests for the different methods in exact

same computational conditions on one common data set. But due to many real life constraints,

this is not feasible for us. So we will limit ourselves to a brief qualitative analysis of the different

methods that we have discussed.

We have discussed two main categories of the document image retrieval methods which are

holistic or segmentation-free techniques and analytical or segmentation-based techniques. Both

the techniques have their pros and cons. Holistic analysis methods compare a sequence of

observations derived from a word image with similar features for the words in the database. There

are many factors that make this approach very attractive and natural. These factors mainly

concern the poor quality and printing of historical documents that result in high level of noise,

irregularity in printing and different font variations in ancient printed texts. All these factors can

complicate the character segmentation process which itself is not an easy task. By using a holistic

approach, we can avoid all the character segmentation issues and can match whole words directly

with good recognition rates using the different methods discussed earlier in the chapter.

On the other hand, analytical methods look for the best match between consecutive sequences

of primitive segments or characters of a word. Though segmentation of characters is a very

difficult problem, especially for ancient documents [Casey and Lecolinet1996], the analytical

approaches usually tend to give better recognition results as compared to their holistic

counterparts. It is due to their ability to focus on the local intrinsic characteristics of words which

give more in depth details of a word, thus differentiating between two different words becomes

easier. Another important point is the low level matching, which takes more intrinsic details into

the matching process, making the systems robust. Thus similar feature set and matching distance

could give better results when these features are defined for characters as compared to same

features defined for words as evaluated in [Khurshid et al. 2008a]. Another major advantage of all

segmentation-based methods is their flexibility with respect to the size and nature of the lexicon,

which is a result of these methods being letter-oriented.

2 – State of the art

 33

From the above discussion, we can conclude that though plenty of work has been done in the

past for information retrieval using word spotting, there is always plenty of room for

improvement, especially when dealing with large volumes of old historical books. The challenges

these old documents pose are enormous, and researches around the globe continue to thrive on

these challenges, bringing forward their propositions for more robust and more efficient systems.

In the next couple of chapters, we will discuss our approach of information retrieval using an

analytical word spotting methodology. We will also demonstrate the efficiency, flexibility and

robustness of our approach when we compare our system with other state of the art methods as

well as commercial OCR results. We start the discussion from the document image indexing in

next chapter.

2 – State of the art

 34

3 – Document Image Indexing

 35

Chapter 3

Document Image Indexing

Document image retrieval using word spotting has been a very hot research topic in document

analysis domain after the advent of the digital library concept. In the last chapter, we discussed

different approaches for word spotting that have been proposed over the years to facilitate

information searching. In our work, we have employed a granular approach for word spotting by

introducing a two level dynamic matching approach – at word level and character level. For that,

the first step we perform is the indexing of document images that includes the segmentation of

words and characters, defining features for the characters and storing all this information in

individual data files. It is a time consuming process, that’s why document image indexing is done

beforehand /offline to facilitate users in rapid information search and document image retrieval.

In this chapter, we focus on the indexing of document images. The whole indexing process has

been divided into four sub-steps:

• The first step is the preprocessing stage involving an optimized document binarization

algorithm to crisply distinguish the foreground from the background.

• Second step involves the segmentation of words and graphics.

• As we are working on character level, the third step revolves around the connected

component analysis of words for the extraction of characters. The connected components of

a word are post-processed using a 3-step process to get S-characters which are the best

possible approximation of the T-characters.

• In the last step, we calculate certain features for each S-character in a word and store them

along with some other information in an index file. Thus for each document image, we

create one index file. Figure 3.1 shows the block diagram of these stages.

Now we talk in detail about each of these stages.

3.1 Document Image Binarization

In an OCR or text extraction application, one of the pre-processing stages usually is

binarization of document images, i.e. separation of foreground from background. Binarization of a

text image should give us, in an ideal case, the foreground text in black and background in white.

Though different thresholding methods already exist in literature, they don’t give perfect results

for all types of documents [Leedham et al. 2003]. Some algorithms might work better for one type

3 – Document Image Indexing

 36

of documents where there are marks of strain while they might give poor results for other types

where there are extremely low intensity variations.

The problem of document binarization is as old as document image analysis itself. A large

number of binarization techniques have been proposed over the last two decades. These

techniques can generally be classified into two categories i.e. global thresholding and local

thresholding. Global thresholding methods employ a single intensity threshold value i.e. one

Figure 3.1 - Different stages of Document Image Indexing in our implementation

Indexing for use in word

spotting applications

Figure segmentation

Binarization

H-RLSA

Extracted Words

3-pass fixation

Feature Extraction

Connected Comps

S-characters in words

3 – Document Image Indexing

 37

fixed threshold is used for one image. The global method which is most common and is still used

for the documents where a global threshold will suffice is by Otsu. In this method, the threshold

value is calculated based on some heuristics of some global image attributes to classify image

pixels into foreground (text) or background (non-text) pixels [Otsu1979]. The main drawback of

global methods is that they can not adapt well to uneven illumination and noise, hence do not

perform well on low quality document images.

Local thresholding methods, on the other hand, compute a threshold for each pixel (or group of

pixels) in the image on the basis of the content in its neighborhood. As opposed to global

thresholding, local methods generally perform better for low quality images, specially classifying

pixels near text and object boundaries as either foreground or background. Different binarization

methods have been evaluated in [Gatos et al. 2006] and [Leedham et al. 2003] for different types

of documents. In [Gatos et al. 2006], authors have presented a multi-step method specific for

document images in which, first, a low pass Wiener filter is used for preprocessing of the

document image to obtain image I. Next, the authors use Sauvola’s method [Sauvola and

Pietikäinen2000] to extract the initial binary image S. It is followed by a background estimation

of I to get image B. Final thresholding is done using image I and B. A pixel is a text pixel if the

distance between the corresponding pixels in I and B exceeds a threshold d. In [Øivind D. Trier

and Taxt1995], authors present an evaluation of eleven locally adaptive binarization methods for

gray scale images with low contrast, variable background intensity and noise. In that evaluation,

Niblack’s method [Niblack1986] was found to be the best of them all. Different improvements

have since been made to the original Niblack’s method to improve the results. These include

Sauvola’s algorithm [Sauvola and Pietikäinen2000], Wolf’s work [Wolf and Jolion2003] and

Feng’s method [Feng and Tan2004].

We tried fixed global thresholding on our document images but the results were not satisfactory.

On the contrary, when we tested some local sliding-window based thresholding methods on our

images, results were immediately better. We have developed a customized binarization algorithm

‘NICK’ [Khurshid et al. 2009c] by improving the original Niblack’s formula. The results

achieved using NICK are better than other Niblack inspired methods as later shown in the results.

Here we give a brief account of the Niblack inspired sliding window methods that we tested and

compare them with the proposed method NICK to analyze the improvements in results.

3.1.1 Well known sliding-window-based methods in literature

 In this section, we give an account of some of the well known local sliding-window binarization

methods which we tested on our data set to see how they fared on the same base. These include

Niblack’s method [Niblack1986], Sauvola’s algorithm [Sauvola and Pietikäinen2000], Wolf’s

3 – Document Image Indexing

 38

method [Wolf and Jolion2003] and Feng’s method [Feng and Tan2004]. The results of the

comparison are given later in this section.

3.1.1.1 Niblack’s Algorithm

Niblack’s algorithm [Niblack1986] calculates a pixel-wise threshold in a rectangular window

over the gray level image. The computation of threshold is based on the local mean m and the

standard deviation s of all the pixels gray levels in the window and is given by the formula 3.1

below:

()

Bkmm
NP

p

km

mp
NP

kmT

skmT

NP

i

i

NP

i

iNiblack

Niblack

+=−+=

−+=

+=

∑

∑

=

=

21

2

1

21

*

 (3.1)

where NP is the number of pixels in the window, k is a constant fixed to -0.2 by the authors.

Advantage of Niblack’s method is that it always identifies the text regions correctly as foreground

but on the other hand tends to produce a large amount of binarization noise in non-text regions

and text boundaries.

3.1.1.2 Sauvola’s Algorithm

Sauvola’s algorithm [Sauvola and Pietikäinen2000] improves the Niblack’s method by computing

the threshold using the following formula:

))1(*1(*
R

s
kmTSauvola −−=

where k is set to 0.5 and R to 128. This method outperforms Niblack’s algorithm in images where

the text pixels have near 0 gray-values and the background pixels have near 255 gray-values.

However, in images where the gray values of text and non-text pixels are close to each other, the

results degrade significantly.

3.1.1.3 Wolf’s Algorithm

To address the issues in Sauvola’s algorithm, Wolf et al. [Wolf and Jolion2003] propose to

normalize the contrast and the mean gray value of the image and compute the threshold as:

3 – Document Image Indexing

 39

)(**)1(* Mm
R

s
kMkkmTWolf −++−=

where k is fixed to 0.5, M is the minimum gray value of the image and R is set to the maximum

gray-value standard deviation obtained over all the local neighborhoods (window).

This method in most cases outperforms its predecessors. However, degradation is observed in its

performance if there is a sharp change in background gray values across the image. This is due to

the fact that the values of M and R are calculated from the whole image. So even a small noisy

patch could significantly influence M and R values thus eventually calculating misleading

binarization thresholds.

3.1.1.4 Feng’s Algorithm

Instead of calculating dynamic range of gray-value standard deviation from the whole image

like Wolf, Feng et al. [Feng and Tan2004] propose calculating it locally introducing the notion of

two local windows, one contained within the other. The values of local mean m, the minimum

gray-level M, and standard deviation s are calculated in the primary local window while the

dynamic range standard deviation Rs is calculated in the larger window termed as ‘secondary local

window’. Binarization threshold is then computed as:

MMm
R

s
mT

s

Feng *)(***)1(321 ααα +−

+−=

where α2 = k1 (s/Rs)
γ and α3 = k2 (s/Rs)

γ . Based on the experimental experiences of authors, γ is

set to 2 while the values of other parameters, α1 , k1 and k2 are proposed to be in the ranges 0.1-

0.2, 0.15-0.25 and 0.01-0.05 respectively. This method addresses well the R-problem in the

Wolf’s algorithm. However the introduction of three parameters, as well as the size of the second

window, determined empirically, leaves the robustness of this method questionable.

As we saw above, each method tries to resolve the drawbacks in the predecessor from which it is

being driven. Niblack’s method identifies the text regions correctly as foreground but produces a

large amount of noise in non-text regions. Sauvola’s method tries to overcome the noise problem

in Niblack’s method but it fails in images where the gray values of text and non-text pixels are

close to each other. Wolf’s method overcomes this problem of Sauvola’s method though

degradation in binarization results is observed if there is a sharp change in background gray

values across the image. While for Feng’s method, the robustness of the method is left

questionable due to plenty of parameters which are determined empirically.

3 – Document Image Indexing

 40

3.1.2 Proposed Method – NICK

We now put forward our proposition of calculating the binarization threshold which works

better for many (if not all) types of degraded and noisy ancient documents. Instead of following

the chain of one algorithm proposing modifications in its predecessors, we derive our thresholding

formula from the basic Niblack algorithm, the parent of all the methods discussed earlier.

In NICK, binarization threshold is found out for each pixel by taking into account its

neighbouring pixels in a sliding window using the following formula:

NP

mp

kmT

NP

i

i)(2

1

2∑
=

−

+=

 Akm += (3.2)

where ,

k is the NICK factor having value between –0.2 and –0.1

pi = pixel value of gray scale image

NP = number of pixels in the window

m = mean gray value of these NP pixels

One major advantage of NICK over Niblack that we observed during experiments was that it

considerably improves binarization for "white" and light page images by shifting down the

binarization threshold to make sure no non-text areas are taken mistakenly as text. We show it

mathematically by finding a relation between NICK and Niblack’s methods. Using equation (3.1)

and (3.2), we have:

)
1

()
1

1(

)()(

22
2

2

2
222

NP

NP
m

NP
m

NP

m
m

m
NP

p

NP

m

NP

p
BA

ii

−
=−=−

=+−−=−
∑∑

If the value of NP is high, we can approximate (A – B) by m2.

A - B 2m≅

thus A 2mB +≅

3 – Document Image Indexing

 41

It shows that if the image is very dark, the value of m is low meaning that the difference between

A and B is very small. But if the image is light, the value of m is high and thus the difference

between A and B is greater which lowers the binarization threshold for NICK.

2mBkmT ++≅ (3.3)

The value of NICK factor k can vary from -0.1 to -0.2 depending upon the application

requirement. Value of k close to -0.2 makes sure that noise is all but eliminated but characters can

break a little bit, while with values close to -0.1, some noise pixels can be left but the text will be

extracted crisply and unbroken as shown in Figure 3.2. So, for an OCR application, the value of k

must be set at -0.1 and in applications where we don’t desire any noise, k should be –0.2.

k = -0.1

k = -0.2

Figure 3.2 - Binarization using NICK with k = -0.1 and k = -0.2 at window size 19

Equation (3.3) shows that the difference between values of T and TNiblack increases with m. To

highlight this difference, we applied NICK and Niblack’s methods, globally (computing the

binarization threshold using mean and standard deviation of complete image to get one threshold

value for one image), to a set of 20 document images having different mean gray values. Figure

3.3 shows the variation of T and TNiblack for these images. For whiter images (m near 255), this

difference becomes more significant. Now coefficient k being negative, T becomes smaller than

TNiblack, thus implying that fewer pixels are coded as black pixels. Figure 3.4 shows the result

obtained with Niblack’s method and NICK at k =-0.2 on the first three pages of a book.

3 – Document Image Indexing

 42

100

120

140

160

180

200

220

240

150 170 190 210 230 250

m (average color)

T TNB

Figure 3.3 - T and TNB thresholds for different average gray levels m

To evaluate our method and compare the results with the local methods described above, we

binarize the document images locally, computing the binarization threshold for each pixel of the

input image using a sliding window. The window size (optimized empirically on the data set) has

been set to 19x19 in our case. The results are given in the following section.

3.1.3 Comparison of the different methods

The binarization results formulated have been based on tests performed mainly on the images of

the Bibliothèque Interuniversitaire de Médecine, Paris [BIUM]. The sample images are shown in

Annex A. A total of 120 images, of size 1536 x 2549 pixels, were selected from the database and

were binarized using Niblack’s, Sauvola’s, Wolf’s and Feng’s methods. The results of these four

methods were compared with the results achieved by our method. All these methods have been

evaluated for a window size of 19x19, which was chosen considering the text size in the images,

and with bigger window in Feng’s method being kept at 33x33. Some of the results obtained by

these methods are shown in Table 3.1.

Based on visual criteria, the proposed algorithm seems to outperform the other methods with

respect to image quality and preservation of meaningful textual information. After a thorough

visual examination of the experimental results, important observations are summarized in the

following:

3 – Document Image Indexing

 43

• With Niblack’s approach, the resulting binary image generally suffers from a large amount of

background noise, especially in areas without text.

• With Sauvola’s method, the background noise problem that appears in Niblack’s approach is

solved but in many cases where there are less intensity variations, characters become extremely

thinned and broken. In some cases, the characters disappear totally giving a white output image.

Original Image

Niblack

NICK

Figure 3.4 - Comparison of binarization using Niblack and NICK methods for first three

pages of a book

3 – Document Image Indexing

 44

Table 3.1 - : Portion of output images obtained by using different methods at windows size

19, a) Niblack b) Sauvola c) Wolf d) Feng e) NICK

Portion of original Image a b

c d e

3 – Document Image Indexing

 45

• In most of the cases Wolf’s algorithm outperforms the two predecessors; however there are

occasions when the characters disappear or break if intensity variations are very small or there is

some noisy patch with a very sharp intensity variation from the rest of the image.

• Feng’s method generally works very well but the main drawback remains its susceptibility to the

empirically determined parameter values as discussed earlier. A slight change in parameter values

could drastically affect the binarization results, as was observed in our experiments. One set of

parameter values could give excellent results for one image but the same set would not work for

another image with different intensity and illumination variations. Secondly, the introduction of a

larger secondary window (around the primary window) also makes this method computationally

inefficient as compared to the rest.

• NICK shows improved performance when compared to the other methods tested, and performs

better especially when the images have extremely low intensity variations and for whiter images.

Computationally, NICK is much more efficient as compared to Feng’s method as we have to find

lesser parameters and that also within a single window. Table 3.1 shows portions of some output

images.

As in [Feng and Tan2004], we did a threshold analysis to see the difference in local threshold

values between these methods. For that, a synthetic image was created from a small portion of

real text image from a historical book. We selected a pixel row 140 pixels wide from the text and

extended it above to make it 19 pixels high. It is shown in Figure 3.5. Height of the synthetic

image was set to 19, as the window size we used for binarization was set to 19. The ground truth

image for the pixel row is also shown in Figure 3.5.

a.

b.

c.

Figure 3.5 – Creation of a Scan Line Image: a) selection of a pixel line b) extending the pixel

line in vertical direction c) ground truth of the synthetic image binarization

3 – Document Image Indexing

 46

Different intensity variations were applied on the synthetic image to create its different variants

and binarization thresholds were calculated for all of them using each of the five methods. It

enabled us to see how each of the methods responds to the changing background conditions in an

image. Figure 3.6 shows one example of the thresholds been determined along a scanline (central

line) for one of the variant of our synthetic image obtained by changing the intensity levels in a

photo editor. This analysis shows the effectiveness of our method in correctly discriminating the

foreground and background regions. We can see from the graph that apart from Sauvola’s

method, rest of the methods gave a reasonable separation of text and background regions for the

synthetic image. There were two occasions though where other methods wrongly identified noisy

background areas as text whereas NICK was able to successfully identify those regions as

background.

Figure 3.6 - Local thresholds obtained by different methods for the scan line image above

The evaluation of the different binarization methods is not an easy task. Apart from doing the

visual qualitative analysis, we also chose to perform a quantitative analysis of these different

methods as well. That’s why, to quantify the efficiency of our proposed binarization method, an

OCR experiment was performed on text samples having different intensity variations and quality.

3 – Document Image Indexing

 47

These samples were selected from 26 representative BIUM images from different books. Four of

the samples are shown in Figure 3.7. Character recognition was performed by the well-known

OCR engine ABBYY Fine Reader 9 beta [ABBYY] on the binarization results of Niblack’s,

Sauvola’s, Wolf’s & Feng’s methods as well as NICK on each of the 25 images. It is important to

note that the actual OCR recognition rate is not important for us but the difference in recognition

rates on the different binary images is important.

OCR results are quantified by character recognition rate, calculated as:

x 100

Image 1 Image 2

Image 3 Image 4

Figure 3.7 – Portions of the four sample document images among the 25 used in the OCR

test

The recognition rates for each of the images are given in Table 3.2.

TruthGroundinCharactersTotal

CharacterscognizedeRCorrectlyofNumber
rateecognitionR =

3 – Document Image Indexing

 48

Table 3.2 - Recognition rates achieved by the ABBYY OCR

Number of characters correctly recognized
Image

Total

characters NIBLACK SAUVOLA WOLF FENG NICK

Image 1 2012 0 1907 2003 1932 2002
Image 2 944 887 0 821 938 940
Image 3 241 239 233 233 230 238
Image 4 364 0 356 354 344 363
Other 22 Images 5896 2687 3850 4920 5460 5511

Total 9457 3813 6346 8331 8904 9054
Recg Rate 40.32 67.10 88.09 94.15 95.74

It can be observed from the analysis of first four images that ABBYY was not able to read

characters from Image 1 & Image 4 binarized with Niblack’s method, and Image 2 binarized with

Sauvola’s method, as it classified them as figures due to bad binarization. With Niblack’s method,

it was a case of extreme noise in the binary image that prevented ABBYY from detecting any

text, while with Sauvola’s method; it was due to very thin and broken characters, which as a

matter of fact, were impossible to read even from the naked eye. With Wolf’s method,

binarization was better in most cases. In image 2 though, there were a lot of broken characters

which the OCR could not read. With Feng’s formula, OCR results were better than with Wolf’s

method, though in Feng’s images, there were bit more noisy patches, which affected the OCR

performance in some images. With NICK, ABBYY was always able to distinguish and read text

areas, indicating the effectiveness and robustness of NICK for different illumination and intensity

variations in document images. It can be noted that though our method does not always

correspond to the best OCR performance for each image, it has no strong weaknesses. Thus in

each case it is able to provide a binary image that the OCR reads as text even if the original image

quality was very poor. Based on this test set, NICK achieves a recognition rate of 95.74% better

than all the other methods tested here.

The algorithm was also submitted to the 2009 ICDAR document binarization competition. The

performance of the methods was evaluated on ancient printed documents as well as historical

handwritten document images. Figure 3.8 below shows the F-score graph for the different

methods in the competition. Out of the 43 binarization algorithms, NICK achieved the 16th best F-

score of all. It can be noticed that after the top three methods, the performance of a group of

methods, apart from the last 9 odd methods, is very comparable. It is worth mentioning that other

methods are complex multi-stage algorithms while NICK is a very simple thresholding formula

which achieves comparable results to these multi-stage complex methods. Details of the

competition can be consulted in [Gatos et al. 2009].

3 – Document Image Indexing

 49

Figure 3.8 - F-scores of 43 different methods in the ICDAR 2009 competition – NICK (7c)

stands at 16
th
 position

Now that we have thoroughly discussed the binarization of document images, we can proceed

to extraction of words and characters which is the second main stage of our indexing process.

3.2 Text/ Graphic segmentation and Extraction of Words

A fine segmentation of words and characters in ancient document images is very useful for

applications such as information retrieval using word spotting or optical character recognition.

The degraded quality of these ancient documents poses different problems such as characters

broken into multiple components, text of the verso appearing on the recto, etc., thus making the

crisp extraction of the words and characters very difficult [Antonacopoulos et al. 2004],

[Baird2004]. Some earlier approaches to segmentation required knowledge of the character size in

order to separate a document into text and non-text areas. But if the size of characters varies in the

same page or in different pages of the same book, then the approach will not work well.

As already shown in chapter 2 (State of the art), traditionally page segmentation methods are

divided in three groups: top-down, bottom-up and hybrid approaches [Okun et al. 1999], [Duong

et al. 2001], [Shi and Govindaraju2005]. In top-down techniques, documents are recursively

divided from entire images to smaller regions. Theses techniques are often fast, but the efficiency

depends on a priori knowledge about the class of documents to be processed. Bottom-up methods

3 – Document Image Indexing

 50

start with the thinnest elements (pixels), merging them recursively in connected components or

regions, and then in larger structures. They are more flexible but may suffer from accumulation of

errors. Many other methods that do not fit into either of these categories are therefore called

hybrid methods.

To segment text and graphics and extract words from the text, we have formulated a multi-step

bottom-up approach by using the classic Run Length Smoothing Algorithm (RLSA) in horizontal

direction followed by a connected component area analysis in the RLSA image. The main

advantage here is that we do not need to know a priori the character size to segment text and non-

text areas. We now see it in detail.

3.2.1 Run Length Smoothing Algorithm

RLSA has been used previously in text/non-text segmentation. [Wong et al. 1982] used a

combination of RLSA in horizontal and vertical direction to segment blocks of text and non-text.

Afterwards, the text blocks are analyzed for the extraction of words. In our case, instead of

segmenting the document image into blocks of text and non-text, we segment the image directly

into words and graphics. For that we apply RLSA only in horizontal direction. The basic RLSA is

applied to a binary sequence in which white pixels are represented by 0’s and black pixels by 1’s.

The algorithm transforms binary ‘x’ into an output ‘y’ according to the following rules:

1. 0’s in x are changed to 1’s in y if the number of adjacent 0’s between two 1’s is less than or

equal to a predefined limit C.

2. 1’s in x are unchanged in y.

For example, with C = 4 the sequence x is mapped into y as follows:

x : 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 l 0 0 1

y : 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1

When applied to sequence arrays of 0’s and 1’s, the RLSA has the effect of linking together the

neighbouring black areas that are separated by less than or equal to C pixels. With an appropriate

choice of C, the linked areas will be regions of a common data type. The degree of linkage

depends on C, the distribution of white and black in the document, and the scanning resolution.

For a set of document images, the value of the RLSA threshold C is set according to the average

distance between the connected components in the binary document image (Figure 3.9). For most

of the historical books that we used, the usual distance between the words varies between 6 and

3 – Document Image Indexing

 51

14 pixels with most values concentrated around 10-12. An optimal value of C comes out to be 9

for most of the books which we use in our experiments. If the distance between two neighbouring

components is less than 9, it means they belong to a same word and thus are merged by H-RLSA.

Distance > C

Figure 3.9 – Distance between two words must be greater than RLSA threshold

Figure 3.10 shows H-RLSA on small portions of a document image of 19th century. Figure 3.11

shows H-RLSA on two complete document images.

Figure 3.10 – Applying H-RLSA on portions of an image with C = 9

3 – Document Image Indexing

 52

Figure 3.11 - H-RLSA on complete document images

H-RLSA has a similar effect as of dilation of black areas in horizontal direction. The characters

in a word are dilated and get linked/connected to the other characters of the same word. The

distance between two neighboring characters of two adjacent words is greater than the value of C,

so that gap remains there meaning that each word becomes a connected component. Similarly, the

graphics in the document image get dilated and they form a connected component as well. Area

and height analysis of the bounding boxes of the connected components is applied to segment

words and graphics. It is explained in the next sub-section.

3.2.2 Component Height-Area Analysis

Once we have the H-RLSA image, we find all the connected components present in that image.

The components in the H-RLSA image also contain graphics as large components. So to segment

graphics from words, we perform an analysis of the area and height of the bounding boxes of all

the connected components the image. Figure 3.12 shows distribution of area and height of all the

components’ bounding boxes in the H-RLSA image.

3 – Document Image Indexing

 53

Figure 3.12 - Areas and heights of all the bounding boxes of the 425 components in the

document above

3 – Document Image Indexing

 54

From the graphs in Figure 3.12, we can see that there are three components for which the areas

and heights of their bounding boxes are significantly greater than others. We have set the

following criteria for these larger components to check if they are graphic components or not:

Graphic Components = [Component Area > (Mean comp. area x A)

AND

Component height > (Mean comp. height x B)]

where mean component area is the average of areas of the bounding boxes of all the components

in that particular document image while mean component height is the average height of the

bounding boxes of all the components in that document page. A and B are constants which are

empirically found to be 5 and 4 respectively through thorough experimentation on different

documents of BIUM. The results show that this method works for almost all types of documents

for the separation of text from illustrations. Figure 3.13 shows the result of component area

analysis for some images. The larger components represent figures (components in red) while

smaller components represent words (blue components).

Figure 3.13 - Larger components are classified as graphics (red) and smaller ones as words

(blue)

The very small components (having an area of less than 10 pixels) are marked as noise and are

removed at this stage. Similarly, the small sub-components inside another component’s bounding

3 – Document Image Indexing

 55

box are removed as well, though this might not be efficient to do all the time, especially if we

have documents where small text characters are written inside the figure’s bounding boxes. Figure

3.14 illustrates the images at different stages of word extraction for a small gray image.

(a)

(b)

(c)

(d)

Figure 3.14 - Stages of word extraction a) Original image b) Binary image c) H-RLSA image

d) Connected components (words)

The results of the word extraction are formulated on the data set B containing 48 document

images from 12 different books. There are a total of 17,010 words in these pages and we are able

to perfectly segment 16,970 words which is 99.76%. The words which aren’t perfectly detected

are mostly the title words written in very large fonts. For example, in Figure 3.15, the word

“CHAPITRE” hasn’t been extracted as one word but is broken into small sub words as the RLSA

threshold is not enough to merge the characters in one component. These title words can be

treated separately from the remainder of the text and words could be extracted using a larger

RLSA threshold.

Figure 3.15 – Title word “CHAPITRE” is not extracted correctly

3 – Document Image Indexing

 56

As our ultimate goal is a character-feature-based retrieval system, so once we get all the words

in a document image, we move on to the next stage where we try to extract characters for each of

the words. Following section describes the character extraction process.

3.3 Character segmentation

Over the years, different types of methods have been proposed for character segmentation in

document images. These include the recognition based methods and the dissection based methods.

In recognition based methods, word image is divided systematically into many overlapping pieces

without regard to the content. These pieces are then built into characters during the recognition

stage by matching with the already known characters using different methods [Jung et al. 1999],

[Burges et al. 1992], [Casey and Nagy1982]. The problem with this type of segmentation is that

we need to have a knowledge of characters in advance, which is sometimes not possible in ancient

documents due to many variations of writing printing font styles. On the other hand, in dissection

based methods, the word image is cut into meaningful components based on ‘character-like’

properties. These properties include height, width, separation from neighbouring components,

disposition along a base line, etc. This category includes methods such as classic projection

methods [Hoffman and McCullough1971] and connected component analysis methods [Cesar and

Shinghal1990]. An experimental comparison of character segmentation by projection analysis vs.

segmentation by connected components is given in [Wilkinson1992] showing that connected

component based segmentation easily outperforms the projection based segmentation. A detailed

survey of different methods and strategies in character segmentation in [Casey and

Lecolinet1996] can be consulted for more information on the subject.

For character segmentation, we follow a connected component based approach. As we know

that a word is composed of characters, and in an ideal case, the connected components in the word

should be the characters so we carry out a connected component analysis on the extracted word

images to get raw characters which we term as segmented characters or in short, S-characters.

However, an S-character does not always correspond to an actual/true character (T-character). A

T-character may be broken into multiple S-characters or multiple T-characters may form a single

S-character. Also there are characters like i, j, é, etc. which are composed of more than one

component. So once we get the S-characters, we need to have a post-processing stage in which the

bounding boxes of S-characters are joined or split according to rules based on heights, widths and

positions of their bounding boxes, so that the finally extracted S-characters could correspond to

the T-characters. Below, we describe our 3 pass method for the fixation of the raw S-characters to

get S-characters that correspond in a better way to the T-characters.

3 – Document Image Indexing

 57

3.3.1 Post-processing for character extraction

A 3-pass post-processing method is applied to the bounding boxes of the S-characters of a word to

get the actual characters.

3.3.1.1 Pass-1 : Multi-component characters

In the first pass, we analyze the T-characters which are composed of two or may be more S-

characters on top of each other. These include T-characters like i, j é, etc., which are composed of

two S-characters. We merge the bounding boxes of these S-characters into one bounding box

enclosing the whole character. The coordinates of the bounding boxes are measured in accordance

to the coordinate reference used in computer vision where top left corner of the screen

corresponds to (0, 0) and bottom right corner corresponds to (Xmax, Ymax). The first post-

processing pass is implemented as follows:

The coordinates ymin and ymax of the larger S-character’s bounding box A are adjusted. The

height of A is increased so that it includes the S-character B within its bounding box, while the

smaller S-character’s bounding box (B) is deleted from the list of S-characters of the word. It is

graphically shown in Figure 3.16:

Figure 3.16 - Concatenating the bounding boxes of two S-characters on top of each other

(B.xmax,B.ymax)

(B.xmin,B.ymin) B

(A.xmin,A.ymin)

(A.xmax,A.ymax)

 A

(A.xmin,A.ymin)

(A.xmax,A.ymax)

B

 A

For bounding boxes of two neighboring S-characters A and B

If A.xmin is less than or equal to B.xmin AND A.xmax is greater than or

equal to B.xmax then

 A.ymin = min (A.ymin , B.ymin)

 A.ymax = max (A.ymax, B.ymax)

Delete component B

3 – Document Image Indexing

 58

Figure 3.17 shows images of words from relatively good quality and resolution document

images in the data set (so that the post-processing steps could be clearer to understand). In these

words, some of the T-characters are composed of two S-characters which are treated in this pass.

(Fixed: é)

(Fixed: è)

(Fixed: i, é, i)

(a) (b)

Figure 3.17 – Example of pass-1, a) Raw S-characters b) S-characters after Pass1

3.3.1.2 Pass-2 : Broken characters

In the 2nd pass, we analyze the T-characters which are broken into multiple S-characters due to

quality issues in the scanned document images. These include T-characters like r, g, m, etc. We

merge the bounding boxes of the two S-characters into one bounding box enclosing the complete

character as:

It works like this: we look for those S-characters in a word that overlap at some point. The

coordinates ymin, ymax and xmax of the S-character A are adjusted so that it includes S-character

For bounding boxes of two neighboring S-characters A and B

If (B.xmin is less than A.xmax) AND (B.xmax - A.xmax) < T then

A.ymin = min (A.ymin , B.ymin)

A.ymax = max (A.ymax, B.ymax)

A.xmax = B.xmax

Delete component B

3 – Document Image Indexing

 59

B within its bounding box, while the bounding box of the S-character B is deleted from the list of

S-characters of the word. It is graphically shown in Figure 3.18.

Figure 3.18 - Concatenating two S-characters into one S-character

Figure 3.19 shows a word after pass 1 containing character ‘r’ broken into two S-characters; it is

fixed in this pass 2.

 a

 b

Figure 3.19 - a) S-characters after pass1 b) S-characters after Pass 2

We have set a bound on the difference of B.xmax and A.xmax to eliminate certain true positive

cases getting the same “merge” treatment. It is usually the case if the text is written in italic,

bounding boxes of different S-characters could overlap at certain points. Figure 3.20 shows a

couple of word instances in italic with bounding boxes of some S-characters overlapping. If we do

not have this “merge” bound, these S-character’s bounding boxes would be combined to one big

bounding box.

The value of this limit is set by taking into account the average width of all the S-characters in the

page and then dividing the average value into half.

T = Average Width / 2

(A.xmax,A.ymax)

Less than T

(B.xmax,B.ymax)

(B.xmin,B.ymin)

(A.xmin,A.ymin)

(A.xmax,A.ymax)

 A

(A.xmin,A.ymin)

B

 A

3 – Document Image Indexing

 60

Figure 3.20 - Examples of bounding boxes overlapping in italic font

This limit leaves a few broken T-characters unfixed, mainly because the width of the S-character

B is more than this limit criterion, but the number of these instances is very low. There are some

other unfixed T-characters as well which are broken into two S-characters but the bounding boxes

of these S-characters do not overlap at any point. So they cannot be merged in this way. Examples

of the unfixed T-characters are shown in Figure 3.21:

Figure 3.21 - Examples of T-characters broken into two S-characters

Apart from these broken T-characters, there are some instances of merged T-characters as well.

Figure 3.22 shows a couple of examples of these merged T-characters. These broken and merged

T-characters remain non-treated here but we take them into account later on as we tackle the

broken and merged T-characters in our Merge-Split Edit distance. It will be discussed in detail in

the next chapter.

Figure 3.22 - Examples of S-characters comprising two T-characters

3 – Document Image Indexing

 61

3.3.1.3 Pass-3 : Extra Component removal

S-characters that do not belong to a word but are segmented as a part of the word are handled in

this pass. These S-characters mainly comprise punctuation marks (like ‘,’ or ‘.’) which are very

close to the word they follow and thus are considered, incorrectly, as an S-character of the word.

Figure 3.23 shows examples of words having these extra S-characters as their part.

Figure 3.23 - Removal of punctuation marks

To remove these S-characters from the word, we follow a simple component area approach

where we find average S-character area for that word (using the areas of the bounding boxes of all

S-characters in the word) and then exclude the S-character whose bounding box’s area is less than

a factor of the average S-character area. Mathematically,

S-character area < A x Average S-character area of the word

Though it is very hard to estimate a perfect value of A, as for different word lengths the average

area may vary drastically, still we found (empirically) that the value for which this approach

works the best for all the images of our validation set comes out to be 0.4. This value makes sure

that no actual T-character gets excluded from the word. Punctuation marks in the word component

and also other small noisy S-characters are marked in this pass so that they no longer constitute a

part of the word.

3.3.2 Evaluation of Character Segmentation method

After the three passes of S-character reconstruction/fixation, we get S-characters which are very

close to T-characters. But how many of these S-characters are T-characters and how many do not

represent a T-character? To evaluate this, whole character segmentation process is tested on data

set B comprising 48 different document images taken from 12 varied 19th century books of the

BIUM library. Total number of T-characters in these 48 images is 82,264. Evaluation of character

segmentation process is done by using Recall and Precision percentages. In our context here,

recall is defined as:

3 – Document Image Indexing

 62

charactersTofNumberTotal

ExtractedcharactersTofNumber
R

−

−
= x 100

And precision is defined as:

charactersSofNumberTotal

ExtractedcharactersTofNumber
P

−

−
= x 100

Table 3.3 summarises the overall results for different stages of character processing. Final T-

character recall percentages (after post-processing) for each document image are depicted

graphically here in Figure 3.24. We can see that for a couple of document images, the percentages

drop to 92 and 94%. This is because, in these document images, the intensity variations in text

and background are very small. That is why we get more binarization noise, causing the T-

characters to break into S-characters. An example document image is shown in Figure 3.25. How

we cater for these broken T-characters will be discussed in the word matching part in next

chapter.

90,00

92,00

94,00

96,00

98,00

100,00

1 5 9 13 17 21 25 29 33 37 41 45

Document Images

R
e
c
a
ll

Figure 3.24 - Recall percentages for T-characters in each document image

3 – Document Image Indexing

 63

(a)

(b)

Figure 3.25 – a) A document image and b) its binarized image, where character

segmentation is not so good

3 – Document Image Indexing

 64

Table 3.3 - Result summary of character segmentation process

Before post processing passes

Total T-characters in the data set 82264

of raw S-characters within words 115414

of T-characters in these S-characters 60358

Recall % 73.4%

Precision % 52.3%

After pass 1 and 2

of S-characters treated (merged) during pass 1 and 2 20745

of S-characters after pass 1 and pass 2 94669

of T-characters in these S-characters 81103

Recall % 98.6%

Precision % 85.7%

After pass 3

of S-characters removed during pass 3 10244

of S-characters after pass 3 84425

of T-characters in these S-characters 81103

Recall % 98.6%

Precision % 96.1%

Without applying the 3 passes we got about 73% of the total T-characters in the data set. After

applying the three passes, we were able to properly extract 98.6% of the T-characters. The

remaining 1.4% T-characters which are not extracted correctly are either broken (as shown above

in the examples) or there are few T-characters which are merged into a single S-character. We

have not handled these merged T-characters here. These and the remaining broken T-characters

will be handled by Merge-Split Edit distance method, explained in next chapter.

Now once we have the S-characters, we find certain features for each S-character for

representation in feature domain. These features are used for matching two S-characters in the

retrieval stage. Feature extraction is described in the following section.

3.4 Feature Extraction

To represent an S-character, we have defined a set of six feature sequences and five scalar

characteristics. Four of these feature sequences (vertical projection, upper and lower profiles, ink-

non-ink) are used in [Rath and Manmatha2007], for characterizing the word image as a whole.

3 – Document Image Indexing

 65

Our approach of having these six feature sequences for character images gives a better

representation of words in feature space as compared to word level features, as we will show later

on in the results. Also having features at character level gives us more flexibility during the

matching stage [Khurshid et al. 2009b], [Khurshid et al. 2008a]. The scalar features are used for

coarse matching and decision making while the vector features are used in actual dynamic

matching process. Features are described below.

3.4.1 Features

For each S-character, we find six feature sequences each having a length equal to the width of that

particular S-character. It means that for different S-characters, the length of the sequences may be

different depending on their widths. These feature sequences include vertical projection, upper

character profile, lower character profile, ink-non-ink transitions, vertical histogram and mid row

transitional vector. There might be some redundant information in these six features, but as we

have seen, each one of them provides some unique information as well, as later depicted by

individual feature results. Vertical projection has been calculated using the original gray image

while the rest of the features have been found on the binarized image. Some of these features are

known classically [Costa and Jr2001] and have been employed in a variety of applications. The

profiles and histograms, for example, have shown good performance on character recognition

[Heutte et al. 1998], writer identification [Siddiqi and Vincent2008] and font recognition

[Zramdini and Ingold1993]. We describe the features in detail below.

3.4.1.1 Vertical Projection

It is the sum of intensity values in each pixel column of the gray scale S-character image. The

values in the resulting sequence are normalized between 0 and 1 by dividing each of them by 255

times the height of the S-character’s bounding box. Figure 3.26 shows the normalized vertical

projection curve for the S-character image ‘p’ having width 23.

Figure 3.26 - Normalized vertical projection profile of character image ‘p’

Width 23

3 – Document Image Indexing

 66

3.4.1.2 Upper Character Profile

For each column of the binarized S-character image, the distance of the first ink pixel from the top

of bounding box is its upper profile. It captures the part of outlining shape of a character. Figure

3.27 shows upper profile of binary S-character image ‘p’.

Figure 3.27 - Normalized Upper profile of S-character image 'p'

3.4.1.3 Lower Character Profile

For lower profile, we calculate the distance of the last ink pixel from the top of bounding box.

Both upper and lower profiles are normalized between 0 and 1 by dividing each of them by the

height of the S-character’s bounding box. Figure 3.28 shows lower profile of S-character ‘p’.

Figure 3.28 - Normalized lower profile of S-character image 'p'

3.4.1.4 Ink/ non-ink transitions

Both upper and lower profiles help to study the outer structure of an S-character. To capture the

inner structure though, we consider an ink/non-ink transition feature. For each column of the

binarized S-character image, we find the total number of ink to non-ink or non-ink to ink

3 – Document Image Indexing

 67

transitions. The range of this feature is normalized using a (conservatively determined) constant

that ensures a range of [0 . . . 1]. The value of that constant comes to be 6 as that is the maximum

number of transitions we may have in any column of a Latin character image.

Figure 3.29 - Ink Non-ink transitions for each column of an image

3.4.1.5 Vertical Histogram

Number of ink pixels in each column of a binarized S-character image. Figure 3.30 shows the

normalized vertical histogram of the binarized S-character image ‘p’.

Figure 3.30 – Normalized Vertical histogram for the S-character image 'p'

3.4.1.6 Mid Row Transitional vector

For the central row of the S-character image, we find a transitional sequence accounting for all

the ink/non-ink transitions. A ‘1’ is placed for every transition from ink to non-ink or non-ink to

ink, and a ‘0’ for all the non-transitions in that row. This feature was also calculated in another

way using three central rows instead of just one. The three central rows of the image were first

merged to obtain a mean row using logical OR operator. It means that for a column, if there is an

Pixel column

3 – Document Image Indexing

 68

ink pixel in any of the three central rows, we take it as an ink pixel for the same column in our

mean row. Transitional vector is then calculated for this mean row using the same procedure.

We tested the feature both ways and found out that using only central row instead of the

combination of three rows gives better results. This is because by merging three rows using OR

operator, we might lose some transitions in between. Figure 3.31 shows it graphically. We can see

that by using mean row, we would have only two transitions in our transitional sequence, while if

we use only the central row, we would have 4 transitions which gives a better representation of

the actual mid area in the S-character image. So we stuck to only the central row.

Figure 3.31 - Mean Row using three central rows of the image

Figure 3.32 shows the transitional sequences of two S-character images using only the central

row.

Figure 3.32 - Mid row ink to non-ink transitional sequence for two S-character images of

widths 20 and 23

All these six features are used in word matching. Performance analysis of each of these features

individually on our word matching algorithm is given in chapter 4 in the results section. To

analyse the robustness and pertinence of the features and see if they are able to correctly

distinguish the different S-characters, we performed automatic clustering of S-character images in

a document image by matching these S-chatacter features using DTW. Each cluster in ideal case

0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

Mean Row

Three central rows

3 – Document Image Indexing

 69

should contain all similar S-characters. Different clustering methods have been evaluated in

[Marinai et al. 2008] for word images to perform word image indexing. The three methods are:

the Self-Organizing Map (SOM), the Growing Hierarchical Self-Organizing Map (GHSOM), and

the Spectral Clustering. In our case though, we have used the classic sequential clustering method

[Friedman and Kandel1999] as it is the simplest, computationally efficient and the most natural

way to cluster data once the number of classes is not known. This method has been employed for

hand written text in [Nosary et al. 1999] for the clustering of graphemes and [Siddiqi and

Vincent2008] in clustering of writing fragments.

The algorithm starts with the choice of a proximity threshold and the first element as the

centroid of the first cluster. For each of the subsequent patterns, the similarity between the current

element and each of the clusters is calculated. The element is then either attributed to the nearest

cluster or, in case, it is not close enough to any of the clusters (with respect to the threshold), a

new cluster is created.

For our implementation, the (dis)similarity between an element (an S-character image) Si and a

cluster Cj is calculated by employing Dynamic Time Warping (DTW) on the feature set between

Si and the mean (µj) of Cj. (DTW will be explained in detail later in section 4.5). Every time an

element is added to a cluster, the mean of the cluster is also updated. The process is repeated until

all the S-characters in the document have been assigned to clusters. Figure 3.33 shows the

application of clustering algorithm on a document image. We can see that barring some erroneous

elements, each cluster very much comprises of similar S-characters, which shows that the features

we selected are robust and pertinent to the case of matching the S-character images using dynamic

matching distance.

3 – Document Image Indexing

 70

Figure 3.33 - Automatic clustering of S-characters in an image by matching the feature

sequences using DTW - Red blocks represent the end of a cluster

From Figure 3.33, we can see that the matching using DTW is size independent and S-

characters of different sizes are matched correctly using the above defined feature sequences.

Apart from the above six feature sequences, we find some scalar features for each S-character as

well. These scalar features are there to be used in a coarse matching of S-characters. These are:

a. Width: Width of the bounding box (w)

b. Height: Height of the bounding box (h)

c. Aspect Ratio: The ratio of the width and height of the bounding box of an S-character (w / h)

d. Area: Area of the bounding box of the S-character (w x h)

3 – Document Image Indexing

 71

e. Character category: Horizontal histogram of the binary document image is most often used

to identify the text lines in the document page. For a text line printed in Latin, most of the

concentration of black pixels is along the top and base lines. This is because in Latin, every

character touches the top and base line, but it is only for a few characters that some portion

extends above the top line (ascender) or below the base line (descender). Examples of these

characters could be h, p, f, etc. So, once we find the horizontal histogram of the text image, we

can identify the text lines and their top and base lines. Figure below shows a text for which top

and base lines are identified.

Figure 3.34 - Top and base lines drawn on the text lines

Once we identify the top and base lines, we can characterize the S-characters based on how

they are written with respect to top and base lines. The S-characters which fit in between the top

and base lines are put in category 1. Examples include a, c, o, etc. Similarly, those S-characters

for which some of their portion extends above the top line but none below the base line are

classified as category 2. Examples could be l, t, i,, etc. Category 3 comprises S-characters for

which some portion extends below the base line but non above the top line. Examples are g, p,

etc. Lastly, the category 4 consists of S-characters which extend both above and below the top and

base lines respectively. Figure 3.35 shows this categorization.

Figure 3.35 – S-characters of category 1 in red, 2 in green, 3 in blue and 4 in yellow

Top line

Base line

3 – Document Image Indexing

 72

3.5 Image Indexing

Once all the processing is done and features are found for each S-character in the document

image, an index file is generated for each image. Following data is stored in the index files for the

purpose of word matching:

1. Position of each word

2. Width and height of the word’s bounding box

3. Number of S-characters in the word

4. Position of each S-character in the document image

5. Width/height of the S-character’s bounding box

6. Features of each S-character

Index files are created offline once. Format of the index files is kept as ‘.DAT’. Size of these data

files (index files) depends upon the document image itself. For large document images (in

size/resolution) the size of the index file will be large. This is because in larger images, S-

character widths will be large, implying that the length of all the feature sequences will also be

large as it depends on the width of S-character’s bounding box. Normally, in our case, the sizes of

the index files range from 450Kb to 1.75Mb for different BIUM document images.

Similarly, computational time to generate an index file depends upon the document image as well.

If an image has plenty of words and S-characters, it takes long to do all the processing and finding

features for all these S-characters as compared to the document images with less words. To

evaluate index time for different images, we tested 48 different document images of the data set B

taken from 12 varied 19th century books on an Intel core2duo 2.1GHz machine with 3GB RAM.

The time for indexing different document images is shown in Figure 3.36.

3 – Document Image Indexing

 73

0

50

100

150

200

250

300

350

400

450

1 5 9 13 17 21 25 29 33 37 41 45

Document images

T
im

e
 (

s
)

Figure 3.36 - Indexing time for different document images

We can see that indexing time varies for different document images depending upon different

factors, such as, number of graphics in the image, total number of words and S-characters, font

size, image resolution/size, etc. Overall, the average indexing time for an image in this document

base is 130s.

3.6 Conclusion

In this chapter we discussed the document image indexing process in detail. For indexing, we

divided the whole indexing process into four sub-steps. The first step is the preprocessing stage

involving an optimized document binarization algorithm NICK to crisply distinguish the

foreground from the background. Second step involves the word/graphic segmentation. Third step

revolves around the connected component analysis of words for the extraction of S-characters

which are post-processed using a 3-step process to get better S-characters. In the last step,

multidimensional features are defined for each S-character of a word and are stored along with

some other relevant information in an index file. Thus for each document image, an index file is

created.

Now after indexing, once a query word is given to the system, the S-characters features are

used to compare all stored words with the given query to retrieve all relevant words and pages.

Whole of this matching and retrieval process will be discussed in detail in next chapter.

3 – Document Image Indexing

 74

4 – Information Retrieval - Word Spotting

 75

Chapter 4

Information Retrieval - Word Spotting

In the previous chapter, we saw document image indexing involving segmentation of words and

figures and the extraction of S-characters for each word. Six feature sequences are defined for

each S-character and are stored in data (index) files along with other information related to words

and S-characters. In this chapter, we will talk about information retrieval from these indexed files

by introducing a query word and retrieving all instances of words similar to the given query using

multi-stage word spotting algorithms.

The chapter starts with a brief introduction of word spotting in general and also overview our

methodology. This will be followed by the description of the data set used in experimental

validation of the individual stages. Next we describe different ways for query formation followed

by matching at word and S-character levels. We will compare the results of different word

spotting algorithms proposed in the results section.

4.1 Introduction

Word spotting is a technique used for information retrieval from ancient documents using word

matching as well as for creating partial indexes for historical document collections similar to

indexes that can be found in the back of books. It was initially proposed by Manmatha in

[Manmatha et al. 1996a] and [Manmatha et al. 1996b] and has prompted a number of publications

that propose algorithms and features for the approach [Rath and Manmatha2007], [Adamek et al.

2007], [Rothfeder et al. 2003], [Rath and Manmatha2003]. The idea of word spotting is to use

image matching for calculating pair-wise “distances” between word images, which can be used to

cluster all similar words, occurring in a collection of documents, together. Ideally, each cluster

would contain all the words with a particular label corresponding to an entry in the dictionary.

The labels of the words are not known a priori. Then “interesting” clusters may be labeled

manually and an index for the clustered collection may be built, similar to indexes in the back of

books.

We use word spotting for the purpose of information retrieval from a collection of documents.

The idea is to retrieve all the relevant document images which contain words similar to the input

query word. The query word image is compared to all the candidate words using image matching

in order to find all similar words in all the indexed documents. With this ability to search in the

4 – Information Retrieval - Word Spotting

 76

historical document images with acceptable results, digital libraries will further enhance their

importance in the field of research.

4.1.1 Overview – basic idea

For word spotting, we have proposed a two step retrieval system. In the first step, we narrow

down the data set to be searched by using a length-ratio filter. It finds all eligible word candidates

which could be similar to the query word. For two words to be considered eligible for matching,

we have set bounds on the ratio of their lengths. If this ratio does not lie within a specific interval,

we do not consider the word as a candidate for the query word. In the second step, the query word

and candidate words are matched using a multi-stage retrieval system in which two words are

matched using different string comparison algorithms while two S-characters are matched using

an elastic DTW approach coupled with Euclidean distance [Khurshid et al. 2009b]. Figure 4.1

shows the main blocks of our retrieval system. Details of each of these blocks follow in the

subsequent sections.

Figure 4.1 - Different stages of word retrieval system

Now before moving on to the actual matching stage, we will first see how the query can be

given to the system.

Multi-stage matching

DTW for S-character matching

Spotted words

Word matching - string comparison

ASCII query

Processing stages (As in fig 3.1)

Query image

Query image representation

Length-Ratio filter Indexed documents

4 – Information Retrieval - Word Spotting

 77

4.2 Query Formation

To search required information and retrieve the relevant document images, we need to give a

query to the system. For that, we have developed a prototype system with a user-friendly

graphical user interface (GUI) that allows inputting the query in an easy way. User can either

click on a word in the opened image in the GUI or he can type in the ASCII word.

4.2.1 Query image - Crisp selection using GUI

When an image is opened in the GUI, its index file is also loaded in memory. If the image

opened is a new one i.e. non-processed, then its index file is created on run-time. Now as all the

information related to the document image, its words and S-characters is available to the system,

the crisp selection of words becomes easy. User clicks at a point on a word, coordinates of that

point are analyzed to see which word’s bounding box they belong to. Bounding box is then

instantly drawn around the selected word. If the user clicks anywhere else on the image (non-text

areas), no word will be highlighted as the clicked point coordinates do not belong to any word.

Figure 4.2 shows an example screen shot where user clicks on the word “poulie” and it gets

selected as the input query.

Figure 4.2 - Selection of a query word image by clicking on the document image

4 – Information Retrieval - Word Spotting

 78

All information related to the word, such as its aspect ratio, number of S-characters, features of

the S-characters, etc., is extracted from the index file and is stored in a local structure to facilitate

in the matching process.

4.2.2 ASCII Query

The query word can also be given in ASCII format. The concept here is simple. User enters an

ASCII query for which a synthetic query image is formed using the representative character

images. This has been used in literature as well. [Leydier2006] uses prototype characters to form

synthetic query word images. Different variations are added to the character images to be able to

adapt to different styles. [Doulgeri and Kavallieratou2009] use contemporary fonts to generate

synthetic character images using a specific font and size. The query word image is formed by

combining these character images with a space in between two character images. This query word

is then matched with the other words using word similarity measures. [Rodriguez-Serrano and

Perronnin2009] have used 25 different fonts to generate different types of synthetic query word

images. Local gradient histogram features are used to model the synthetic word shapes. This

concept of synthetic text generation has been applied in other document analysis applications, like

handwriting recognition [Helmers and Bunke2003], where training data is generated synthetically

using character images of a writer, with very promising results.

To allow query in ASCII, we also use this concept of prototype characters. In our case, we collect

prototype characters from document images themselves in multiple ways which we discuss here.

The advantage we have over [Doulgeri and Kavallieratou2009] and others is that by defining

features at character level, we don’t have to form a physical image of the query word. It gives us

three advantages:

• We don’t need to perform the task of estimating the inter-character spacings in a word

• We don’t have to resize the prototype characters to fit in a query word

• We don’t have to calculate the prototype character position with respect to a baseline

while creating the query word image

All these advantages are due to the fact that we match the words at S-character level and not at

word level, so inter-character spacing or prototype character vertical positioning becomes

irrelevant.

The prototype characters can be selected manually from the document images. This is done

using the GUI of our retrieval system framework by simply clicking on an S-character image and

nominating it as a prototype for that label. In different books different sort of fonts are used, but

within a book the font styles are usually consistent and uniform. So for one character label, we

4 – Information Retrieval - Word Spotting

 79

can have different prototypes from different books. Figure 4.3 shows some S-character images of

label ‘p’ in different books.

p

Figure 4.3 – Variations of a character in different books

We don’t store prototype character images physically in the memory. Rather, only the

representative feature sequences of the prototype characters are stored in data files named after

the character label. For example, a file “sp.dat” contains the features of prototype character

images of ‘p’ in lower case and “bp.dat” contains features of the prototype character ‘P’ in upper

case. From each book, for each character label, we select one prototype character in upper case

and one in lower case.

Now during word matching, when the user types in a query word, the features of the typed

characters are read from these prototype data files. If the information search is confined only to

one book, then only the features of the prototype characters from the same book are used in

creating the query word. Else, all the prototype characters are used in all possible combinations to

make multiple variants of the query word. (Here we would like to remind that the query word is

not created physically, it is only hypothetical)

Now we move on to the matching process where the given query word is compared with all

other words to retrieve appropriate matches. As the data sets are usually very large, a filtering

process is introduced at the beginning that filters out the word base and retains only the candidate

words for a given query. For that we have implemented a length ratio filter.

4.3 Length-ratio Filter

The document set to be searched for some particular information is usually very large. There are

plenty of words in the document base and to retrieve the words similar to the input query word

takes a lot of time. This is because the query word is matched against all the words in the index

files of the same book. To make the retrieval process time-wise more efficient, we introduce a

length-ratio filter before the actual matching processes which narrows down the list of candidate

words considerably.

4 – Information Retrieval - Word Spotting

 80

The length-ratio filter is a function of the number of S-characters of the query word. This is

because we want to match the query word with words having more or less similar number of S-

characters. We don’t want to match a word of length 10 if the length of the query word was say

only 3. (Here by word length we mean number of S-characters in the word). So, to find what

length word is to be matched with which length query, we find the ratio of the number of S-

characters of the test and query words as:

Length-ratio =Length(Test word) /Length(Query word)

Test word is selected as a candidate if the ratio comes out to be in a threshold interval defined

as:

if (Length-ratio > R1 AND Length-ratio < R2) then

 Test word is a candidate word

The values of R1 and R2 were chosen empirically keeping in view the character segmentation

problems with an objective that we don’t want to miss any good candidate even if we got more

false candidates.

if Length(Query word) <= 3 then

 R1=0.65;

 R2=1.51;

else

 R1=0.70;

 R2=1.43;

These values can be adjusted by the user depending on the document set. If there are many

errors in character segmentation (broken or merged T-characters), then these values can be

adjusted to allow more words as candidates. Similarly, if the document quality is good and

character segmentation is reliable, then these values can be made more strict (close to 1) so that

only the words with exact same length are matched with the query word.

We applied the length-ratio filter on 16 document images of data set A with a total of 4,594

words to analyze how many words are filtered out for different query lengths. Table 4.1 shows the

number of words that are kept as candidates and also the number of words that are pruned out at

this early stage. Figure 4.4 shows the percentages of words that are filtered out for different query

lengths. We can see from the graph that 50 to 75% of the words are filtered out for different query

word lengths.

4 – Information Retrieval - Word Spotting

 81

Table 4.1 – Length-ratio filter for different word lengths

Word Length Total Words Words selected Words Filtered out % Words Filtered Out

3 4594 2162 2432 52.9%

4 4594 1422 3172 69.0%

5 4594 1702 2892 62.9%

6 4594 1492 3102 67.5%

7 4594 1857 2737 59.5%

8 4594 1580 3014 65.6%

9 4594 1215 3379 73.5%

10 4594 1278 3316 72.1%

 36752 12708 24044 65.4%

40

50

60

70

80

3 4 5 6 7 8 9 10

of S-characters in query word

%
 o

f
w

o
rd

s
 f

il
te

re
d

 o
u

t

Figure 4.4 - Percentage of words filtered out by the length-ratio filter

4.4 Information Retrieval - Word Spotting

Now once the initial filtering process is done, the query word is then matched with all the

candidate words to find relevant matches. This matching is done using a multi-stage retrieval

method:

• The actual image matching is done at character level in which the sequence of feature

vectors of the two S-characters are matched using elastic DTW method

• These S-character matching distances are then used in the second stage where two words

are compared by matching the sequences of S-characters. Different algorithms have been

proposed for this second stage of word matching which we will see in detail later on.

4 – Information Retrieval - Word Spotting

 82

 x1 x2 xm y1 y2 yn

Figure 4.5 – The overall system - highlighted S-characters (in gray) of two words are

matched using DTW (matrix D) while two words are compared using different techniques

Figure 4.5 depicts the overall matching system in the form of a block diagram. We can see that

the S-characters of two words being compared are matched using DTW matrix D on their feature

set. These individual S-character distances are used to compare two words, a word being a string

of S-characters, and decide whether they are similar or not.

In the following section, we will see in detail the S-character image matching process. Once we

are done with that, we will move over to the word matching process.

4.5 S-character Matching

Two S-character images are compared by matching the sequences of their feature vectors. Several

image matching techniques (though at word level) have already been investigated in [Rath et al.

2002, Rothfeder et al. 2003] with the best performing being Dynamic Time Warping matching

(DTW). So here, we also chose to continue with this elastic dynamic matching concept taking it

further on S-character matching level. All the S-character matching distances are calculated by

matching the sequences of feature vectors of the two S-character images using DTW. The

advantage of using DTW in our case is that it is able to account for the nonlinear stretch and

compression S-character images [Keogh and Pazzani2001] which may occur due to different font

styles and sizes. Hence two same S-characters differing in dimension will be matched correctly.

Figure 4.6 shows two S-character images of “p” printed in different styles and their features. We

can see that the same profile features are stretched or compressed with respect to one another for

the two S-characters. By comparing these features using DTW, we are able to match similar S-

characters in different styles correctly.

Word 1 Word 2

VP

UP

LP

INK

VH

MRw

D

DTW for S-character distance

Word matching

4 – Information Retrieval - Word Spotting

 83

Vertical Projection

Upper Profile

Lower Profile

4 – Information Retrieval - Word Spotting

 84

Ink / non-Ink transitions

Vertical Histogram

Figure 4.6 - Comparison of the features of S-character 'p' written two in different styles

DTW is described in detail in [Sankoff and Kruskal1999], [Keogh and Pazzani2001]. Its

advantage over simple distance measures, such as linear scaling followed by Euclidean distance

calculation, is that it determines a common “time axis” (hence the term time warping) for the

compared sequences, on which corresponding locations appear at the same time [Rath and

Manmatha2007]. Due to the variations in fonts as well as degradation of text due to quality of

documents, profiles of two same S-characters do not generally line up very well if they are just

scaled linearly (see Figure 4.7).

4 – Information Retrieval - Word Spotting

 85

Linear scaling alignment. Dynamic Time Warping alignment.

Figure 4.7 – Vertical projection profiles of ‘p’ and ‘p’, aligned using linear scaling and

Dynamic Time Warping. DTW ensures that only corresponding locations will be compared

4.5.1 Dynamic Time Warping (DTW)

Dynamic Time Warping is a dynamic programming algorithm that finds correspondences in two

signals and calculates a cumulative matching distance using these correspondences. By aligning

corresponding samples in the two signals, a warping path from the lower right to the upper left of

the DTW matrix arises. The matching distance between the two signals is the cumulative cost of

aligning all corresponding sample pairs along the path. A local distance measure determines the

matching distance between two aligned samples. DTW recovers correspondences between sample

locations by finding the warping path with minimum accumulated sample alignment cost.

Consider two S-character images X and Y of widths m and n respectively are represented by

vector sequences X = (x1 ... xm) and Y = (y1 ... yn) where xi and yj are vectors of length six (6 =

dimension of feature vector) (see Figure 4.5). To determine the DTW distance between these two

sequences, a matrix D of order m x n is built where each entry D(i, j) with njmi ≤≤≤≤ 1;1 is

the cost of aligning the sub-sequences X1:i and Y1:j. Entry D(i, j) in the matrix is calculated in the

following manner:

),(

)1,1(

),1(

)1,(

min),(ji yxd

jiD

jiD

jiD

jiD +

−−

−

−

= (njmi ≤<≤< 1&1) (4.5.1)

The recursive definition of D(i, j) based on the three given values is a local continuity constraint.

It determines which sample pairs (positions in the matrix) may be connected to form a warping

4 – Information Retrieval - Word Spotting

 86

path. The constraint in equation (4.5.1), which is also shown in graphical form in Figure 4.8,

ensures that no sample in any of the two input sequences can be left out from the warping path

composed of index pairs ((i1, j1), (i2, j2), . . . , (iK, jK)), which aligns corresponding samples in the

input sequences X and Y.

Figure 4.8 - Local continuity constraint, showing valid neighborhood relationships in a

warping path

We represent S-character images with sequences of features (see chapter 3). Single dimensional

sequences that are extracted from an S-character have same lengths, so an S-character can be

represented by a sequence of feature vectors with length of each vector equals the number of

features. Hence, when matching the S-character images, the sequences X and Y consist of vectors

of dimensionality p>1. This ensures that all sequences are warped in the same manner.

In order to use DTW to match multi-dimensional profiles, we need to define a distance measure

d(·, ·) that determines the (local) distance between two samples in a sequence. Here, for d(xi , yj),

we have used the Euclidean distance in the feature space:

∑
=

−=
p

k

kjkiji yxyxd
1

2
,,)(),((4.5.2)

where the index k is used to refer to the k-th dimension of xi and yj and p in our case is six as we

have six features.

With this distance measure defined, we can now calculate the matching distance between two

S-characters by comparing their feature sequences using DTW. Table 4.2 contains pseudo-code

for the DTW algorithm using the local continuity constraint from Figure 4.8.

D(i, j-1)

D(i-1, j-1)

x

x x

D(i, j)

D(i-1, j)

4 – Information Retrieval - Word Spotting

 87

Table 4.2 - Pseudo code for the DTW algorithm

Input: X = (x1 ... xm) and Y = (y1 ... yn)

Output: DTW matrix D for the two characters

Algorithm:

D(1, 1) = d(x1 , y1)

for i = 2 to m

 D(i, 1) = D(i-1, 1) + d(xi , y1)

for j = 2 to n

 D(1, j) = D(1, j-1) + d(x1 , yj)

for i = 2 to m

 for j = 2 to n

),(

)1,1(

),1(

)1,(

min),(ji yxd

jiD

jiD

jiD

jiD +

−−

−

−

=

The entry D(m ,n) of the matrix D contains the matching distance between the two S-characters.

For example, while matching two S-characters of length 4 and 5 using DTW, the entry D(4, 5) of

the matrix D will represent the matching distance betwen them (see Figure 4.9). But this distance

is non-normalized i.e. it may vary drastically for similar S-characters having different widths. So

to be able to set a threshold that applies to all types and sizes of S-characters, we need to

normalize the final distance D(m, n).

Figure 4.9 - The entry D(4,5) shows the distance between two sequences X and Y

 - - -

-

-

-

-

-

-

- - -

- - -

- - -

D y1 y2 y3 y4 y5

x1

x2

x3

x4 D(4,5) -

4 – Information Retrieval - Word Spotting

 88

4.5.1.1 Normalization Factor K

The final distance D(m, n) also depends on the widths of the two S-characters. If the width is

large, this value will be high. To make it independent of the width of S-characters, we normalize

this value so that one threshold can be determined for all S-character matching. Normalization has

been tested in two ways:

• By finding minimal cost path

• By using average of the widths

a. Minimal cost path

Once all necessary values of D have been calculated, the warping path is determined by

backtracking the minimum cost path starting from (m, n) towards (1, 1). However, we are just

interested in the accumulated distance along the warping path, which is stored in D(m, n). As it is,

this matching distance is smaller for short sequences and large for bigger sequences, so we offset

this bias by dividing the final distance value by the length ‘L’ of the warping path. So the final

matching distance the two S-characters is given by the following value:

dist (X, Y) = D (m, n)/ L (4.5.3.)

A drawback of this normalization approach is that if we have two S-characters which are

different, we may get a large matching distance D(m, n). When we divide it by L (which could be

large in this case as many steps might exist in the final warping path for the two S-characters), the

final distance dist(X, Y) may become small which might lead to some false positives. So we

introduce another normalization based on the average widths of the two S-characters.

b. Average character width

In this case, we normalize the distance D(m , n) by dividing the value by the average of the widths

of two the S-characters.

dist (X,Y) = D(m,n) / [(m+n)/2] (4.5.4)

Normalization using average width of the two S-characters gives better results and reduces the

number of false positives. This is because when two different S-characters are matched, the value

of D(m, n) is large. We divide this value by a smaller value (average of the widths of two S-

characters is always less than the warping path), so the final distance value remains high. If two S-

characters are same, then the average of their widths is almost equal to the warping path. This is

because the warping path, ideally, will be the diagonal path of the matrix. Another advantage of

this normalization over the warping path one is that it is computationally less expensive.

4 – Information Retrieval - Word Spotting

 89

 Now during DTW matching, different feature sequences are matched using Euclidean

distance, it is possible that some features contribute more in the final matching distance and thus

the importance of the features with lower contribution will be quite low. To make sure that each

feature gets equal importance and the final matching cost is not biased towards just one feature,

we need to normalize all individual feature distances. After normalization, once each feature gets

equal importance in the final distance, we can analyze individual feature performances and assign

weights accordingly.

4.5.2 Feature distance Normalization

Different features depict different characteristics and have largely varied values. When we

compare two S-character images using just a single feature sequence, the distance value may

come much different for different features. That means we cannot just simply add the distances of

all the features in the Euclidean distance as we have done. We need to have some weights to

balance the feature involvement in the final distance value. Although we normalize each of the

features to the range [0, 1], the individual distances by using one feature at a time can be of quite

different dynamic ranges and combining these distances, the distance with larger magnitude might

dominate the others. We need to normalize individual distances so that every feature gets an equal

share of importance.

For that, we first need to analyze what sort of distances we get when we use a single feature

sequence for comparisons. For the analysis, we calculated the distances of each S-character image

with the others using prototype character images of different books. We also took some document

images from data set B and calculated the distance of each prototype character with all the S-

characters in those pages. In total, we made 85,718 different S-character comparisons using a

single feature sequence at a time and then using all the features together as well. Figure 4.10

illustrates the distances between different S-characters using individual feature sequences. We can

see that the values of the distances differ for different features – smallest being observed for the

vertical projection. If we simply add these individual distances for two S-characters, the vertical

projection distance will be totally overshadowed by distances using other feature sequences, thus

leaving vertical projection with having little or no effect on the final outcome. We therefore need

to normalize each of the distances to a uniform range before proceeding to their combination [Rui

et al. 1998].

4 – Information Retrieval - Word Spotting

 90

(a) (b)

(c) (d)

(e) (f)

Figure 4.10 - Individual distances between S-characters using only a) Vertical projection b)

Upper profile c) Lower profile d) Ink/non-ink e) Histogram d) Mid row transitional

sequence

S-character matches S-character matches

S-character matches S-character matches

S-character matches S-character matches

4 – Information Retrieval - Word Spotting

 91

The simplest normalization technique would consist of finding the maximum and minimum

values in the list of all distances (85,718 distances in our case) for a feature and normalize the

sequence to the range [0,1] using the maximum / minimum values. This normalization, however,

suffers from the drawback that an abnormal high value can take away most of the [0,1] range,

leaving a very narrow range for the rest of the values. So it cannot be used. The distance

histogram using all features is shown in Figure 4.11. We can see that the distribution almost

follows a Gaussian distribution. The mean and standard deviation of the distance values using

individual features is given in Table 4.3. We thus employ the Gaussian normalization [Chhikara

and Folks1989] for our individual feature distances.

Figure 4.11 - Distance histogram using all features for 85,718 comparisons

For Gaussian normalization, we compute the distance sequence (di) between different pairs of

S-character images Im and In using feature ‘i’ and repeat it for all six features. Now treating each di

as a data sequence we find its mean µdi and standard deviation σdi. These values are computed

offline and are based on the assumption that the number of comparisons is large enough that the

calculated values represent true mean and standard deviation of the distances between S-

characters. The mean and standard deviation of the distance values using individual features is

given in Table 4.3. These values are used in the normalization procedure.

S-characters

N
um
be
r
of
 d
is
ta
nc
es

4 – Information Retrieval - Word Spotting

 92

Table 4.3 - Overall distance values using individual features as well as all the features for

85,718 different comparisons

 LP UP INK VP VH MID ROW Using All features

Maximum

distance
0.4915 0.5379 0.5236 0.1868 0.348 0.4444 2.5322

Mean

Distances
0.0404 0.043 0.0524 0.0168 0.0383 0.0772 0.2681

Std

deviation
0.0532 0.0431 0.0468 0.0134 0.0295 0.0625 0.2485

Once these values are calculated, we employ them for distance normalization during the

matching process. When two S-characters Ck and Cl are being matched, we first compute the raw

distance: di(Ck ,Cl) between the feature sequence ‘i’ of the two. Normalized distance is found as

follows:

i = 1 to 6

di

dilki

lki

CCd
CCd

σ

µ

3

),(
),(

−
=′

This normalization for a Gaussian distribution of data produces 99% of all the distances in the

range [-1,1].which is finally shifted to [0,1] as:

2

1),(
),(

+′
=′′ lki

lki

CCd
CCd

j

In our case, as the distribution was not a true Gaussian, more than 1% of the values can lie

outside the [0,1] interval. But even in that case, the distances having a value greater than 1 are of

course very dissimilar and they will have no effect on the results of matching. Figure 4.12

illustrates the normalized distances between different S-characters using individual feature

sequences.

4 – Information Retrieval - Word Spotting

 93

(a) (b)

(c) (d)

(e) (f)

Figure 4.12 - Individual normalized distances between S-characters using only a) Vertical

projection b) Upper profile c) Lower profile d) Ink/non-ink e) Histogram d) Mid row

transitional sequence

S-character matches S-character matches

S-character matches S-character matches

S-character matches S-character matches

4 – Information Retrieval - Word Spotting

 94

The normalized distance histogram for the same 85,718 matches using combined features is

shown in Figure 4.13.

Figure 4.13 - Normalized distance histogram using all features

In this section, we saw S-character matching stage in detail. We also saw the normalization of

the distances so that now when two S-characters are matched, we get a normalized distance

between them. This normalized S-character distance is used during the matching of two words.

We will see the individual feature performance in the experimental results section later on in this

chapter.

In the next section, we will discuss word matching and propose different ways in which the S-

characters of the two words are compared. It will be followed by detailed results for each of the

methods.

4.6 Word Matching

The first step of word spotting process performs a length-ratio filtering (explained earlier in

section 4.3), finds all eligible word candidates for the query word. This step, on average,

eliminates more than 65% of the words. The second step is the main matching step. We have

proposed four different string comparison methods to match the S-characters of the query word

and candidate words (remaining words which are not filtered away by length-ratio filter). These

N
um
be
r
of
 d
is
ta
nc
es

4 – Information Retrieval - Word Spotting

 95

methods include Relative Position Correspondence (RPC), Edit distance, Merge-Split Edit

distance and Linear displacement matching. We discuss them one by one in the following sub

sections.

4.6.1 Relative Position Correspondence (RPC)

The proposed Relative Position Correspondence (RPC) is a string matching algorithm based on

the concept of matching S-characters at relatively similar positions in the two words. It means one

S-character of query word is matched with different number of relative neighboring S-characters

in the candidate word to find its best match (see Figure 4.14). The number of neighboring

characters to be tested against a query S-character depends upon the size of the query word

[Khurshid et al. 2008a, Khurshid et al. 2008b].

(query word)

(test word) .

Figure 4.14 - RPC between S-characters of two words of length 12 with X = 1

The number of neighboring S-characters ‘X’ that are to be tested against an S-character of the

query word is set as:

 if Query Length is less than or equal to 3 then

 X = 0

 else if Query Length is less than or equal to 12 then

 X = 1

 else if Query Length is greater than 12 then

 X = 2

4 – Information Retrieval - Word Spotting

 96

The value of X signifies that for an S-character ‘c’ at nth position in the query word, X S-

characters present on either side of the nth S-character in the candidate word have to be tested

against ‘c’. So the maximum possible number of comparisons for one query S-character can be:

Maximum comparisons for a query S- character = (2 X + 1)

If ‘c’ is an extreme S-character (S-character at the start or end of the word), then X S-characters

on only one side are considered as candidates as there is no S-character on the other side. Figure

4.14 shows an example with a real query word of length 12 having X = 1. Figure 4.15 shows the

same for words of lengths 3 and 15 respectively.

 (a) (b)

Figure 4.15 – S-character comparisons for a) query word of length 3 b) query word of

length 15. S-character 1 & 15 (corner S-characters) are compared with three S-characters,

S-character 2 & 14 are compared with four S-characters, while others are compared with

five S-characters in the test word

The reason behind matching one query S-character with more than one candidate S-characters

for longer words is to cater for some segmentation errors that might exist in the indexing process.

For each query S-character, we find its best match from the inspected candidate S-characters

using DTW. The best match distance is added to the total word distance. For smaller words

though (words of length 3 or less), we only match the S-characters at corresponding positions

because if we allow more matches, we usually get more false positives. This is because if we

consider neighboring S-characters by having a non-zero X, a small word such as ‘en’ can be

matched with ‘ne’ (Figure 4.16). So for that, we keep X = 0. It is a trade off though, as by

keeping X=0, we might lose some similar words with character segmentation problems.

1 2 3
 1 2 3 15 4 5

 1 2 3 15 4 5

X = 2 neighbors on each side X = 0

4 – Information Retrieval - Word Spotting

 97

Figure 4.16 - Example of a false positive for a small word with a non-zero ‘X’

After matching the S-characters of the two words, we normalize the total word distance:

Normalized-word-distance = Sum of all best match costs / number of matches

We have another decision parameter in similar-S-character-count which shows the total

number of same/similar S-characters in the two words. For each query S-character, the cost of the

best match is compared with an empirically determined threshold (char-threshold). If this cost is

less than the threshold, we increment the similar-S-character-count.

 Now for two words to be ranked similar, the similar-S-character-count must be greater than an

empirically determined count threshold ‘T’ and the Normalized-word-distance must be less than a

word-threshold which is determined empirically through experimentation as well. If both the

conditions are satisfied, the two words are ranked as similar. A brief pseudocode is given in Table

4.4 for a better understanding of the general system. The value of T depends upon the application

requirements. If high precision is required, value of T should be close to the length of the query

word, while if recall rate is more important, then value of T should be somewhere close to three-

quarters the length of the query word.

The RPC method was compared with word-level matching methods like the method of Rath et.

al. [Rath and Manmatha2007] and the method of correlation in [Khurshid et al. 2008a],

concluding that the character-feature based methods perform better than the word-feature ones.

Overall, this method works fine giving us good recall rates, but precision is not that good due to

the presence of false positives (details in the experimental results section). The reason behind

being that the order of S-characters in a word has not been given major importance which

eventually causes false positives to appear. Figure 4.17 shows an example where we get a false

positive ‘entre’ for the given ASCII query ‘nette’ for X=1 and T=4 in the RPC algorithm

parameters. This is because all five of the query S-characters get exactly matched with four of the

test S-characters. Thus the overall word distance is low (lower than the word-threshold) and the

parameter similar-S-character-count is 5 which is more than T. Thus the system retrieves this

false positive. As there is no record for a test S-character that has already been matched with a

query S-character, it can get matched again with another query S-character resulting in the false

positive as shown in Figure 4.17.

4 – Information Retrieval - Word Spotting

 98

Table 4.4 - RPC pseudocode

Input: Query word and Candidate word, char-threshold,word-threshold, T

word-distance=0;

similar-S-character-count=0;

number-of-matches=0;

for each query S-character

 compare it with the relative (2X+1) S-characters in candidate word by DTW

 best match cost = S-character match having minimum distance among the (2X+1) matches

 word-distance = word-distance + best match cost

 increment number-of-matches

 If best match cost < char-threshold then

 increment similar-S-character-count

Normalized-word-distance = word-distance / number of matches

If (similar-S-character-count > T) AND (Normalized-word-distance < word-threshold) then

 Rank as similar words

Figure 4.17 -Example of an unwanted match for a query word 'nette'

4 – Information Retrieval - Word Spotting

 99

Considering the drawbacks in RPC, we introduced improvements in the result by implementing

a multi-stage dynamic time warping algorithm where two words are compared using the classic

Edit distance matrix (W) implementation while individual characters are compared (as before)

using elastic DTW (D) coupled with Euclidean distance (see Figure 4.18).

Matrix W is calculated dynamically for the two words being matched. Each entry of the matrix

W is found by calculating another dynamic matrix D for the two S-characters. It is shown

graphically in Figure 4.19. This implementation of coupling the two dynamic programming

systems shows significant improvements in the word retrieval results (as later shown in the result

section).

 x1 x2 xm y1 y2 yn

Figure 4.18 - Multistage system - features of two S-characters X and Y are matched using

elastic DTW (D) while the two words are matched using Edit matrix (W)

Figure 4.19 - Each entry of matrix W is dynamically calculated using a DTW matrix (D)

Here we will discuss the implementation of Edit distance algorithm for word matching in detail.

word2 word1

VP

UP

LP

INK

VH

MRw

 ... X
W

D

 ... Y

w o r d 1

w

o

r

d

2

W

D

d1 d2 d3 d4 d5

r1

r2

r3

r4

r5

4 – Information Retrieval - Word Spotting

 100

4.6.2 Edit Distance

Edit distance has been used for different string matching problems. It was first introduced by

Levenshtein in [Levenshtein1966] and since then different modifications have been introduced in

the algorithm. In [Wagner and Fischer1974], authors have discussed it in detail for string to string

matching problems where the basic aim is to determine the distance between two strings of

symbols (in our case it is a word as a word is actually a string of S-characters). This distance is

measured by the minimum cost sequence of “Edit operations” needed to change one string to

other. Edit operations include replacing one symbol of a string by another, inserting one symbol

into a string, or deleting a symbol from the string. These three operations (Replace, Insert, Delete)

constitute the basic edit operations [Wagner and Fischer1974]. Our implementation of Edit

distance is given here.

Consider two words A and B which are to be matched; A having m S-characters and B having n S-

characters. We treat both words as two series of S-characters represented as A = (a1 ... am) and B

= (b1 ... bn) respectively where ai and bj represent the individual S-characters of the two words. To

determine the Edit distance between these two S-character series, a matrix W of order (m+1) x

(n+1) is built where each entry W (i, j) with njmi ≤≤≤≤ 0,0 is the cost of aligning the sub-

strings A1:i and B1:j. (To keep the pseudo code simple and compatible with the array

implementation, we will use the position index from 0 to m and 0 to n. The entries (i, j) of the

matrix W are calculated as:

)()0,1()0,(

)()1,0(),0(

0)0,0(

Λ→+−=

→Λ+−=

=

i

j

aiWiW

bjWjW

W

γ

γ (for j > 0)

→Λ+−

Λ→+−

→+−−

=

)()1,(

)(),1(

)()1,1(

min),(

j

i

ji

bjiW

ajiW

bajiW

jiW

γ

γ

γ

 (njmi ≤≤≤≤ 1;1)

(4.6.1)

As in the case of the S-character matching algorithm, the recursive definition of W(i, j) is based on

the three given values is a local continuity constraint. Here, Λ represents an empty character

having the values in its feature vectors set to 0. The width of this empty character has been set to

25, which is normally the width of an average character. The three edit operation costs are

represented by γ(ai → bj) , γ(ai → Λ) and γ (Λ → bj).

(for i > 0)

4 – Information Retrieval - Word Spotting

 101

• γ(ai → bj) is the cost of replacing ai by bj

• γ(ai → Λ) is the cost of deleting ai from the string

• γ (Λ → bj) is the cost of inserting bj to the string

All these character matching costs are calculated using Dynamic Time Warping, where we match

the feature vectors of two S-characters. It has already been discussed in the character matching

process.

With this distance measure defined, we can now calculate the matching distance between two

words by comparing their S-characters using Edit distance in equation (4.6.1). Table 4.5 contains

pseudo code of the implemented Edit distance algorithm implementation. The algorithm

determines a path composed of index pairs ((i1, j1), (i2, j2), . . . , (iK, jK)), which aligns

corresponding samples in the input sequences A and B.

Table 4.5 - Pseudo code for the Edit distance algorithm

Input: Two words A = (a1 ... am) and B = (b1 ... bn) ; γ (DTW function)

Output: Edit matrix W for the two words

Algorithm:

W(0, 0) = 0

for i = 1 to m

 W(i,0) = W(i-1, 0) + γ (ai , Λ)

for j = 1 to n

 W(0, j) = D(0, j-1) + γ(Λ , bj)

for i = 1 to m

 for j = 1 to n

→Λ+−

Λ→+−

→+−−

=

)()1,(

)(),1(

)()1,1(

min),(

j

i

ji

bjiW

ajiW

bajiW

jiW

γ

γ

γ

The entry W(m , n) of the matrix W contains the total distance between the two words which is the

cost of matching them. For example, for two words of length 4 each, the entry W(4, 4) of the

matrix W will represent the cost of matching the two words using Edit distance (see Figure 4.20).

4 – Information Retrieval - Word Spotting

 102

This distance is non-normalized i.e. it may vary drastically for words having different number of

S-characters. To be able to match all words and set a threshold that applies to all types and sizes

of words, we need to normalize the final distance W(m, n).

Figure 4.20 - The entry W(4, 4) is the cost of aligning the two words of length 4

4.6.2.1 Normalization Factor K

The final distance W(m,n) depends on the number of S-characters of the two words. The more

the number of S-characters in two words, the larger will be this distance value. This value has to

be normalized to make it independent of the size of the words, enabling to determine one

threshold for all word’s matching.

For that, once all necessary values of W have been calculated, the warping path is determined

by backtracking the minimum cost path starting from (m, n) towards (0, 0). However, we are just

interested in the accumulated cost along the warping path, which is stored in W(m, n). As it is, this

matching cost is smaller for shorter sequences, so we eliminate this bias by dividing the total

matching cost by the number of steps N of the warping path. So the final distance between the two

words becomes:

dist (A, B) = W(m, n)/ N

Two words are ranked similar if this final matching cost is less than an empirically found word-

threshold.

This method of word retrieval using a combination of Edit distance and DTW works well and

improves recall rates significantly as compared to RPC algorithm (details in results section). But

there still remain some problems that are mainly related to the character segmentation problems.

If the segmentation of characters is erroneous, T-character is broken into multiple S-characters or

 0

W Λ b1 b2 b3 b4

Λ

a1

a2

a3

a4 W(4,4)

4 – Information Retrieval - Word Spotting

 103

multiple T-chatacrers are merged into one S-character, then we might not be able to retrieve the

words using Edit distance. Figure 4.21 shows a couple of examples of words not matched due to

segmentation errors.

 m (split)

 FI (merged)

Figure 4.21 - Words not matched due to segmentation problems

To be able to retrieve these words as well, we have proposed a new Merge-Split Edit distance

that takes into account the segmentation problems caused by document quality. It is discussed in

detail now.

4.6.3 Merge-Split Edit Distance

Different variations of Edit distance have been proposed in literature for different matching

applications [Ambauen et al. 2003], [Kaygin and Bulut2002], [Christodoulakis and Brey2008],

[de Waard1995]. Kaygin et al. introduced a variation of Edit distance for shape recognition in

which polygon vertices are taken as primitives and are matched using the modified Edit distance.

The operations of inserting and deleting a vertex represent the cost of splitting and combining the

line segments respectively [Kaygin and Bulut2002]. A minimal Edit distance method for word

recognition has been proposed by [de Waard1995] in which complex substitution costs have been

defined for the Edit distance function and string-to-string matching has been done by explicitly

segmenting the characters of the words. Graph Edit distance using node combination and splitting

has been proposed in [Ambauen et al. 2003] for the identification of diatoms (unicellular algae).

Another recent variant of Edit distance has been proposed in [Christodoulakis and Brey2008]

where apart from the classic substitution costs, two new operations namely combination and split

are supported.

The need for an algorithm catering for the merge and split of T-characters arises because we may

not have 100% accurate segmentation of T-characters all the time (Figure 4.22).

4 – Information Retrieval - Word Spotting

 104

Figure 4.22 - Character segmentation errors (Split as in first five examples and merge as in

last example) causing problems in matching stage.

To address the character segmentation issues, we have introduced two new merge-based S-

character matching operations Merge-T and Merge-Q that enable to incorporate and model a

merge and split capability respectively in Edit distance, thus overcoming the limitation of having

a perfect character segmentation for good results, by catering for the broken and merged T-

characters during word matching.

Consider two words A and B; A, the query word, having s S-characters while B, the test word,

having t S-characters. We treat both words as two series of S-characters, A = (a1 ... as) and B = (b1

... bt) where ai and bj represent the individual S-characters of the two words. To determine the

distance between these two S-character series, we find the Edit matrix W which gives the cost of

aligning the two sequences. Apart from the three classic Edit operations that we saw in the

previous section, we have introduced two new operations Merge-T and Merge-Q represented as

ai→(bj+bj+1) and (ai+ai+1)→bj respectively. These two operations represent and model the merge

and split functionality in the Edit distance respectively. Merge-T function allows one S-character

ai of the query word to be matched against two S-characters (bj+bj+1) of the current test word,

while Merge-Q function allows one S-character bj of the test word to be matched against two

query S-characters (ai+ai+1) thus modeling a split of bj. Here note that the split functionality is

achieved by modeling of the Merge-T function and no split is physically performed. Combination

of two S-characters is done by individually concatenating their six feature sequences. These

Merge-Q and Merge-T functions help to cater for the segmentation inconsistencies as we will see

shortly. The entries of matrix W initialized by +infinity are calculated as:

4 – Information Retrieval - Word Spotting

 105

)()0,1()0,(

)()1,0(),0(

0)0,0(

Λ→+−=

→Λ+−=

=

i

j

aiWiW

bjWjW

W

γ

γ

 for (tjsi ≤≤≤≤ 1&1)

→Λ+−

Λ→+−

<→++−−

<+→+−−

→+−−

= +

+

)()1,(

)(),1(

)())(()1,1(

)())(()1,1(

)()1,1(

min),(1

1

j

i

jii

jji

ji

bjiW

ajiW

siforbaajiW

tjforbbajiW

bajiW

jiW

γ

γ

γ

γ

γ

(4.6.2)

As in classic Edit distance case, Λ represents an empty character for which we have set all the

values in its feature vectors to 0. The width of this empty character has been set to 25, which is

normally the width of an average character. The three classic Edit operation costs are represented

by γ(ai → bj) , γ(ai → Λ) and γ (Λ → bj) where γ(ai → bj) is the cost of replacing ai with bj, γ(ai

→ Λ) is the cost of deleting ai and γ (Λ → bj) is the cost of inserting bj. The two new costs are

represented by γ(ai→(bj+bj+1)) and γ((ai+ai+1)→bj) showing Merge-Q cost and Merge-T cost

respectively.

4.6.3.1 Merge-T Cost

 γ(ai→(bj+bj+1)) shows the cost of replacing an S-character ai of the query word by two S-

characters bj+bj+1 of the test word. It means that if a test word’s T-character was broken into two

S-characters bj and bj+1, we would be able to match these with ai using the Merge-T function.

Figure 4.23 shows this case where an S-character of query word is matched against a two S-

characters of test word which are infact the broken parts of a T-character.

The feature sequences of bj and bj+1 are concatenated and are matched against the feature vectors

of ai to get the value of W(i, j). Once W(i, j) is calculated, the same value of W(i, j) is copied to

the cell W(i,j+1) signifying that we had used the Merge-T function. We keep a count of the total

ai (bj + bj+1)

Figure 4.23 - One S-character of query word matched against two S-characters of test word

for (0 < j <= t)

for (0 < i <=s)

4 – Information Retrieval - Word Spotting

 106

number of Merge-T functions used as this information will be used in determining the minimum

warping path.

4.6.3.2 Merge-Q Cost

 Similarly, γ((ai+ai+1)→bj) shows the cost of changing two S-characters of query word to one

S-character of test word. It means that if bj was in fact an S-character comprising two merged T-

characters, we would be able to detect and match that with ai+ai+1 using our Merge-Q function.

Here, instead of splitting the feature vectors of bj (which is more difficult as we do not know

exactly where to split), we merge the query word S-characters, thus emulating the split function.

(ai+ai+1) bj

Figure 4.24 - Two S-characters of query word are matched against one test S-character

Once W(i, j) is calculated, the distance value is copied to the next cell W(i+1,j) and the counter is

icremented, signifying the use of the Merge-Q function.

The values copied to the next cells in case of Merge-Q and Merge-T functions are not final. The

values for these cells are calculated individually as well when their turn comes in the loop. The

new value calculated for the next cell is usually greater than the value that was copied before. If

this value is lower, we keep this new value and decrement the counter that keeps the count of the

merge functions used, by one.

 The basic pseudo code of the merge split Edit distance is given in Table 4.6.

Table 4.6 - Pseudo code for the Merge-Split Edit distance algorithm

Input: Two words A = (a1 ... as) and B = (b1 ... bt) ; γ

Output: Edit matrix W

Algorithm:

Initialize the whole matrix with infinity

Initialize counter Count_merge_q_t = 0

4 – Information Retrieval - Word Spotting

 107

W(0, 0) = 0

for i = 1 to s

 W(i,0) = W(i-1, 0) + γ (ai , Λ)

for j = 1 to t

 W(0, j) = W(0, j-1) + γ(Λ , bj)

for i = 1 to s

 for j = 1 to t

→Λ+−

Λ→+−

<→++−−

<+→+−−

→+−−

=
+

+

)()1,(

)(),1(

)())(()1,1(

)())(()1,1(

)()1,1(

),(

min),(
1

1

j

i

jii

jji

ji

bjiW

ajiW

siforbaajiW

tjforbbajiW

bajiW

jiW

jiW

γ

γ

γ

γ

γ

 if ())(()1,1(1++→+−− jji bbajiW γ) gives the minimum cost value then

 W (i, j+1) = W(i, j)

 Count_merge_q_t++

 if ())(()1,1(1 jii baajiW →++−− +γ) gives the minimum cost value then

 W (i+1, j) = W (i, j)

 Count_merge_q_t++

4.6.3.3 Normalization Factor K

Once all the values of W are calculated, the warping path is determined by backtracking along the

minimum cost path starting from (s , t) while taking into account the number of Merge-Q and

Merge-T functions used in the path way. The normalization factor K is found by subtracting the

number of merge functions used in the warping path from the total number of steps in the path.

K = Number of steps in the warping path – Count-merge-q-t

So, the final matching cost of the two words is given by the distance value:

4 – Information Retrieval - Word Spotting

 108

Normalized-word-distance = W(s ,t) / K

Two words are ranked similar if this final matching cost is less than an empirically determined

word-threshold.

Figure 4.25 shows an example of matching two words of lengths 4 and 3. Both words, infact,

have 4 T-characters each but their lengths are different because the query word is well segmented

into four S-characters while in the test word, the last two T-characters are merged into one S-

character. So the length of test word is 3 instead of 4. While finding W in Figure 4.25, we see that

one merge operation is used for matching ‘ur’ with ‘u’, so we increment the value of counter by

one.

W

Test word

Query Word Λ p o ur

Λ

p

o

u

r

0.00 1.79 3.39 5.56

1.78 0.02 1.62 3.79

3.47 1.72 0.04 2.05

5.51 3.75 2.08 0.09

6.85 5.10 3.42 0.09

Figure 4.25 - Calculating Edit Matrix W for two similar words of lengths 4 and 3

 The final cost of matching the two words comes to be 0.03 which is less than the word-

threshold (set to 0.20). Lets now consider another case of a word “malade” of Figure 4.21 which

was not matched using simple Edit distance as its T-character ‘m’ was split into two S-characters.

The matrix W is given in Figure 4.26.

Final Word Cost = W(4,3) / K

Steps in warping path = 4 (marked by arrows in the figure)

Count of Merge-Split functions used in the warping path = 1

W(4,3) = 0.09

K = (steps - Count-merge-q-t) = (4 – 1) = 3

Final cost = 0.09 / 3 = 0.03

4 – Information Retrieval - Word Spotting

 109

W

Test word

Query Λ r n a l a d e

malade

Λ

m

a

l

a

d

e

0.00 1.54 3.41 5.48 6.82 8.76 10.79 12.53

2.26 0.17 0.17 2.24 3.58 5.52 7.55 9.29

4.37 2.27 0.55 0.22 1.56 3.49 5.52 7.26

5.78 3.69 1.96 1.00 0.38 2.00 3.88 5.62

7.89 5.79 4.07 1.00 1.41 0.41 2.26 4.01

9.90 7.80 6.08 3.01 1.42 1.68 0.55 2.29

11.57 9.47 7.75 4.68 3.09 1.64 2.09 0.64

Figure 4.26 - Calculating Edit Matrix W for two similar words of lengths 6 and 7

The final cost of matching the two words comes to be 0.106 which is again less than the word-

threshold. So by using the proposed Merge-Split Edit distance method, we are able to correctly

match these two words which was not the case using simple Edit distance method.

We also analyzed the effect of word length on the word-threshold, learning that for short words

(with few S-characters), a lower threshold gives better precision and recall rates, while for longer

words, a higher threshold value proves to be more effective. This is because for longer words, it is

more unlikely to find similar words; so we adopt a more tolerant decision threshold.

This method of using Merge-Split Edit distance coupled with DTW improves matching results

immensely as shown later on. The major drawback in this case is the time taken for retrieval.

Final Word Cost = W(6,7) / K

Steps in warping path = 7 (marked by arrows in the figure)

Count of Merge-Split functions used in the warping path = 1

W(6,7) = 0.64

K = (steps - Count-merge-q-t) = (7 – 1) = 6

Final cost = 0.64 / 6 = 0.106

4 – Information Retrieval - Word Spotting

 110

Especially for long words, the time increases significantly as the matrix size increases along with

the number of comparisons between the S-characters. There are numerous S-character

comparisons while calculating the matrix W, that never contribute towards the matching of two

similar words. For example, the shaded area in Figure 4.27 is the main area of interest while

matching two similar words in Edit distance and computing the whole matrix is computationally

expensive. To overcome this computation cost problem, another method is proposed where the

whole matrix does not need to be calculated and only the ‘interesting’ comparisons are made. We

call this method Linear Displacement Matching and it is explained in the next subsection.

Figure 4.27 - Area of interest for the matching of two words in Edit distance

4.6.4 Linear Displacement Matching

The concept here is simple. For each iteration, three different comparisons are made between the

S-characters of the two words as shown in Figure 4.28. These comparisons represent the replace,

Merge-T and Merge-Q (modeling a split) operations. The function that gives the minimum cost of

the three during the iteration is retained and this minimum cost is added to the total word distance.

The S-characters that are used in the minimum cost function are marked and in the next iteration,

the immediate next S-characters (to the ones already marked in minimum cost function) are used

for comparison. It means that the S-character which has already contributed in the word distance

is not used further in the following iterations. Let us see the system in detail.

Λ b1 b2 b3 b4 b5 b6 b7 bn
Λ
a1
a2
a3
a4

a5
a6
a7
.
.
.

am

4 – Information Retrieval - Word Spotting

 111

 Model = (Replace) (Merge) (Split)

Figure 4.28 - Different operations for linear displacement matching

Consider 2 words A and B; A, the query word, having s S-characters while B, the test word,

having t S-characters. We treat both words as two series of S-characters, A = (a1 ... as) and B = (b1

... bt) where ai and bj represent the individual S-characters of the two words. To determine the

distance between these two words, comparisons are made between the S-characters of the words

in a linear way. Three main comparison operations that represent replace, Merge-Q and Merge-T

are used to calculate the word distance. The subscripts i and j act as markers (pointers) which

point to the current S-characters ai and bj of the two words A and B respectively. (ai → bj)

represents ‘Replace’ function for replacing ai with bj. Similarly, ai→(bj+bj+1) and (ai+ai+1)→bj

represent the Merge-T and Merge-Q functionality respectively.

The important thing in this method is that an S-character that has already been used in

comparison is marked and is not used again for further comparisons. The markers i and j are

incremented accordingly after each iteration to keep track of the current ai and bj. The increment

in a marker depends on the minimum cost operation used for that particular iteration. If the

minimum cost in an iteration came from the replace function, meaning that ai and bj are matched,

then both i and j are incremented by one. Similarly, if the minimum cost in the iteration came

from the Merge-T function, then marker i will be incremented by one while j will be incremented

by two. It means the S-characters bj with bj+1 are actually two S-characters which are the broken

parts one T-character and now these two parts are merged and matched with ai. In the same way,

if this minimum cost came from the Merge-Q function, then i will be incremented by two while j

will be incremented by one. It signifies that S-character bj is actually a combination of two T-

characters that are merged into this one S-character bj. This S-character is thus matched with a

combination of two query word S-characters (ai + ai+1). Now if the S-characters of one of the

words finish before the other one, then those remaining S-characters are also taken into account

for the calculation of total word distance. Depending on which word’s S-characters are left, either

the cost of deletion of remaining S-characters in the query word, or the cost of insertion of

 1 2 m 1 2 m 1 2 m Query word

Test word

4 – Information Retrieval - Word Spotting

 112

remaining S-characters in the test word, is added to the total word distance. The cost of insertion

and deletion of S-characters is represented by γ(ai → Λ) which is the cost of deleting ai and γ (Λ

→ bj) which is the cost of inserting bj. Simplified pseudo code for the proposed algorithm is given

in Table 4.7.

Table 4.7 - Pseudo code for linear displacement matching algorithm

Input: Two words A = (a1 ... am) and B = (b1 ... bn) ; γ

Algorithm:

Markers i=1 , j=1

Word-distance = 0

K = 0 (Normalization factor keeping a count of total number of iterations)

while i <= m AND j <= n

 if ()(ji ba →γ) gives the minimum cost value then

 i = i + 1; j = j + 1;

 if ())((1++→ jji bbaγ) gives the minimum cost value then

 i = i + 1; j = j + 2;

 if ())((1 jii baa →+ +γ) gives the minimum cost value then

 i = i + 2; j = j + 1;

 Word-distance = Word-distance + minimum cost value

 K ++;

while i < m

 Word-distance = Word-distance +)(Λ→iaγ

 K++; i++;

while j < n

 Word-distance = Word-distance +)(jb→Λγ

 K++; j++;

Word-distance = Word-distance / K

For the remaining

S-characters

4 – Information Retrieval - Word Spotting

 113

Now to normalize the word distance, we take into account the total number of iterations which

contributed to the total word distance.

K = Number of iterations used in Word-distance

So, the final normalized distance between the two words is:

Normalized Word-distance = Word-distance / K

Two words are ranked similar if this final matching distance is less than an empirically

determined word-threshold. Figure 4.29 shows an example where the first iteration of a word

matching scenario is analyzed.

Query word

A with 3 S-

chars (F,I,G)

Test word B

with 2 S-

chars (FI, G)

Operations Replace Merge-T Merge-Q

)(11 ba →γ))((211 bba +→γ))((121 baa →+γ

Operation

cost
0.86 1.65 0.07

Markers i=i+1, j=j+1 i=i+1, j=j+2 i=i+2, j=j+1

Figure 4.29 - First iteration of the algorithm for matching the S-characters of two words.

We can see that Merge-Q, the operation of matching S-characters ‘F’,‘I’ of the query word

with S-character ‘FI’ of the test word, yields the minimum cost

From the Figure 4.29, we can see that the cost of matching the S-characters F and I of the query

word with the S-character FI of the test word gives the minimum cost. Thus the markers i and j

4 – Information Retrieval - Word Spotting

 114

are incremented accordingly. In the second interation, G of query word will be matched with G of

test word. So we can have the matching result only in two iterations.

The major advantage this method has over merge split Edit distance is that though it might

suffer just a slight performance loss in recognition (details in results section), computationally it is

much faster than the Merge-Split Edit distance method. It is because here only the most relevant

comparisons are made between the S-characters of the two words. In Edit distance method, there

were plenty of comparisons which never contributed towards the matching of two similar words

as was shown earlier in Figure 4.27. In linear displacement matching method though, only the

relevant comparisons are made which enhances the performance of the system and makes it

computationally very efficient as compared to the Merge-Split Edit distance method.

4.6.5 Computational comparison: Linear Matching and Merge-Split Edit distance

As we will see in the results section, the performance of linear displacement matching is pretty

close to Merge-Split Edit distance but there is a significant improvement in the retrieval time.

Data set A consisting of 20 document images, taken from 5 different books has been used for

exploring the computational performance of the two methods. Different query words of different

lengths are selected and searched in the data set. It allows us to give an indication of how these

methods fare computationally for different query lengths. Does query length makes a difference in

the retrieval time or is it query length independent? Average search time per 100 words has been

calculated and the graph is plotted for this average search time (average time to match a query

word with 100 words) on an Intel core2duo 2.1GHz machine with 3GB RAM.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

3 4 5 6 7 8 9 10

Word length

T
im

e
 p

e
r

1
0
0
 w

o
rd

s
 (

s
e
c
s
)

Merge Split Edit

Linear Matching

Figure 4.30 - Time taken per 100 words searched, by linear displacement matching and

Merge-Split Edit distance, for query words of different lengths

4 – Information Retrieval - Word Spotting

 115

From the graph in Figure 4.30, we can see that for Merge-Split Edit distance method, the time

taken to match two words increases with the increase in length of query word while for linear

displacement matching algorithm, time remains almost the same for different query lengths. It

emphasizes the point we made earlier about Merge-Split Edit distance that the number of possible

matches between the S-characters of two words increases with increase in query length and thus it

takes more time to compute the whole matrix. So linear displacement matching can be prefererd

when high level of computational efficiency is required even if it comes at the cost of a little

compromise in performance.

Now we see in detail the comparison results of the different string comparison methods studied

so far to evaluate their performances.

4.7 Experimental Results

All experimentation and the comparison analysis of different method has been performed on

BIUM document images [BIUM] (data sets described in chapter 1). Different experiments have

been performed:

• for performance evaluation of each of the word matching algorithms proposed earlier

• for comparison of these methods with state-of-the-art in literature as well as with

professional OCR software

• and for performance analysis of our S-character feature sequences to see which of them

have higher contribution in correct matching of the words

All these experimental details and results will be discussed here in turn, beginning with the

description of the performance measures that we have used for evaluation.

4.7.1 Performance Measures

Different performance measures have been used for feature performance evaluation and also for

the evaluation of word matching methods. These are described here.

• Precision

Precision P is the percentage of the retrieved words that are relevant to user's information need.

Here by relevant, we mean the words that exactly match the query word. Precision is defined as:

4 – Information Retrieval - Word Spotting

 116

)(PositivesFalseetrievedRWordsSame

etrievedRWordsSame
P

+
= x 100

If all the retrieved words are similar to the given query (even if they are not the total number of

similar words existing in the data set), precision will be 100%.

• Recall

Recall R is the percentage of the words, same as query, that are successfully retrieved from the

data base.

ExistingWordsSameTotal

etrievedRWordsSame
R = x 100

If all the same words, to the given query, existing in the data base are retrieved (even if there

are plenty of false positives along with), the recall will be 100%.

• F-measure

The harmonic mean of precision and recall is the traditional F-measure or F-score13. It is

calculated as:

)(

..2

RP

RP
F

+
=

The higher the value of F-measure, the better is the performance of the system.

• R-score

Sometimes, in addition to the exact same words, we need to find all relevant words which are in

fact some morphological variations of the given query i.e. words having similar root to the given

query. For example, if we have a query “stream”, then its variant words such as “streams” or

“streaming” are considered relevant to the query. To take into account these retrieved words that

are not exactly same as the query word but are very much relevant/similar to the query (they

cannot be counted as false positives in information retrieval applications), we have introduced a

new index called Relevance measure (R-measure) or R-score. We define it as:

)(PositivesFalseetrievedRWordselevantR

etrievedRWordselevantR
scoreR

+
=− x 100

13 http://en.wikipedia.org/wiki/Information_retrieval#Performance_measures

4 – Information Retrieval - Word Spotting

 117

If this percentage is high, it means that most of the not-same-to-query words retrieved are similar

and relevant to the query. The decision of awarding a word in the relevant category depends

totally on the user requirements and application. In our case, if we are looking for a word and we

find a similar word having similar root, we count it as relevant. Figure 4.31 gives an example.

Query Retrieved word Relevant / False positive

Relevant

False Positive

Relevant

False Positive

Figure 4.31 – Example of relevant word and false positive word for given queries

We use the above described measures for the evaluation of our different experiments.

4.7.2 Performance evaluation of the different feature sequences

Here we will discuss the descriptive powers and the contributions of the six feature sequences

proposed earlier. Data set A which consists of 20 document images, taken from five different

books has been used for exploring the performance of the six features. For testing, 25 different

query words having 175 instances in total are selected, based on their varied lengths, styles and

also context of the book.

The performance of each feature was tested individually at six different thresholds, using the

Merge-Split Edit distance method, to see how their impact varies with changing thresholds. For

every feature at each threshold, we calculated precision and recall percentages as well as the F-

scores. Figure 4.32 and Figure 4.33 show the Precision versus Recall curve and the F-score curve

respectively.

4 – Information Retrieval - Word Spotting

 118

10

25

40

55

70

85

100

10 25 40 55 70 85 100

Precision

R
e
c
a
ll

VP

UP

LP

Ink

VH

MRow

Figure 4.32 - Precision vs Recall at different thresholds for the six features

0

10

20

30

40

50

60

70

80

90

100

T1 T2 T3 T4 T5 T6

Thresholds

F
-S

c
o

re

VP

UP

LP

ink

VH

MRow

Figure 4.33 - F-Scores for different features at different thresholds

From the graphical results above, we can see that among the features, vertical projection performs

the best overall. Since all these features are designed to respond to different shape characteristics

of the S-character, each feature has a different response to the changing threshold values. All

these features complement one another to some degree, and thus the results improve significantly

when all of these features are combined (as we will see in Figure 4.39 shortly). We also tried

using different combinations of better performing features but the best results are achieved if we

use all six of the features.

4 – Information Retrieval - Word Spotting

 119

4.7.3 Comparison of different Word matching methods

Here we will discuss in detail the comparison results of different word matching methods.

4.7.3.1 Data Set

Data set B which consists of 48 document images, taken from 12 different books and having a

total of 17,010 words, has been used for exploring and comparing the different word matching

methods. 60 different words having 435 instances in total are selected as query based on their

varied lengths, styles and also context of the book. Some of these word instances are shown in

Table 4.8. All the experiments have been performed on an Intel core2duo 2.1GHz Windows 2000

machine with 3GB RAM.

Table 4.8 - Different instances of query words from 12 different books

1

2

3

4

5

6

7

8

9

10

11

4 – Information Retrieval - Word Spotting

 120

.

.

.

60

4.7.3.2 Word Retrieval methods comparison - Results

The comparison of the different word retrieval methods proposed earlier is given here in Table

4.9. In addition to the perfectly detected words, we also give the number of good words which

remain undetected (words missed), the relevant words detected as well as the false positives.

Table 4.9 – Experimental analysis of the four proposed string comparison methods

 RPC Edit distance
Merge-Split

Edit distance

Linear

Matching

#query word instances 435 435 435 435

#words detected perfectly 401 406 427 420

#words missed 34 29 8 15

#relevant words detected 99 53 39 33

#false positives 51 16 4 3

Using RPC method, we have detected 401 words similar to the query and are not able to detect

the remaining 34 word instances. Positive aspect of this method, though, is the large number of

relevant words that are retrieved along with. It is useful for the applications where we don’t need

to match exact query words and are satisfied with almost similar (relevant) words as well. On the

other hand, the number of false positives is huge which is a major drawback of this method. Using

Edit distance method, the number of false positive is reduced significantly (16 now as compared

to 51 in RPC).

The best recognition rate has been achieved by the Merge-Split Edit distance method where we

are able to correctly detect 427 query word instances along with other 39 relevant words. The

number of false positives in this case is only 4 showing the efficiency and robustness of the

method. As compared to Merge-Split method, the linear method detects one less false positive but

is unable to detect 15 query instances, 7 more than the Merge-Split Edit distance method.

To compare these results with existing methods and see how our proposed methods perform

with respect to the state of the art, we implemented and tested the method of [Rath and

Manmatha2007] on the same data set. In that method, four feature sequences are found out for

word images and two words are compared by matching these features using DTW algorithm

(details were given in the state of the art chapter). We also tested the data set using the

4 – Information Retrieval - Word Spotting

 121

commercial OCR software ABBYY fine reader [ABBYY] to see how our method fares when

compared to a professional level software. Table 4.10 gives the results of these experiments.

Table 4.10 - Results using word feature based method of Rath and Manmatha, and ABBYY

OCR software

 Rath et al. 2007 ABBYY Fine Reader

#query word instances 435 435

#words detected perfectly 335 422

#words missed 100 13

#relevant words 66 0

#False positives 54 0

From the experimental data, we can see that the word feature based method [Rath and

Manmatha2007] is able to correctly identify only 335 query instances thus missing out 100 of

them. The number of false positives is very high as well which enforces the fact that the feature

matching at word level does not give as good results as S-character level features [Khurshid et al.

2008a]. We also tried the method of Rath by using our six features instead of the proposed four

features and the results were immediately better [Khurshid et al. 2008a, Khurshid et al. 2008b],

showing that our feature set is more robust and efficient than the one used in [Rath and

Manmatha2007]. For the results using ABBYY Fine reader, there is no problem of false positives

as it finds only the exact words. It means that there are no relevant words as well in the OCR.

Overall, it is able to detect 422 query instances correctly and couldn’t detect the remaining 13.

All the experimental results have been computed for optimum matching thresholds, which are

determined empirically, for different methods. Now once we have this experimental data, we can

evaluate all the methods using the performance measures defined above. These measures will

indicate how these methods compare against each other. We will see each measure in detail.

a. Recall

One of the most important performance measure for a word retrieval system is its recognition

rate or recall rate. It is extremely important for a retrieval system to have a good recall rate, which

will make sure that users get the required information. From all the methods discussed above,

Merge-Split Edit distance achieves the best recall rate of all reading up to 98.16%. The

computationally efficient linear displacement matching method achieves 96.55% which is not as

good as the Merge-Split Edit distance method, but is very acceptable considering the

computanional efficiency of the method. Figure 4.34 shows the recall rates for different methods.

4 – Information Retrieval - Word Spotting

 122

92,18 93,33

98,16
96,55

77,01

97,01

50

60

70

80

90

100

RPC Edit Dist Merge Split Linear Word features ABBYY

Figure 4.34 - Recall rates for different methods on our data set

For the method of [Rath and Manmatha2007], we are able to get a recognition percentage of

77% which is very less when compared with the other S-character feature based methods. It re-

enforces our point that S-character features are better able to represent the word image as whole

as compared to word features. Even if we are not able to extract and segment the T-characters

properly, we can still achieve better results by using the Merge-Split Edit distance or the linear

method.

Using the ABBYY OCR, we get a recognition rate of 97% which is less than our Merge-Split

Edit distance method thus highlighting the advantage our method has over the professional OCR

software. The OCR software wasn’t able to read some of the characters in the searched words due

to poor document quality. Some of the words were even detected as graphic and not as text. There

were other occasions where a whole part of text was not read properly by the OCR when the text

was either in caption or was written in a small font, thus affecting the resolution. These problems

are highlighted in the Figure 4.35 and Figure 4.36.

4 – Information Retrieval - Word Spotting

 123

Figure 4.35 - OCR result for a page where grean zones highlight the text areas while red

zones highlight the graphics. OCR problems : word 'FIG' has been misread as 'Fis', while

some words are taken as part of graphics and not as text

In the Figure 4.35, we show an example where the query word instance ‘FIG’ was read as ‘Fis’.

So OCR was not able to retrieve this word. All the 13 words that are missed by the OCR are due

to similar problems. Another example, where text has been recognized as graphic, can be seen in

Figure 4.35. None of our query word instances belonged to any of the text taken as graphic by

OCR, or else the results of the OCR software could have been worse. Another example is shown

in Figure 4.36 where whole part of the text, printed in smaller font, has been misread completely.

Taken as image

4 – Information Retrieval - Word Spotting

 124

Using our proposed methods though, we are able to recognitze the words (such as figure, leviers,

etc.) in that small font text line as well.

Figure 4.36 - Label text completely misread by the OCR

The recall percentage of OCR could have been lower if the selection of query words was non

neutral. But we selected the query words neutrally by considering the importance and relevance-

to-book perspective thus representing fair comparison results.

b. Precision

Precision is also a very important measure for a retrieval system. If precision percentage is low

(even if the recall rate is good), there will be a lot of unwanted information for the user which

serves nothing and wastes time. So precision of a system need to be high so that the user is not

flocked with unwanted information along with the required parts. The precision percentages for

the different methods tested is given in Figure 4.37.

lêVÎerS' danS C6tte %Ur6' a été °*g^) el" doit *£

4 – Information Retrieval - Word Spotting

 125

88,72

96,21

99,07 99,29

86,12

100,00

75

80

85

90

95

100

RPC Edit Dist Merge Split Linear Word features ABBYY

Figure 4.37 - Precision percentages for different methods

We can see from the graph that ABBYY OCR achieves a precision of 100% for our data set. It

is because it retrieves only the words where all characters of the words are supposed to be well

matched. There are no false positives or relevant words, but only similar words.

The Merge-Split Edit distance achieves a percentage of 99.07% while linear displacement

matching has a precision of 99.29%. For RPC and word feature matching though, this percentage

is below 90% thus highlighting the different shortcomings of these methods. For word feature

method, lack of precision is due to the fact that when two words, which differ only in a couple of

characters, are compared, their profiles are almost similar and thus the final distance value

between these two words comes out to be low. It will not be the case when feature matching is

done at individual character level and then string matching at word level.

c. F-measure

F-measure or F-score gives an overall measure of the system as it takes both precision and

recall into account.

90,42

94,75
98,61 97,90

81,31

98,48

50

60

70

80

90

100

RPC Edit Dist Merge Split Linear Word features ABBYY

Figure 4.38 - F-scores of different methods

4 – Information Retrieval - Word Spotting

 126

From precision, recall and F-scores, we can see that overall, the Merge-Split Edit distance

method outperforms the rest. The main reason for that is its ability to match words, independent

of the requirement of having good character segmentation. Thus the words, where T-characters

are not segmented properly, are matched correctly as well. We also analyzed the Merge-Split

method at different threshold values to see the variations of F-score as well as precision versus

recall curve shown in Figure 4.39 and Figure 4.40.

30

40

50

60

70

80

90

100

60 70 80 90 100

Precision

R
e
c
a
ll

Figure 4.39 – Merge-Split Edit distance - Precision vs Recall at 8 different thresholds

between 0.4 and 1.1

40

55

70

85

100

0,4 0,5 0,6 0,7 0,8 0,9 1 1,1

Threshold

F
-s

c
o

re

Figure 4.40 – Merge-Split Edit distance - F-score at different thresholds

4 – Information Retrieval - Word Spotting

 127

From the analysis of the curves in Figure 4.39 and Figure 4.40, we can see that the Merge-Split

Edit distance method is not very sensitive to the threshold variations. There is a relatively large

“safe range” of thresholds for which the system gives equally promising results, thus signifying

the robustness of the method.

d. R-score

One aspect of a retrieval system that is often neglected is its capability to retrieve words that are

not entirely same as the query word but are almost similar in composition. Often, the systems

retrieve extra words along with the searched words but how many of those extra words are

relevant and how many are totally unwanted or false positives? This answer is given by this new

measure called the Relevance measure which demonstrates the capability of a system to retrieve

relevant words along with the exact words in response to the given query. R-scores for different

methods are given in Figure 4.41.

66,00

76,81

90,70 91,67

55,00
0,00

50

60

70

80

90

100

RPC Edit Dist Merge Split Linear Word features ABBYY

Figure 4.41 - R-scores showing the relevant word matches against total extra words detected

From the Figure 4.41, we can see that the linear displacement matching method and the Merge-

Split Edit distance method have very impressive R-scores. This means that whenever they retrieve

some extra words, more often than not, these extra words are relevant words and only a few times

do we get some false positives. Thus the user is not flocked with unwanted data and he gets only

the relevant things. For ABBYY OCR, this percentage is zero as it only gives the exact matches

and no extra words (neither relevant nor false positives) are detected.

From the above discussion, we can conclude that our S-character feature based methods

perform very well and especially the Merge-Split Edit distance and the linear displacement

matching methods outperform others because of their capability to overcome the segmentation

problems. The performance of the ABBYY OCR software is not bad either on these document

4 – Information Retrieval - Word Spotting

 128

images which brings us to a question: what is the gain of our implementation? To respond to this

question, we analyzed and tested much older document images from the 16th century where the

performance of OCR was extremely poor. The details of the experiments are given here.

4.7.4 Experimental analysis using highly degraded 16th century documents

Three books from the 16th century are used for the performance comparison between our

implementation and ABBYY OCR software (Sample images in Annex A.2). Portion of a

document image from one of the books is given in Figure 4.42. We can see that the text is very

hard to read for a non expert of the language. When the transcription of these document images is

done using ABBYY, the results are extremely poor. OCR software is not able to properly extract

the text areas and even if it did, there are lots of errors in character recognition.

Figure 4.42 - Portion of a 16th century document image - difficult to read even from the

naked eye due to document quality and also because of the old font styles

Figure 4.43 and Figure 4.44 show a couple of screens of the recognition results using ABBYY

OCR software. In both the figures, we can see that some of the text areas have been wrongly

identified as graphics (highlighted in red) while the text that has been extracted (green areas) itself

contains many errors. That’s why OCR is not feasible for information retrieval purposes in these

types of documents. Text detection using the proposed method on the same image yields much

better results than OCR as shown in Figure 4.45.

4 – Information Retrieval - Word Spotting

 129

Figure 4.43 - Extraction of text areas using ABBYY. Some text areas are taken as graphics

(green parts are segmented as text areas while red parts highlight the graphics)

Figure 4.44 - Another example of text extraction and recognition by ABBYY software

4 – Information Retrieval - Word Spotting

 130

Figure 4.45 - Text extraction using the proposed method. All text areas are detected

As we can see in the document images, the text is sometimes unreadable even for the humans

who are not familiar with these kinds of characters. Moreover, words are very close to each other

and sometimes there is no spacing at all between them which makes word segmentation very

hard. Figure 4.46 shows an example where words and S-characters are segmented in one of the

document images using the approach discussed in chapter 3, with H-RLSA threshold value,

determined empirically on the test data, set to five. The segmentation of words in these document

images is not perfect, thus affecting the recognition rates of the system which we will see shortly.

Figure 4.46 - Segmentation of words (in red bounding boxes) and S-characters (in blue

bounding boxes)

4 – Information Retrieval - Word Spotting

 131

To test our word matching system to analyse how it performs on these old documents, and to

compare our results with OCR results, we selected a total of 12 document images, four from each

of the three ancient books, with each page having on average 1200 to 1250 words. For each book,

five different query word images of varied lengths and styles, are selected which are then

searched in the respective books. The results are formulated and performance of the system is

evaluated based on the word recognition rates (recall percentages). Table 4.11 summarizes the

number of the exactly matched words (Mat), the relevant words (Rel) and the false positives (FP)

using OCR software [ABBYY], Edit distance, Linear displacement matching method and the

Merge-Split Edit distance method.

From the Table 4.11, we can see that the OCR results are extremely poor, reading a recall rate

of merely 52.04%. Similar recall rate (51.46%) is observed for the Edit distance matching method

at 77.87% precision. On the other hand, both Merge-Split Edit distance and linear displacement

method achieve very reasonable results with recall rates of 87.13% and 85.38% respectively, at a

precision of 86.63% and 88.48% respectively. A total of 78 relevant words are retrieved by

Merge-Split Edit distance method while linear method retrieves 74 relevant words apart from the

exact words. The OCR neither detects any relevant words nor any false positives, thus eliminating

the need of having explicit columns of Rel and FP for OCR, in the results table.

The experimental results confirm the fact that for poor quality ancient document images, our

approach of working at S-character level using the proposed feature set achieves far better results

of information spotting than the commercial OCR software. When we analyze the results, we

learn that there aren’t many drawbacks in the matching stage of our system for comparing two

well segmented words, even if they are printed in ancient font styles. Some problems lie in the

word segmentation stage though (see Figure 4.47), which causes the recognition rate to drop a bit.

The recall percentage of our system would be higher if we could have a better word segmentation,

even if the individual characters of the words are not well segmented. This is due to the fact that

the character segmentation issues have already been dealt with in our Merge-Split Edit distance or

linear displacement methods. For word segmentation errors, e.g. if couple of words are merged

together in one component, it is unlikely that the proposed system will recognize them as it does

not search small sub-words within a large word component.

Figure 4.47 - Word segmentation problems: Some words are merged together as the spacing

between them is very low

4 – Information Retrieval - Word Spotting

 132

Table 4.11 - Performance evaluation of the different methods and the professional OCR software based on their recognition rates

Words retrieved by

OCR Edit distance Linear Matching Merge-Split Edit Query
Total

Instances

Mat Mat Rel FP Mat Rel FP Mat Rel FP

9 5 6 4 0 7 3 0 8 6 0

44 1 34 12 11 38 24 9 39 24 10

5 1 1 0 0 4 1 0 4 1 1

22 14 8 24 10 18 37 2 18 39 2

8 4 6 0 0 7 0 0 7 0 1

2 1 1 1 0 1 1 1 1 1 0

6 5 6 0 0 6 0 0 6 0 0

2 1 1 0 0 1 0 0 1 1 0

24 24 5 0 3 22 0 2 23 0 3

4 – Information Retrieval - Word Spotting

 133

2 2 2 0 0 2 0 0 2 0 0

3 1 1 0 0 3 2 0 3 2 1

1 0 1 0 0 1 0 0 1 0 0

16 12 4 0 1 13 1 0 13 1 1

 13 7 10 0 1 11 1 1 11 1 1

 14 11 2 0 1 12 4 4 12 2 3

TOTAL 171 89 88 41 25 146 74 19 149 78 23

Recall % 52.04% 51.46% 85.38% 87.13%

Precision % - 77.87% 88.48% 86.63%

4 – Information Retrieval - Word Spotting

 134

These kinds of problems could be handled by further breaking the merged words into multiple

overlapping word components using some sort of window-based technique and then matching

each window word individually with the query word using the proposed matching method. We

believe that, though it will slow down the retrieval task considerably (as query word will be

matched with the whole test word and then its sub-words), it will improve the recognition rate by

overcoming the segmentation problems caused by poor quality and irregular printing style of the

old documents. Even now, the results signify the effectiveness of our S-character’s feature based

word spotting using dynamic programming for the documents where our system outperforms the

OCR software by a long way.

4.8 Conclusion

In this chapter, we explained in detail the proposed methods for word and S-character

matching, thus enabling us to retrieve required information from a document base. The S-

character features are matched using elastic dynamic time warping method which is scale and

translation invariant. Evaluation of the different features proposed has also been discussed to see

which features contribute more towards the results. Different methods have been employed to

match the strings of S-characters for word retrieval. All experiments have been carried out using

the BIUM document base.

From the results analysis, we can conclude that our S-character feature based methods perform

very well and especially the Merge-Split Edit distance and the linear displacement matching

methods outperform others because of their capability to overcome the character segmentation

problems. We tested the method on very old poor document images as well and got much better

recognition results than the commercial OCR software [ABBYY]. We have also tried the Merge-

Split Edit distance method on different other types of documents in different languages (explained

in the next chapter) and the performance is pretty good for those as well, thus highlighting the

adpatability and robustness of the proposed matching method. There is always some room for

improvements though in any system as Steinherz in [Steinherz et al. 1999] writes and we quote it

here ‘We would like to point out that we may be close to the limits of stand-alone word

recognition, and efforts should be made to improve post-processing techniques that will take

advantage of syntax, context, and other external parameters.’ In the last chapter of the thesis, we

will point out and discuss different possible improvements that can be made to the system in

future perspectives.

5 – Multi-context Applications

 135

Chapter 5

Multi-context Applications

It is always good to have a model which can be applied to different systems in multi-varied

contexts. We also tried our information retrieval model for different applications with extremely

satisfactory results. In this chapter, we will highlight a couple of applications and will show how

our system performs for these applications. The applications we discuss here include

figure/caption retrieval, contemporary documents analysis and cursive oriental text retrieval.

5.1 Figure/Captions Retrieval

Indexing books to build digital libraries is most often done manually as no automatic method is

yet adapted to the needs of the archivists. One of the indexing tasks is to extract figures with the

associated captions and to save them in the table of figures. Figure 5.1 shows a screenshot of the

digital medical library Medic@ [BIUM] with manual indexing of figure/caption pairs in a book.

We propose to facilitate the task of archivists with an automatic detection of figure captions

[Khurshid et al. 2009a].

Figure 5.1 - Manual Figure/caption indexing on BIUM web base

Caption lines are extracted by merging results issued from two different systems. In system 1,

the pages are preprocessed to segment graphics and extract the horizontal and vertical text lines.

Text lines are sorted using spatial criteria in order to select a set of caption line candidates. In

system 2, the occurrences of the caption labels of a book (such as ‘Fig.’, ’Figure’) are searched by

using word spotting in the candidate caption lines. The text lines explored by word spotting and

the word-similarity threshold value are updated in the course of process according to the results of

the word search.

5 – Multi-context Applications

 136

5.1.1 Selection of figure caption candidates

The pages in the historical books of Medic@ contain vertical and horizontal text lines and the

caption lines are not always in the direction of the main text. The proposed method detects

vertical and horizontal text lines without prior assumption on their direction. It is explained in

detail in [Faure and Vincent2009].

A size criterion, different from the one used in chapter 3, is used to interpret the large CCs as

Graphics. They are labelled CCG and are discarded from the grouping process leading to text

lines. The remaining CCs are grouped according to the main properties that enable a human

reader to detect symbols alignments (proximity, similarity, direction continuity). Each CC is

labelled NNH if its nearest neighbour is found in the horizontal direction or NNV if it is found in

the vertical one. The labelled CCs are the input of a rule-based incremental grouping process. The

sequences of consecutive NNH or NNV define horizontal and vertical alignments, grouping CCs

according to proximity and continuity of direction (Figure 5.2).

 (a) (b) (c) (d)

Figure 5.2 – a, b) The nearest neighbors of each black square belong to the perceived a) row

or b) column. c) Filled in black, the NNH bounding boxes in horizontal text lines, d) and

the NNV in vertical text lines

These first alignments are expanded in the later steps of the grouping process. An alignment is

expanded along its main direction by merging it with its nearest neighbour alignment or by adding

the nearest neighbour CC found in the main alignment direction. Typographic conditions are

defined to take into account similarity and continuity properties: expanding an alignment by

adding a CC or merging two alignments is allowed if the height of the resulting alignment is

smaller than 1.5 times its height before being expanded and if the distance between the alignment

and the CC or between the two alignments is smaller than twice the height of the alignment to be

expanded.

This stepwise method takes advantage of emerging organisation and is easy to control.

Therefore, the spatial information involved in the grouping rules is not reduced to the local

5 – Multi-context Applications

 137

information between CCs. After each step of the grouping process, previously detected

alignments are reinforced or eliminated. Conflict detection is activated after each grouping step.

The main conflict is detected when a CC belongs both to a vertical and a horizontal text line (see

Figure 5.3). A voting rule solves this conflict: the vertical (horizontal) line is eliminated if it

contains a number of CCs smaller than the number of CCs in the horizontal (vertical) line

intersecting it. To be consistent with layout conventions, a text line cannot straddle the borders of

the CCG bounding boxes. Therefore, text lines can be detected outside or inside a CCG.

Figure 5.3 - Close views of a page: a) After grouping NNV and NNH. b) Final detection

Spatial criteria are defined to sort the detected text lines in order to select caption line

candidates. Actually, these criteria are aimed at selecting a line as caption candiate which is

closest to the figure. For each side of a CCG, the nearest text line is found, meaning at most four

candidate lines per figure. The confidence of these text lines is increased by one if it is the closest

line to the CCG or if the centre of the CCG and the centre of the text line are aligned along a

vertical or horizontal direction. Text lines with a positive confidence belong to the set of caption

line candidates (example in Figure 5.5a). With the current version of the system, text lines

included in the CCG bounding box cannot be among this CCG caption line candidates.

5.1.2 Spatio-symbolic information fusion

The most important phase of this study is the fusion of symbolic information obtained by word

spotting and spatial information used to select the caption line candidates. Once the bounding

boxes of the caption candidates are obtained, word spotting is applied on them to increase

confidence of some candidates, to eliminate major false positive candidates and to find caption

lines missing in the candidate set. So, the input of the word spotting process will be a query word

(caption label) and the location & direction of the candidate lines.

5 – Multi-context Applications

 138

The caption line candidates constitute the first set of text lines that are explored by word

spotting. For each book, a caption label, which can be a word such as ‘Fig’, ‘Figure’ or

‘FIGURE’, is chosen as the query word. The vertical caption candidates are rotated to become

horizontal in order to apply character segmentation, feature extraction and word matching as

previously defined for horizontal lines.

Figure 5.4 - Different Caption Labels used in Medic@ books

If no occurrence of the query word is found in the candidate lines associated with a figure, the

word similarity threshold is increased. Increasing the tolerance in word matching is acceptable in

this context as the search is limited to words in the caption candidate bounding boxes. It enables

to detect missing occurrences of the query word without increasing false positive detection. Once

a caption label is found in a caption candidate associated with a figure, its confidence is increased

and the other candidate lines are neglected. Figure 5.5b) gives an example where out of three line

candidates, the word ‘Fig’ is detected only in one of them. Thus this line is accepted as the

caption line and the other candidates for that figure are neglected.

If the query word is not found in any caption candidate associated with a figure, this is

interpreted as a missing caption line in the candidate set. Then, the query word is searched in all

the lines of the page. If the query word is found in the spatial neighborhood of the figure, then the

relative position of that line and the actual figure is examined to see whether or not this line may

represent a caption. Figure 5.5 c,d) shows an example where the first line of the caption was not

detected in the caption line candidates (this line is included within the bounding box of the figure

itself). Word spotting of the word ‘Fig’ in this line permits to detect the caption line missing in the

candidate set.

5 – Multi-context Applications

 139

Figure 5.5 - a) Figure and caption candidates, true caption lines are filled in black. b) Three

line candidates, after word spotting of “Fig” candidates 1 and 2 are eliminated. c - d)

Candidates do not include the first caption line retrieved by word spotting

The results of information fusion for the detection of caption lines are analyzed to assess the

number of confirmed as well as suspected caption candidates.

5.1.3 Caption Retrieval results

The fusion of text retrieval and spatial information reasoning has been tested on our data set C

having three historical books printed in the 19th century. They are available in the digital library

Medic@. A total of 210 figure captions exist in these books. Out of 210, 204 captions contain a

caption label: the word ‘Fig’, while the other six do not contain any caption label. Spatial

information leads to 449 caption candidates. This number is well above the actual caption

number. Out of the ground truth 210 caption lines, 192 text lines have been detected perfectly and

selected as caption line candidates, while 18 were either not detected perfectly or were not

selected at all in the candidates.

Now to evaluate these caption candidates, word spotting provides information to distinguish

between true and false positives. By applying our word spotting algorithm for query word ‘Fig’ in

the candidate lines using a fixed threshold; we were able to detect 160 occurrences of ‘Fig’, thus

5 – Multi-context Applications

 140

confirming 36% candidates. Increasing the threshold enabled to confirm 9 new candidates. By

applying word spotting for ‘Fig’ in all text lines of the document images, 11 caption lines missing

in the candidate set are detected. The results are summarized in table below.

Table 5.1 - Results for figure caption retrieval

Caption line candidates

Figure captions in ground truth 210

Total caption candidates using spacial criteria 449

Well detected captions in the caption candidates (Recall) 192 (91%)

False positive caption candidates (Precision) 257 (42%)

Word spotting

Captions in ground truth with a label ('Fig') 204

Caption candidates confirmed by word spotting 160

Caption candidates confirmed by increasing word similarity threshold 9

Captions retrieved by word spotting of query word in all text lines 11

Total captions detected using word spotting (Recall) 180 (88%)

False positives during word spotting in candidates (Precision) 4 (98%)

Results show the efficiency of our system to confirm or eliminate caption line candidates. The use

of word spotting leads to associate 180 figures (out of 210) with a single caption line containing

the word "Fig.". The six figures for which the caption does not have a label ("Fig." or other) are

not in this set. A caption candidate may be associated with one or several figures and a figure may

have one or several caption candidates. Once a label is recognized in a caption candidate, the

other candidates (if any) associated with the same figure are eliminated.

One advantage of using word spotting is that a large number of figure and caption pairs are

directly detected based on spatial and visual properties without further analysis. Another is the

possibility to detect caption lines which are not in the candidate set. The errors resulting from

false positive word spotting recognition do not have a strong contribution in the results.

5.1.4 Conclusion

We have shown an application of our word retrieval system where it is used for the detection of

figure and caption pairs by taking advantage of the symbolic information that is often encountered

in captions to label them (the word "Fig." in our data set) and to avoid a complex decision process

based on visual and spatial information. Most of the figures were directly associated with a single

caption by word spotting, thus further processing is activated only for a small number of figure

and caption pairs, among them the figures with a non-labeled caption.

5 – Multi-context Applications

 141

This application of our system can bring some help to speed up and semi-automatize the

indexing of books and their presentation on the web. The expected final result could be the

detection of figures associated with caption blocs and also the recognition of the figure numbers

following the caption labels (if any). Establishing a link between figure numbers occurring in the

text and the associated caption is another goal for the combination of word spotting and spatial

analysis of document images.

5.2 Application on contemporary documents

After analysis our word retrieval system for historical documents, we also analyzed the

contemporary document images of 20th century to see what sort of challenges they pose for a

retrieval system and what sort of results our system achieves on these documents. Plenty of

modern day documents are available on the internet in a low resolution in scanned images form.

There are not many degraded quality issues with them as are with ancient documents but they do

have some challenges of their own. One example is the ink dilation issue caused by low resolution

and lossy image file storage formats which affect the text in a way that characters appear a bit

dilated and are merged together in some cases as well (Figure 5.6).

Figure 5.6 - Character segmentation issues in contemporary document images

We performed an experiment for testing our multi-stage retrieval system on different document

images of bio medical research papers from the 70’s decade. A total of eleven document pages

containing a total of 6500 words are used for testing the retrieval process. Sample document

images are given in Annex A. The prototype characters for queries are made manually using

5 – Multi-context Applications

 142

Times New Roman font of size 12. This is because we wanted to generalize the prototypes (by not

taking the prototypes from the document images themselves) so that they can be used with all

types of contemporary document images. The prototype characters are made only in normal font

and no prototypes are made in italic and bold fonts. This will be a good way to study how our

system performs with just normal font prototypes to retrieve the word instances printed in either

bold or italic or both bold-italic fonts. For query, 18 different words having 423 instances in total

were selected by the experts of medical field according to relevancy to the subject. Results of the

tests for an optimum average threshold value are given in Table 5.2.

Table 5.2 - Summary of word retrieval results for different query words

ASCII Query Total Instances Precision Recall

citrate 15 100.00 93.75
isocitrate 16 75.00 75.00

succinyl 6 100.00 100.00

succinate 40 92.11 87.50

fumarate 19 82.76 80.00

malate 51 95.00 74.51

oxalacetate 19 100.00 73.68

acetyl 3 100.00 100.00

pyruvate 11 100.00 54.55

phosphoenolpyruvate 1 100.00 100.00

aconitase 12 85.71 100.00

synthetase 1 100.00 100.00

fumarase 27 100.00 81.08

malic 37 93.33 73.68

enzyme 67 100.00 89.55

carboxylase 2 100.00 50.00

carboxykinase 1 100.00 100.00

dehydrogenase 95 100.00 95.79

The system tested at different threshold values achieves overall recall rates in the range of 78 to

89% while maintaining a precision of 96 to 100%. When we examined the relatively low recall

rate, different justifications came up for that. One reason is that there are instances of the query

words that are broken into two words in two consecutive lines. Examples are given in Figure 5.7.

Currently our system doesn’t have this capability to extract this sort of broken words. In the future

work though, it would be beneficial to have this capability added to the system.

5 – Multi-context Applications

 143

Figure 5.7 - Examples of words broken down in two lines

Another important thing to note is that we are able to detect most words written in bold or italic

styles. A few of them though were not detected using the normal font style prototypes. So to

overcome that, prototypes of bold and italic can also be made which will slightly improve the

recognition rate.

5.3 Application on Cursive oriental scripts – Arabic/ Urdu

A lot of work has been going on in the field for the recognition of cursive scripts such as Arabic.

We also experimented on some Arabic document images using our word spotting system to see if

it can be adapted to work with other languages as well. For that, we worked on a small dataset of

around 200 words taken from a couple of pages of the Quran, avaiable on the web14. This text

provided an extra challenge for our system as these pages are not post-processed after scanning

and so the skew and slant is there as well. Sample page is shown in Figure 5.8. We didn’t correct

the skew/slant and worked on the text as it is, to see if our system is capable to spot the searched

words in the original available pages on the web.

14 www.kitaabun.com/shopping3/images/

5 – Multi-context Applications

 144

Figure 5.8 - Sample page of the Quran with the text lines slanted

The images are first converted to gray scale and then the words are processed to get the S-

characters. S-characters are not fixed using our 3 pass processing stage because we want the

diacretic marks (which are very important in Arabic) to remain as separate S-characters. Matching

of the words was performed using the Merge-Split Edit distance coupled with DTW for S-

characters. Here note that the S-characters do not represent T-characters in most cases as an S-

chacter is usually a combination of multiple arabic alphabets (See Figure 5.9).

Figure 5.9 - Examples of S-characters for different words

All S-characters in a word are sorted on the basis of the start of the left side of their bounding

boxes in x-direction, giving one dimensional sequence of S-characters as shown in Figure 5.10.

5 – Multi-context Applications

 145

Figure 5.10 - Sequence of S-characters in a word

For testing, we selected five most frequently occuring words as query and for each found the top 6

matches using the Merge-Split Edit distance method. Results are shown in Table 5.3.

Table 5.3 - Results of word spotting on Arabic text – Top 6 matches alongwith their

distances (the distance values of false positives and extra words are highlighted)

Query

Instances 5 4 4 4 3

Rank 1

distance 0.000 0.000 0.000 0.000 0.000

Rank 2

distance 0.270 0.198 0.200 0.185 0.382

Rank 3
 `

distance 0.388 0.270 0.215 0.232 0.386

Rank 4

distance 0.434 0.294 0.431 0.316 0.386

Rank 5

distance 0.491 0.368 0.476 0.328 0.483

Rank 6

distance 0.518 0.390 0.491 0.389 0.537

5 – Multi-context Applications

 146

The results show that the adaptability power of our system which allows it to match words

written in non Latin text as well. We believe that performance of the system on Oriental cursive

scripts can be improved further by adding such representative features for the S-characters that

could take into account the curves and circular nature of the writing style in a better way than the

proposed Latin text features. The system could then be evaluated on a large set of document

images to analyse the different performance measures.

6 – Conclusion and Perspectives

 147

Chapter 6

Conclusion and Perspectives

The importance of digital libraries for information retrieval cannot be denied. The ancient

historical books contain invaluable knowledge but it is time consuming for the researchers to

search the required information in these paper books. Our work in this domain aims to facilitate

this information search by spotting exact query word instances in the text. With this ability to

search in ancient historical documents, digital libraries will further enhance their importance.

6.1.1 Summary of the method

The overall retrieval system has been divided into two major parts: the document indexing part

and the matching part for retrieval of relevant document images. For indexing, the document

image is first binarized. A new document thresholding algorithm is defined to crisply distinguish

the foreground and the background [Khurshid et al. 2009c]. Then, a word/graphic segmentation is

performed using a combination of horizontal smoothing and connected component area analysis.

The next step is aimed at segmenting words into characters. The extracted words are composed of

a set of connected components for which several rules are defined to combine them in order to

better fit character segmentation. Nevertheless, the quality of the images does not permit a

character segmentation free of errors. We call the final word components as S-characters to

differentiate them from the true characters. Multidimensional features are defined to obtain an

efficient representation of the shape of an S-character. They are stored, along with some other

relevant information, in the index file created for each document image.

For word spotting, we have proposed several word-matching methods. The main aim is to use

query word to retrieve relevant document images, by searching the word images similar to the

query word. Major problem was to define a word matching method which not sensitive to

character segmentation errors caused by the low quality of the document images. Query word can

be given either in the form of a word image or as ASCII, in this later case the word image is built

automatically from characters prototypes. The query word is processed and is compared with

other words in the data base through a multi-step retrieval system, using the proposed word

representation as a sequence of S-characters. In the first step of the matching process, we narrow

down the data set to be searched by introducing a length-ratio filter. It finds all eligible word

candidates that could be similar to the query word. In the second step, the query word and

6 – Conclusion and Perspectives

 148

candidate words are matched using a dynamic retrieval system where two words are matched

using a string comparison algorithm in which two S-characters are matched by comparing their

features using elastic DTW method. Several string comparison algorithms were proposed and

evaluated. The best performances were achieved with the Merge-Split Edit distance that takes into

account the characters segmentation inconsistencies for correctly matching the two words. For

accepting that two words are identical, their matching distance must be below a pre-defined

threshold. All words having a matching distance less than the threshold are the retrieved words.

This work provides a thorough examination of several retrieval techniques for historical

document images that allow queries in the form of a word image or ASCII text, a fact that makes

this system very practical. Another important thing is that though it is a segmentation-based

method, results are not dependant on perfect character segmentation as our Merge-Split Edit

distance caters for the segmentation inconsistencies. This fact makes the system very appealing,

especially for historical documents where it is not possible to have perfect character segmentation

due to poor image quality. Also, feature definition at S-character level gives a better

representation of words as compared to word level features[Khurshid et al. 2008a], and the

matching of S-character features using DTW renders the system scale and translation invariant.

Overall, the recognition results achieved by the system are very promising and the system has the

potential to be used for different applications related to historical documents.

6.1.2 Future work – perspectives

Our prototype system is an implementation of a concept for historical document image

retrieval. Because of the size of this system and different options that we give (like query in image

or in ASCII, etc.), which did not allow us to work out all components to the smallest detail, and

the numerous challenges the problem of historical document retrieval poses, plus the time

constraints; various limitations still remain in the system that need improvement. Here we propose

directions for future work, paying special attention to making our system practicable in all

conditions for different types of historical document images.

Building an entire retrieval system is a big effort that requires making numerous decisions at

different individual stages. Due to time and resource constraints, some of our choices in this work

do not have an in-depth investigation of what the optimal alternative would be. For example, the

particular choice of feature sequences to represent a character image. Features like the upper/

lower profiles, projection and ink/non-ink transitions for a column image are already reported in

the literature as in [Rath and Manmatha2007], [Kolcz et al. 2000], [Konidaris et al. 2008], etc.,

and we believe that performance may increase with the addition of new descriptors and features.

6 – Conclusion and Perspectives

 149

Our investigation has focused on features at S-character image level that represent the overall

shape of the S-character, but it may be beneficial to use features that take into account local

characteristics when making classification decisions.

Some of the system’s shortcomings lie in the initial document processing. Most of our work has

concentrated on 18th and 19th century document images which have more regularity as compared

to the older documents of say 15th and 16th century. In order to handle a greater variety of layouts

in a better way, the segmentation may be improved to take into account the possibility of presence

of very small textual images or drawings within the text. Various document image distortions,

such as rotated/skewed pages and other distortions that occur when old books are scanned with

the binding still in place which causes individual text lines to bend and curl at the end, might also

be taken into account .

The clustering for the S-character images may be improved to get the prototype character

images automatically. This will be a huge plus if we are able to have prototype characters

automatically for each book.

In the figure captions application part, we can detect figure numbers as well using a hypothesis

that a figure number follows the caption label. We can have an automatic recognition of figure

numbers using number logic system. We can also have a mechanism to automatically link the

reference of a figure in the text with the figure itself using figure numbers.

A shortcoming of the system that we observed while testing the contemporary document

images was the inability to retrieve words that are broken into two parts (one at the end of a line

and other at the beginning of the new line). This capability can be added to the system using text

lines and words position coordinates.

We have mainly focused here on the historical books of the late 18th and early 19th century. The

techniques presented in this work may be validated and refined to allow successful retrieval of

varied set of document images belonging to different era. Preliminary experiments though with

older 15th century books images are promising.

Digital libraries are a relatively recent phenomenon and require new approaches to document

images retrieval. This work contributes to this field by implementing different techniques of

information searching and word retrieval as well as automatic figure caption indexing for ancient

6 – Conclusion and Perspectives

 150

historical documents, which form a substantial portion of library collections around the world.

While the present retrieval system can still be improved, we hope to have convinced the reader

that this work represents a significant step towards extending retrieval capabilities to historical

document images.

A - Sample Images

 151

Appendix A

Sample Images

A.1 BIUM Sample images of the12 books of 18th and early 19th century

130125x1891x04 APHPF00384 EPO0228

32923x24 32923x19 EPO0561

A - Sample Images

 152

TPAR1879x394 31093x01 ex32516

90958x1028x012 EPO0843 53034x01

Web reference of each book is given along with. Complete book can be viewed on the link

[BIUM] by looking for this particular reference.

A - Sample Images

 153

A.2 BIUM Sample images of the older books of the 16th century

A - Sample Images

 154

A.3 Contemporary document images

B - Graphical Interface of our system

 155

Appendix B

Graphical Interface of our system

Sample screen shots of the document retrieval graphical user interface are shown here.

1. User opens a document image using File -> open and then clicks on a word to select it as

a query word image to be used in word spotting (operations -> word spotting).

Document image in large size
Preview of the whole page

Status panel indicating the progress during search and

names of the document images retrieved at the end

B - Graphical Interface of our system

 156

2. The query word can also be given in ASCII format. User clicks (Operations -> ASCII

query) to give the query in ASCII which is then searched in the document base.

3. All the document images containing the query word are retrieved in an image preview

frame in a chronological order. Double clicking on a document image will open it in a

view pane. It can be zoomed in, zoomed out and scrolled in that pane.

Double click to maximize an image

B - Graphical Interface of our system

 157

4. (Operations -> Fig numbers) gives us all the caption labels in a results panel. The caption

label (Fig, Figure, etc.) are retrieved along with the document image name and figure

numbers (figure number = word component following the caption label). By clicking on

the red arrow next to a figure number, the complete document image is opened in a

separate panel.

C - French Summary

 158

Appendix C

Summary in French

L'importance des bibliothèques numériques pour la recherche d’information ne

peut pas être niée. Les livres historiques anciens contiennent une information de valeur

inestimable. Mais quand les livres anciens ne sont pas transformés en version

électronique, le temps nécessaire pour rechercher l'information dans ces livres papier est

considérable. Néanmoins la présentation sur écran des images des documents numérisés

n'est pas suffisante pour rendre l'information accessible. Notre travail, dans ce domaine,

vise à faciliter la recherche de l'information en repérant des occurrences de mots dans les

images des pages. Avec cette capacité de recherche dans les documents historiques

anciens, les bibliothèques numériques augmenteront encore plus leur importance. Repérer

des mots (Word Spotting) dans les documents écrits avec l'alphabet latin a suscité

récemment une attention considérable. Bien que beaucoup de travaux aient été déjà

effectués dans le domaine de la caractérisation des mots, il reste toujours un champ de

recherche car les résultats obtenus jusqu'ici ne sont pas suffisants pour traiter des volumes

de données importants; en particulier si la base de documents se compose d'un ensemble

de documents imprimés anciens de qualité relativement dégradée, ce qui est propre aux

documents composés à la main et imprimés sur des presses mécaniques.

Les bibliothèques et les musées à travers le monde contiennent des vastes

collections de documents historiques anciens imprimés ou écrits dans différentes langues.

En général, seul un groupe restreint de personnes est autorisée à accéder à ces collections,

car la préservation des originaux est très préoccupante. Ces dernières années, les

bibliothèques ont commencé à numériser des corpus de documents historiques qui ont de

l'intérêt pour un large éventail de personnes, dans le but de rendre les contenus des

documents disponibles, via les médias électroniques, tout en évitant la manipulation des

originaux. Les collections historiques intéressent plusieurs catégories de lecteurs, comme

les historiens, les étudiants et les universitaires qui ont besoin d'étudier les originaux

historiques. Malheureusement, la numérisation seule ne suffit pas à rendre les collections

de documents historiques utiles à des fins de recherche. Après numérisation, les

documents sont au format d'image électronique qui permet de les visualiser et de les

C - French Summary

 159

rendre accessibles pour de nombreux lecteurs distants de leur lieu de stockage par

l'intermédiaire d'Internet, DVD, ou autres médias numériques. Toutefois, la taille d'une

collection est souvent importante et le contenu est généralement peu structuré, ce qui rend

difficile de trouver rapidement des documents particuliers ou des passages présentant

d’intérêt pour le lecteur. Diverses solutions à ce problème reposent entièrement sur un

travail humain qui pourrait être envisagé. Un moyen simple pour structurer une collection

de documents historiques est d'ordonner chronologiquement les pages et d'annoter

manuellement chacune d'elle pour l'indexation. Un très haut niveau de détail dans

l'annotation de contenu peut être atteint avec la transcription. Elle permet la recherche

plein texte à l'aide d'un moteur traditionnel de fouille de texte. Mais les OCRs ne

permettent pas de réaliser une transcription de qualité suffisante ce qui nécessite une

intervention humaine. Il existe des logiciels professionnels d'OCR conçus pour différentes

langues, en particulier les alphabets latins, qui donnent d'excellents résultats sur des

images scannées des documents contemporains de bonne qualité. Mais lorsqu'ils sont

utilisés sur d'anciens documents qui souffrent de dégradations due à l'encre fanée, le

papier taché, la poussière et d'autres facteurs, les résultats de la reconnaissance baissent

notablement. Le coût de la transcription semi-automatique augmentant avec la taille de la

base, l'utilisation d'une autre méthode de reconnaissance automatique apparaît comme une

solution potentielle.

Le Word Spotting est une alternative relativement nouvelle pour la recherche

d'information dans les images de documents anciens. Le Word Spotting consiste à

formuler un requête sous forme d'une image de mot pour rechercher toutes les images de

documents ou les passages contenant des mots similaires à la requête donnée. Des

recherches ont déjà été menées dans ce domaine et différentes méthodes ont été proposées

pour un Word Spotting efficace, mais il y a toujours une certaine marge d'erreur et la

possibilité d'amélioration. En outre, le Word Spotting requiert le choix d'une image

comme mot de requête ce qui peut poser problème pour les utilisateurs qui préfèreront

formuler leur requête en tapant une suite de caractères. Il est ainsi plus réaliste de

proposer du Word Spotting à partir de requêtes ACSII. Notre principale motivation dans

la recherche menée et l'objectif visé était de proposer un système de recherche

d'informations efficace qui pourrait fonctionner avec de bonnes performances en

reconnaissance pour de grands volumes d'images de documents imprimés et la possibilité

C - French Summary

 160

de formuler les requêtes sous forme d'image de mot ou de texte ASCII ainsi que de

rechercher des mots dans des régions d'intérêt définies au préalable.

Etat de l’art

La plupart des travaux dans le domaine du Word Spotting sur l'écrit porte sur les

textes manuscrits. La raison pour cela étant principalement que l'écriture manuscrite n'est

pas reconnue par les OCRs du commerce qui sont conçus pour la reconnaissance de

caractères dans des documents imprimés. Malgré le fait que les performances des OCRs

soient assez bonnes pour des documents contemporains et des images de bonne qualité,

lorsque les documents imprimés sont plus anciens, les polices de caractères et les images

dégradées posent problème de sorte que les taux de reconnaissance des OCRs chutent. La

difficulté de la reconnaissance des caractères dans des documents historiques a été

souvent soulignée, par exemple B. Gatos remarque : «l'OCR est un problème très difficile

à résoudre, en particulier pour des documents historiques [imprimés] ». Dans ce cas, le

Word Spotting devient une solution de replie pour suppléer aux OCRs. Historiquement,

les méthodes de Word Spotting ont été divisées en méthodes holistiques et méthodes

analytiques. Les méthodes de reconnaissance holistique prennent une image de mot

comme unité de base et ne la segmente pas en unités plus petites. Les méthodes

analytiques, disposent de techniques de segmentation avec lesquelles page ou une image

de mot est subdivisée en unités plus petites qui peuvent être reconnues de manière

indépendante ou après regroupement de certaines. Le Word Spotting a surtout été

appliqué à des documents écrits à la main, où la segmentation des caractères est un gros

problème, ce qui explique que la plupart des méthodes présentées dans la littérature sont

basées sur l'approche holistique.. Mais dernièrement des travaux utilisant des méthodes

analytiques ont aussi été développées dans le but d'obtenir de meilleurs taux de

reconnaissance. Ici, nous allons analyser les deux types d'approches en discutant des

différentes méthodes existantes appartenant à chacune d'elles.

Les méthodes holistiques [Gatos et Pratikakis2009], [Rath et Manmatha2007], [Adamek et al.

2007] considèrent l'image d'un mot comme une unité qui ne sera pas davantage segmentée. Dans

le domaine des documents anciens, d'autres facteurs rendent une approche holistique plus

attractive, tels que leur capacité à tolérer un niveau de bruit élevé et des variations de police de

caractère dans le texte, ce qui peut compliquer la segmentation en caractères. En utilisant les

approches holistiques, des mots entiers peuvent être comparés directement avec des taux de

reconnaissance acceptable. Adamek et al. [Adamek et al. 2007] ont présenté l'appariement des

C - French Summary

 161

contours de mot pour leur reconnaissance holistique dans des manuscrits historiques. Les contours

fermés de mots sont extraits et mis en correspondance en utilisant une technique de contours

élastiques. Gatos et al. dans [Gatos et Pratikakis2009] ont présenté une approche où l'image du

mot requête est recherchée dans des régions d'intérêt. Pour chaque image requête, 15 cas de

requête différents sont obtenus en appliquant des rotations et des variations d'échelle. Cinq

ensembles de vecteurs d'attributs sont trouvés pour le mot de la requête. Les vecteurs de

caractéristiques correspondants à la requête sont comparées aux vecteurs des zones rectangulaires

de test en utilisant une mesure de distance. Rath et Manmatha [Rath et Manmatha2007] ont

présenté une approche qui implique de grouper des images de mot dans des clusters de mots

similaires, en employant l'appariement d'images de mot. Ils proposent quatre caractéristiques de

profil pour les images de mot qui sont alors appariées en utilisant différentes méthodes. Leur

travail a été effectué sur des documents manuscrits historiques. [Rothfeder et al. 2003] a employé

les correspondances entre les points anguleux pour classer des images de mot par similitude dans

des manuscrits historiques. Le détecteur de points anguleux de Harris est utilisé sur les images de

mot. Des correspondances entre ces points sont établies en comparant des fenêtres locales et en

utilisant la somme des carrés des différences. La distance euclidienne entre les points mis en

correspondance donne une mesure de similarité entre mots.

Les méthodes analytiques segmentent les images de mot en unités plus petites qui peuvent être

reconnues indépendamment ou quand elles sont groupées [Vamvakas et al. 2008], [Marti et

Bunke2001], [Terasawa et al. 2009]. Les caractères sont les composantes de base dans les langues

alphabétiques. Toutefois, on ne peut pas déterminer les points de segmentation sans reconnaître

d'abord les caractères. Cette contrainte a amené les chercheurs à envisager plusieurs hypothèses

de segmentation d'images en unités plus petites, telles que les suites verticales des pixels ou les

composantes connexes, ou à briser un mot en unités plus petites que l'on suppose être des

caractères, qui sont alors reconnues [Lu et Shridhar1996]. Bien que la segmentation en caractères

soit difficile, les approches analytiques ont tendance à donner de meilleurs résultats pour la

reconnaissance, ceci étant dû à leur capacité à se concentrer sur les caractéristiques locales des

mots. Un autre avantage majeur de toutes les méthodes basées sur la segmentation est leur

souplesse par rapport à la taille et la nature du lexique qui est dû au fait que ces méthodes

conçoivent le mot comme une suite de caractères alphabétiques [Steinherz et al. 1999].

[Vamvakas et al. 2008] ont proposé une méthodologie d'OCR pour générer des fichiers ASCII

pour une nouvelle image de document basée sur l'apprentissage. L'image du document est

segmentée en mots, et pour chaque mot ses caractères sont extraits par une approche ascendante

en utilisant l'analyse des composantes connexes. Chaque image de caractère est, en premier lieu,

normalisée pour tenir dans une fenêtre de taille prédéfinie. Le caractère est ensuite représentée par

C - French Summary

 162

un vecteur de caractéristiques de dimension fixe qui correspondent à des propriétés évaluées dans

la zone image qu'il occupe. Dans [Terasawa et al. 2009], les auteurs ont introduit une méthode par

fenêtre glissante fondée sur HOG (histogramme de la pente orientée). Une fenêtre rectangulaire

est appliquée sur chaque ligne de texte, elle glisse dans la direction d'écriture. Pour chaque sous-

image rognée par la fenêtre, un vecteur de caractéristiques HOG est calculé. Les caractéristiques

sont comparées en utilisant une méthode de Dynamic Time Warping (DTW).

Méthode proposée

Notre méthode est basée sur l'extraction de différentes caractéristiques

multidimensionnelles pour les images de caractère avant de comparer les mots. Par

opposition à [Rath et Manmatha2007] où des caractéristiques sont extraites à partir de

l'image entière du mot, nous segmentons les caractères du mot. Les caractéristiques sont

ensuite extraites à partir des images des caractères. De ce fait on extrait l'information du

mot étudié avec plus de précision que [Rath et Manmatha2007], nous le montrerons plus

tard en comparant les résultats obtenus. L'image du document est d'abord binarisée en

utilisant notre algorithme NICK qui est une amélioration de la formule de Niblack

originale. Le texte et les zones graphiques des images de document sont séparés et les

mots du document sont extraits en appliquant la technique du Run Length Smoothing

Algorithm (RLSA). Les mots correspondent aux composantes connexes de l'image

obtenue après traitement par RLSA. Pour chaque mot détecté, les caractères qui le

composent sont trouvés en revenant aux composantes connexes de l'image binarisée. Les

erreurs de segmentation en caractères sont réduites en utilisant un processus de

réparation en trois étapes. On obtient alors les caractères que l'on appelle les S-caractères.

Sur les S-caractères, un ensemble de caractéristiques sont extraites. Toutes ces

information sont sauvegardées dans le fichier d’index. Les mots seront recherchés dans

les mots de l’index en mettant en correspondance les caractéristiques des S-caractères qui

les composent et celles des S-caractères du mot de la requête. La mise en correspondance

des S-caractères s'effectue en utilisant des algorithmes de comparaison de séquences de

type DTW et distance d’édition. La méthode combine des opérations de comparaison qui

se font au niveau des caractères et au niveau des mots.

Les documents sont traités de manière à pouvoir disposer des éléments nécessaires

pour retrouver un mot donné en phase de recherche d'information. Les différentes étapes

du traitement des documents sont effectués hors ligne pour créer un fichier d'index pour

C - French Summary

 163

chaque image du document. Les coordonnées de chaque mot, le nombre de caractères

dans le mot, la position des caractères aussi que les caractéristiques de chaque caractère,

sont stockés dans les fichiers d'index. La construction des fichiers d'index permet

d’accélérer le traitement lors de la sélection d’un mot requête. Le choix du mot se fait en

cliquant sur le mot dans l'interface graphique de notre système de traitement des

documents. La requête est traitée de la même manière au document global et les

caractéristiques des S-caractères de la requête sont appariés avec les caractéristiques des

S-caractères des mots déjà stockés dans le fichier d'index. Les mots pour lesquels la

distance est inférieure à un seuil sont les mots acceptés. Le traitement concernant

l’indexation des documents est décrit en détail dans le chapitre 3, et les techniques de

réparation des mots dans le chapitre 4.

Les différentes étapes du traitement des documents sont effectués hors ligne pour créer un

fichier d'index pour chaque image du document. Pour la binarisation, il n’est pas

raisonnable d’utiliser un seuil global fixe de binarisation pour tous les documents. La

qualité des résultats en recherche de mot dépend de la qualité de la binarisation. Aussi,

nous avons modifié l'algorithme de Niblack pour le rendre plus efficace pour les

documents anciens. On l’appelle NICK. Les résultats obtenus sont extrêmement

satisfaisants. Par comparaison avec la formule de Niblack, nous constatons de meilleurs

résultats pour des images ne présentant pas, ou très peu, d’éléments imprimés. Les images

des pages sont binarisées puis traitées par RLSA. Les composantes connexes de ces

images traitées sont les mots détectés. Nous appliquons un RLSA horizontal avec le seuil

égal à neuf. Cette valeur est liée à la moyenne des largeurs des composantes connexes de

l’image binarisée. Les mots trouvés ne correspondent pas toujours à des mots, les

composantes graphiques provoquent aussi la détection de mots. Elles vont être éliminées

des mots sur des critères de taille. Les composantes graphiques vérifient les conditions où

leur aire est cinq fois l’aire moyenne (la moyenne des aires de toutes les composantes

connexes dans cette image particulier), et leur hauteur et quatre fois la hauteur moyenne.

Les résultats prouvent que cette méthode fonctionne pour presque tous les types de

documents pour séparer le texte des illustrations. Un mot est un ensemble de caractères et

ces caractères, dans le cas idéal, devraient être les composantes connexes. En fait une

composante connexe ne correspond pas toujours à un caractère à cause de fusions, de

C - French Summary

 164

ruptures et des points diacritiques. Nous effectuons donc une analyse des composantes

connexes extraites sur les images de mot pour améliorer la segmentation en caractères.

Cette amélioration porte sur le regroupement de composantes connexes dans le cas de

caractères fragmentés et de caractères comportant des marques diacritiques, ainsi que

l'élimination de pseudo-caractères dans le mot. On appelle S-caractères les composantes

issues de la segmentation du mot. Une méthode de réparation en trois étapes permet de

réduire les erreurs de segmentation en augmentant le nombre de S-caractères

correspondant à des composantes alphabétiques (les T-caractères). Dans la première étape

de réparation, nous considérons la projection des S-caractères sur l'horizontale. Les

composantes qui ont une partie commune dans leurs projections horizontales sont

regroupées. A cette étape, les caractères accentués, les i et j sont reconstruits. Dans la

deuxième étape, le recouvrement des S-caractères est considéré. Les S-caractères dont les

boîtes englobantes ont une intersection non nulle sont regroupés. Cette étape concerne des

caractères comme r, g etc. Dans la troisième étape, nous enlevons les signes de

ponctuation (comme " , " ou " . ") qui ont été inclus dans le mot car ils ne sont pas

séparés par un espace suffisamment grand. Pour cette étape, nous considérons la moyenne

des aires des S-caractères du mot et supprimons tous les S-caractères qui ne remplissant

pas une condition sur l’aire de la boîte englobante du S-caractère (elle doit être supérieure

à 0,4 fois l’aire moyenne des S-caractères du mot pour que le S-caractère soit accepté).

Les signes de ponctuation et les tout petits S-caractères constituant du bruit dans notre

problématique sont marqués dans cette étape et ne sont plus considérés comme faisant

parti du mot. Après ces trois étapes, nous avons extrait 98,6% des S-caractères

correspondant à des T-caractères sur un ensemble des 48 images de documents de BIUM.

Mais il reste toujours des problèmes de segmentation des caractères qui seront traités plus

tard au niveau du mot.

Nous avons utilisé un ensemble de six séquences de caractéristiques pour représenter les

images des S-caractères. Contrairement à [Rath et Manmatha2007], où il n'y a que quatre

caractéristiques pour caractériser l’image du mot dans son ensemble, nous avons défini

six caractéristiques pour les images de S-caractères, ce qui nous donne une meilleure

représentation des mots dans un espace de caractéristiques, comme les résultats nous le

révélerons plus tard. Les deux caractéristiques ajoutées permettent de mieux spécifier les

formes. Ces six caractéristiques sont :

C - French Summary

 165

Le profil de projection verticale - la somme des valeurs d'intensité dans la direction

verticale; il est calculé dans l'image du S-caractère en niveaux de gris et normalisé pour

obtenir des valeurs entre 0-1.

Le profil supérieur - dans l'image binarisée du S-caractère, pour chaque colonne, nous

retenons la distance entre le rectangle circonscrit au S-caractère et le premier pixel du S-

caractère.

Le profil inférieur - comme dans le profil supérieur, ici nous trouvons la distance entre le

dernier pixel noir du S-caractère et la boîte englobante. Les profils inférieur et supérieur

sont normalisés entre 0 et 1.

L'histogramme vertical – Le nombre de pixels noirs dans une colonne de l'image binaire.

Les transitions encre/non-encre - pour capturer la structure intérieure d'un S-caractère,

nous calculons le nombre de transitions de non-encre à encre dans chaque colonne de

l'image.

Les transitions dans la ligne centrale - pour la ligne centrale de l'image du caractère, nous

trouvons le vecteur des transitions encre/non-encre. Nous plaçons un 1 pour chaque

transition et 0 pour toutes les non-transitions dans la rangée. Au départ nous avons

considéré les transitions sur les trois rangées centrales et nous avions appliqué un OU

logique sur celles-ci pour obtenir un vecteur transitoire moyen. Il suffisait qu'il y ait un

pixel encre dans l'une des trois rangées centrales pour considérer que la colonne

correspondante était un pixel encre. En comparant les deux approches, nous avons

constaté que l'emploi d'une seule ligne centrale donne de meilleurs résultats et nous avons

retenu cette caractéristique.

Pour chaque mot, nous obtenons les caractéristiques pour chacun de leurs S-

caractères. Après le traitement des images d'un document, le fichier d'index est créé dans

lequel sont stockés: la localisation des mots, la position de chacun de ses S-caractères et

les caractéristiques de chaque S-caractère qui apparaissent comme une chaîne.

Pour que deux mots soient considérés éligibles pour un appariement, nous avons d'abord

placé des limites sur le rapport du nombre de S-caractères correspondant à la requête au

nombre de S-caractères correspondant au mot à comparer. Si le rapport est inférieur à une

valeur spécifique, nous n'essayons pas d'apparier les deux mots. Si le mot est retenu pour

un appariement avec le mot de la requête, une procédure d'appariement en plusieurs

C - French Summary

 166

étapes est lancée dans laquelle deux S-caractères sont appariés en utilisant une approche

de comparaison élastique DTW alors que deux mots sont appariés en utilisant différents

algorithmes de comparaison de chaînes. Pour mettre en correspondance les mots, nous

comparons des chaînes de S-caractères qui sont eux même comparés en employant le

DTW. Les coûts des opérations d'appariement pour le DTW sont des distances

euclidiennes alors que les coûts des opérations d'appariement pour la comparaison de

mots sont les distances entre S-caractères calculées par DTW. L'avantage d'employer le

DTW pour la comparaison des caractères est qu'il est en mesure de tenir compte de

l‘étirement et de la compression non-linéaires des caractères. De cette manière, deux

caractères, et par suite deux mots, identiques qui diffèrent par leurs tailles seront mis en

correspondance correctement, à la différence de la corrélation où les mots doivent être de

la même taille pour être appariés.

Pour apparier deux S-caractères, nous traitons les vecteurs de caractéristiques comme

deux suites X = (x1 ... xm) et Y = (y1 ... yn). Pour déterminer la distance du DTW entre ces

deux suites, nous calculons une matrice D d‘ordre m x n. Des opérations d'appariement

sont définies pour pouvoir remplir la matrice D par un algorithme récursif, elles sont

associés à des coûts calculés en utilisant la distance euclidienne. Une fois que toutes les

valeurs de D sont calculées, le chemin d'appariement est déterminé comme le chemin de

coût minimum entre la position (1, 1) et la position (m, n) dans la matrice. Le coût

d’appariement final est le coût D(m, n) divisé par le nombre d’opérations effectué pour

obtenir le chemin d'appariement. Deux S-caractères sont semblables si ce coût final est

inférieur à un seuil (qui a été fixé après plusieurs expérimentations).

Pour comparer les deux mots, on a développé quatre méthodes différentes. La

première est appelée « Relative Position Correspondance (RPC) ». Chaque S-caractère du

mot requête est mis en correspondance avec un nombre différent de S-caractères voisins

dans le mot inspecté. Ce nombre est fonction de la taille du mot de la requête. Pour

chaque S-caractère de la requête, nous trouvons son meilleur appariement dans les S-

caractères du mot inspecté et sommons les coûts de mise en correspondance des S-

caractères. Après appariement des S-caractères des deux mots, nous normalisons le coût

associé au mot en divisant par le nombre de S-caractères mis en correspondance. Si pour

deux mots, ce coût normalisé est inférieur à un seuil, nous indiquons que les deux mots

sont les mêmes. Le deuxième méthode utilise le distance d’édition classique pour

C - French Summary

 167

comparer les deux mots. Les trois opérations d'édition (insertion, suppression et

substitution) sont utilisées pour calculer la matrice d’édition W. Le coût d’appariement

final pour les deux mots de longueur s et t est égal à la valeur W(s, t) divisée par le

nombre d'étapes du chemin d'appariement. Le problème avec ces deux méthodes est que

l'on n’arrive pas à corriger toutes les erreurs de segmentation des mots en caractères, il

reste des S-caractères qui ne sont pas des T-caractères.

Pour résoudre ce problème, on a introduit deux nouvelles méthodes de

comparaison de mots qui vont permettre de traiter les problèmes posés par les caractères

fragmentés et la fusion de plusieurs caractères. On définira donc une comparaison de

séquences basée sur la distance d'édition augmentée d'opérations de fusion (Merge-Split

Edit distance) et sa version rapide mais non optimale (Linear Displacement Matching).

Dans Merge-Split Edit distance, nous avons introduit les opérations Merge-Q et Merge-T

(basées sur la fusion de caractères) qui permettent de s'affranchir des problèmes dus à des

segmentations imparfaites des mots en caractères. L'opération Merge-Q permet à un S-

caractère du mot requête d'être comparé à deux S-caractères du mot courant à comparer,

tandis que l'opération Merge-T permet à un S-caractère du mot courant d'être comparés à

deux S-caractères du mot requête. En utilisant la fusion des S-caractères sur le mot

courant et sur le mot requête, on peut ainsi comparer des caractères fusionnés en un seul

S-caractère à plusieurs caractères sans avoir à segmenter le S-caractère pour retrouver les

T-caractères, sachant que la segmentation impliquerait le choix, toujours difficile, du

point de segmentation. Cette distance d'édition augmentée pour comparer les mots,

couplée avec DTW pour comparer les S-caractères, améliore beaucoup les résultats

comme le montre les évaluations présentées par la suite. L'inconvénient majeur, dans ce

cas est le temps nécessaire pour la comparaison. Surtout pour les mots longs, le temps

augmente considérablement à mesure que la taille de la matrice augmente avec le nombre

de comparaisons entre les S-caractères. Pour surmonter ce problème de coût de calcul,

une autre méthode est proposée où toute la matrice W n'a pas besoin d'être calculée et

seules les comparaisons les plus pertinentes sont faites. Nous appelons cette méthode le

« Linear Displacement Matching ». Le principal avantage que cette méthode a sur Merge-

Split Edit distance est le temps de calcul, elle est plus rapide que le Merge-Split Edit

distance mais cet avantage est compensé par une légère perte de performances en

reconnaissance dûe à la construction partielle de la matrice des coûts de comparaison.

C - French Summary

 168

Résultats

Il n’existe pas de base standard de documents anciens imprimés disponible pour le

développement et la validation des méthodes d'appariement de mots. Afin de comparer

notre méthode à d'autres, nous les avons testées sur une base réalisée pour cette étude à

partir des documents de la BIUM. Un ensemble de données des XVIII et XIXeme siècle,

qui se compose de 48 images de documents, extraites de 12 livres différents et ayant un

total de 17010 mots, a été utilisé pour évaluer les méthodes proposées. Un ensemble de

60 mots différents, ayant 435 instances au total, a été choisi pour constituer les mots des

requêtes. Nous avons choisi ces mots dans différent contextes (titre, légende de figure,

texte principal ...) avec des longueurs et des styles typographiques variés. Les résultats

sont présentés dans les tableaux suivants.

Tableau 1 : Comparaisons des différentes méthodes proposée

 RPC
Distance

d’édition

Merge-Split

distance

Linear

Matching

#query word instances 435 435 435 435

#words detected perfectly 401 406 427 420

#words missed 34 29 8 15

#relevant words detected 99 53 39 33

#false positives 51 16 4 3

Tableau 2 : Résultats sur la méthode de Rath et l’OCR commercialisé

 Rath et al. 2007 ABBYY Fine Reader

#query word instances 435 435

#words detected perfectly 335 422

#words missed 100 13

#relevant words 66 0

#false positives 54 0

Sur le tableau 1, on voit que le meilleur taux de reconnaissance a été réalisé par la

méthode Merge-Split où nous avons correctement détecté les 427 instances du mot

requête ainsi que 39 autres mots pertinents (ayant des racines communes comme :

rhinoscopie et rhinoscopique). Le nombre de faux positifs dans ce cas n'est que de quatre,

C - French Summary

 169

ce qui montre l'efficacité et la robustesse de la méthode. Par rapport à la méthode Merge-

Split, la méthode Linear Displacement Matching détecte 420 instances de mot. La

méthode de Rath et al. a correctement identifié seulement 335 instances du mot requête et

raté 100 mots. Le nombre de faux positifs est très élevé aussi, ce qui montre que la

représentation globale du mot (fonction correspondant au niveau de mot) ne donne pas

des résultats aussi bons que les représentations du mot par une suite de S-caractères.

caractéristiques au niveau du S-caractère.

Sur cette base, l’OCR obtient aussi bons résultats. Mais quand on fait

l’expérimentation sur les document plus anciens du XVIéme siècle, le performance de

l'OCR diminue beaucoup. Sur un ensemble de 12 pages de trois livres différents du

XVIéme siècle, les résultats de l'OCR sont extrêmement pauvres, avec un taux de rappel

de 52,04% seulement. Un taux de rappel semblable (51,46%) est observé pour la méthode

de distance d’Edition. D'autre part, le Merge-Split Edit distance et le Linear Displacement

Matching obtiennent des résultats très raisonnables avec des taux de rappel de 87,13% et

85,38% respectivement, et une précision de 86,63% et 88,48% respectivement. Les

résultats expérimentaux confirment le fait que pour des images de documents anciens de

mauvaise qualité, les méthodes de Word Spotting proposées permettent de retrouver des

mots qui n'ont pas été reconnus par un OCR commercialisé. Les limites actuelles de nos

méthodes pour des documents anciens sont causées par une segmentation en lignes de

texte qui, bien que meilleure que celle produite par les OCRs du commerce, est entachée

d'erreur.

Ce travail fournit un examen approfondi de plusieurs méthodes de recherche de

mots dans des images de documents et la réalisation de nouveaux algorithmes de Word

Spotting avec lesquels on obtient les meilleures performances dans des évaluations sur

des documents historiques. Le système réalisé permet de visualiser les résultats des

recherches d'information et de formuler des requêtes sous forme d'image de mot ou de

texte ASCII.

Les bonnes performances de nos méthodes s'expliquent par le couplage d'une

comparaison locale des caractères (en fait, des S-caractères) par DTW avec une

comparaison des mots basée sur la distance d'édition. Les erreurs de segmentation des

mots en caractères affectent peu les résultats dans la mesure où la segmentation est en

partie corrigée avant la recherche de mot et que la méthode Merge-Split Edit distance,

C - French Summary

 170

ainsi que sa version sous-optimale rapide, sont insensibles à des erreurs de fusion ou de

fission de caractères. Il faut noter que les documents historiques présentent de nombreux

caractères scindés ou fusionnés. La qualité des résultats de reconnaissance obtenus par le

système permet d'être assuré de son potentiel pour une utilisation dans différentes

applications liées à des documents historiques.

 171

Bibliography

[ABBYY] ABBYY. Abbyy finereader, http://finereader.abbyy.com/.

[Adamek et al. 2007] Adamek, T., O’Connor, N. E., and Smeaton, A. F. (2007). Word

matching using single closed contours for indexing handwritten historical documents. IJDAR,

9:153 – 165.

[Ambauen et al. 2003] Ambauen, R., Fischer, S., and Bunke, H. (2003). Graph edit distance with

node splitting and merging and its application to diatom identification. In Research and

Advanced Technology for Digital Libraries, Lecture Notes in Computer Science 1923, pages

259–264.

[Andreev and Kirov2009] Andreev, A. and Kirov, N. (2009). Word image matching based

on hausdorff distances. In 10th International Conference on Document Analysis and

Recognition.

[Antonacopoulos and Karatzas2005] Antonacopoulos, A. and Karatzas, D. (2005). Semantics-

based content extraction in typewritten historical documents. In 8th International Conference

on Document Analysis and Recognition, pages 48–53.

[Antonacopoulos et al. 2004] Antonacopoulos, A., Karatzas, D., Krawczyk, H., and

Wiszniewski, B. (2004). The lifecycle of a digital historical document: Structure and content.

In ACM Symposium on Document Engineering, pages 147 –154.

[Ar and Karsligil2007] Ar, I. and Karsligil, M. E. (2007). Text area detection in digital

documents images using textural features. In Computer Analysis of Images and Patterns

(CAIP), Lecture Notes in Computer Science 4673, volume 4673, pages 555–562.

[Bai et al. 2009] Bai, S., Li, L., and Tan, C. L. (2009). Keyword spotting in document

images through word shape coding. In 10th International Conference on Document Analysis

and Recognition.

[Baird2004] Baird, H. S. (2004). Difficult and urgent open problems in document image

analysis for libraries. In 1st International workshop on Document Image Analysis for

Libraries.

[Bertolami et al. 2008] Bertolami, R., Gutmann, C., and Bunke, H. (2008). Shape code based

lexicon reduction for offline handwrittenword recognition. In The Eighth IAPR Workshop on

Document Analysis Systems.

 172

[BIUM] BIUM. Digital library of bium (bibliothèque interuniversitaire de médecine,

paris), http://www.bium.univ-paris5.fr/histmed/medica.htm.

[Bukhari et al. 2008] Bukhari, S. S., Shafait, F., and Breuel, T. M. (2008). Segmentation of

curled textlines using active contours. In The Eighth IAPR Workshop on Document Analysis

Systems.

[Burges et al. 1992] Burges, C., Be, J., and Nohl, C. (1992). Recognition of handwritten

cursive postal words using neural networks. In USPS Fifth Advanced Technology Conference.

[Casey and Nagy1982] Casey, R. and Nagy, G. (1982). Recursive segmentation and

classification of composite patterns. In Sixth Int’l Conference of Pattern Recognition.

[Casey and Lecolinet1996] Casey, R. G. and Lecolinet, E. (1996). A survey of methods and

strategies in character segmentation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 18:690 – 706.

[Cesar and Shinghal1990] Cesar, M. and Shinghal, R. (1990). An algorithm for segmenting

handwritten postal codes. International Journal of Man-Machine Studies, 33:63 – 80.

[Chhikara and Folks1989] Chhikara, R. S. and Folks, L. (1989). The inverse Gaussian

distribution: theory, methodology, and applications. CRC Press.

[Christodoulakis and Brey2008] Christodoulakis, M. and Brey, G. (2008). Edit distance with

single-symbol combinations and splits. In Proceedings of the Prague Stringology Conference.

[Costa and Jr2001] Costa, L. D. F. and Jr, R. M. C. (2001). Shape Analysis and

Classification: Theory and Practice. CRC Press.

[de Waard1995] de Waard, W. P. (1995). An optimised minimal edit distance for hand-written

word recognition. Pattern Recognition Letters, 16:1091–1096.

[Doulgeri and Kavallieratou2009] Doulgeri, N. and Kavallieratou, E. (2009). Retrieval of

historical documents by word spotting. In 16th Document Recognition and Retrieval

Conference, DRR-09, USA.

[Duong et al. 2001] Duong, J., Ct, M., Emptoz, H., and Suen, C. (2001). Extraction of text

areas in printed document images. In ACM Symposium on Document Engineering

,DocEng’01, pages 157–165, Atlanta (USA).

[Faure and Vincent2009] Faure, C. and Vincent, N. (2009). Simultaneous detection of

vertical and horizontal text lines based on perceptual organization. In 16th Document

Recognition and Retrieval Conference, DRR 2009, USA.

 173

[Feng and Tan2004] Feng, M.-L. and Tan, Y.-P. (2004). Contrast adaptive binarization of low

quality document images. IEICE Electron. Express, 1:501–506.

[Friedman and Kandel1999] Friedman, M. and Kandel, A. (1999). Introduction to Pattern

Recognition : Statistical, Structural, Neural and Fuzzy Logic Approaches. World Scientific

Publishing Company.

[Gatos et al. 2009] Gatos, B., Ntirogiannis, K., and Pratikakis, I. (2009). Icdar 2009

document image binarization contest (dibco 2009). In 10th International Conference on

Document Analysis and Recognition.

[Gatos and Pratikakis2009] Gatos, B. and Pratikakis, I. (2009). Segmentation-free word

spotting in historical printed documents. In 10th International Conference on Document

Analysis and Recognition.

[Gatos et al. 2006] Gatos, B., Pratikakis, I., and Perantonis, S. (2006). Adaptive degraded

document image binarization. Pattern Recognition, 39:317 – 327.

[Helmers and Bunke2003] Helmers, M. and Bunke, H. (2003). Generation and use of

synthetic training data in cursive handwriting recognition. In Pattern Recognition and Image

Analysis, Lecture notes in computer science 2652, pages 336–345.

[Heutte et al. 1998] Heutte, L., Paquet, T., Moreau, J. V., Lecourtier, Y., and Olivier, C.

(1998). A structural/statistical feature based vector for handwritten character recognition.

Pattern Recognition Letters, 19:629–641.

[Hoffman and McCullough1971] Hoffman, R. and McCullough, J. (1971). Segmentation

methods for recognition of machine-printed characters. IBM J. Research and Development,

pages 153–165.

[IDP] IDP. The international dunhuang project : The silk road online - http://idp.bl.uk/.

[Øivind D. Trier and Taxt1995] Øivind D. Trier and Taxt, T. (1995). Evaluation of binarization

methods for document images. 17:312 – 315.

[Jain1989] Jain, A. K. (1989). Fundamentals of digital image processing. Prentice Hall.

[Jameson2004] Jameson, M. (2004). Promises and challenges of digital libraries and document

image analysis: a humanist’s perspective. In First International Workshop on Document Image

Analysis for Libraries, DIAL04.

[Journet et al. 2005] Journet, N., Eglin, V., Ramel, J.-Y., and Mullot, R. (2005). Ancient

printed documents indexation: a new approach. In Pattern Recognition and Data Mining,

Lectures Notes in Computer Science 3686, pages 513 – 522.

 174

[Journet et al. 2006] Journet, N., Mullot, R., Eglin, V., and Ramel, R. J.-Y. (2006). Analyse

d’images de documents anciens:catégorisation de contenus par approche texture. In CIFED,

Colloque International sur l’Ecrit et le Document.

[Jung et al. 1999] Jung, M.-C., Shin, Y.-C., and Srihari, S. N. (1999). Machine printed

character segmentation method using side profiles. In IEEE conference on Systems, Man, and

Cybernetics.

[Kaygin and Bulut2002] Kaygin, S. and Bulut, M. M. (2002). Shape recognition using attributed

string matching with polygon vertices as the primitives. Pattern Recognition Letters, 23:287 –

294.

[Keogh and Pazzani2001] Keogh, E. and Pazzani, M. (2001). Derivative dynamic time

warping. In First SIAM International Conference on Data Mining, (Chicago, IL, 2001).

[Khurshid et al. 2009a] Khurshid, K., claudie faure, and nicole vincent (2009a). Fusion of word

spotting and spatial information for figure caption retrieval in historical document images. In

10th International Conference on Document Analysis and Recognition.

[Khurshid et al. 2008a] Khurshid, K., Faure, C., and Vincent, N. (2008a). Feature based word

spotting in ancient printed documents. In 8th edition of PRIS in 10th Int’l conference on

Enterprise Information Systems, ICEIS 2008, Spain.

[Khurshid et al. 2008b] Khurshid, K., Faure, C., and Vincent, N. (2008b). Recherche de mots

dans des images de documents par appariement de caractères. In Colloque International

Francophone sur l’Ecrit et le Document, CIFED 2008, France.

[Khurshid et al. 2009b] Khurshid, K., Faure, C., and Vincent, N. (2009b). A novel approach for

word spotting using merge-split edit distance. In 13th International Conference on Computer

Analysis of Images and Patterns, CAIP.

[Khurshid et al. 2009c] Khurshid, K., Siddiq, I., Faure, C., and Vincent, N. (2009c). Comparison

of niblack inspired binarization methods for ancient documents. In 16th Document

Recognition and Retrieval Conference, DRR-09, USA.

[Kluzner et al. 2009] Kluzner, V., Tzadok, A., Shimony, Y., Walach, E., and Antonacopoulos,

A. (2009). Word-based adaptive ocr for historical books. In 10th International Conference on

Document Analysis and Recognition.

[Kolcz et al. 2000] Kolcz, A., Alspector, J., Augusteijn, M., Carlson, R., and Popescu, G. V.

(2000). A line-oriented approach to word spotting in handwritten documents. Pattern Analysis

& Applications, 3:153–168.

 175

[Konidaris et al. 2007] Konidaris, T., Gatos, B., Ntzios, K., Pratikakis, I., Theodoridis, S., and

Perantonis, S. J. (2007). Keyword-guided word spotting in historical printed documents using

synthetic data and user feedback. IJDAR, 9:167 – 177.

[Konidaris et al. 2008] Konidaris, T., Gatos, B., Perantonis, S., and Kesidis, A. (2008). Keyword

matching in historical machine-printed documents using synthetic data,word portions and

dynamic timewarping. In The Eighth IAPR Workshop on Document Analysis Systems.

[Lee et al. 2000] Lee, K.-H., Choy, Y.-C., and Cho, S.-B. (2000). Geometric structure

analysis of document images: A knowledge-based approach. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 22:1224 – 1240.

[Leedham et al. 2003] Leedham, G., Yan, C., Takru, K., Tan, J. H. N., and Mian, L. (2003).

Comparison of some thresholding algorithms for text/background segmentation in difficult

document images. In Seventh International Conference on Document Analysis and

Recognition (ICDAR).

[Levenshtein1966] Levenshtein, V. I. (1966). Binary codes capable of correcting deletions,

insertions, and reversals. Soviet Physics Doklady, 10:707–710.

[Lewis1995] Lewis, J. P. (1995). Fast template matching. In Vision Interface, pages 120 – 123.

[Leydier2006] Leydier, Y. (2006). Numérisation et exploration des manuscrits médiévaux. PhD

thesis, L’Institut National des Sciences appliquées,Lyon.

[Leydier et al. 2005] Leydier, Y., LeBourgeois, F., and Emptoz, H. (2005). Textual indexation

of ancient documents. In Proceedings of the ACM symposium on Document engineering,

pages 111 – 117.

[Li et al. 2009] Li, J., Fan, Z.-G., Wu, Y., and Le, N. (2009). Document image retrieval with

local feature sequences. In 10th International Conference on Document Analysis and

Recognition.

[Lu and Shridhar1996] Lu, Y. and Shridhar, M. (1996). Character segmentation in handwritten

words — an overview. Pattern Recognition, pages 77–96.

[Madhvanath and Govindaraju2001] Madhvanath, S. and Govindaraju, V. (2001). The role of

holistic paradigms in handwritten word recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 23:149 – 164.

[Manmatha et al. 1996a] Manmatha, R., Han, C., and Riseman, E. M. (1996a). Word

spotting: A new approach to indexing handwriting. In Conference on Computer Vision and

Pattern Recognition (CVPR), page 631.

 176

[Manmatha et al. 1996b] Manmatha, R., Han, C., Riseman, E. M., and Croft, W. B.

(1996b). Indexing handwriting using word matching. In 1st ACM Internationall Conference on

Digital Libraries.

[Marinai et al. 2006] Marinai, S., Faini, S., Marino, E., and Soda, G. (2006). Efficient word

retrieval by means of som clustering and pca. In Workshop on Document Analysis Systems VII,

Lecture Notes in Computer Science 3872, pages 336–347.

[Marinai et al. 2007] Marinai, S., Marino, E., and Soda, G. (2007). Exploring digital libraries

with document image retrieval. In Research and Advanced Technology for Digital Libraries,

Lecture Notes in Computer Science 4675, volume 4675, pages 368–379.

[Marinai et al. 2008] Marinai, S., Marino, E., and Soda, G. (2008). A comparison of clustering

methods for word image indexing. In The Eighth IAPR International Workshop on Document

Analysis Systems,.

[Marti and Bunke2001] Marti, U. V. and Bunke, H. (2001). Using a statistical model to improve

the performance of an hmm based cursive handwritting system. International Journal of

Pattern Recognition and Artificial Intelligence.

[Mitchell and Yan2001] Mitchell, P. E. and Yan, H. (2001). Newspaper document analysis

featuring connected line segmentation. In Sixth International Conference on Document

Analysis and Recognition, pages 1181 – 1185.

[Moghaddam and Cheriet2009] Moghaddam, R. F. and Cheriet, M. (2009). Application of multi-

level classifiers and clustering for automatic word spotting in historical document images. In

10th International Conference on Document Analysis and Recognition.

[NAVIDOMASS] NAVIDOMASS. http://l3iexp.univ-lr.fr/navidomass/index.html.

[Niblack1986] Niblack, W. (1986). An Introduction to Digital Image Processing. Prentice Hall.

[Nosary et al. 1999] Nosary, A., Heutte, L., Paquet, T., and Lecourtier:, Y. (1999). Defining

writer invariants to adapt the recognition task. In 5th edition of ICDAR.

[Ogier and Tombre2006] Ogier, J. M. and Tombre, K. (2006). Madonne: Document image

analysis techniques for cultural heritage documents. In Digital Cultural Heritage, Proceedings

of 1st EVA Conference, pages 107 – 114, Vienna, Austria.

[Okun et al. 1999] Okun, O., Doermann, D., and Pietikainen, M. (1999). Page segmentation

and zone classification: The state of the art. Technical report, University of Maryland.

[Otsu1979] Otsu, N. (1979). A threshold selection method from grey level histogram. IEEE

Transactions on Systems, Man, and Cybernetics, 9:62–66.

 177

[Pankow2005] Pankow, D. (2005). The printer’s manual: an illustrated history : classical and

unusual texts on printing from the seventeenth, eighteenth, and nineteenth centuries. RIT Cary

Graphic Arts Press.

[Pavladis and Zhou1991] Pavladis, T. and Zhou, J. (1991). Page segmentation by white

streams. In International conference on document analysis and retrieval.

[Ramel and Leriche2005] Ramel, J. and Leriche, S. (2005). Segmentation et analyse

interactive de documents anciens imprimés. In Traitement du Signal (TS), pages 209 – 222.

[Randen and Husøy1994] Randen, T. and Husøy, J. H. (1994). Segmentation of text/image

documents using texture approaches. In Proc. NOBIM-Konferansen-94, pages 60 – 67,

Norway.

[Rath2005] Rath, T. M. (2005). Retrieval of handwritten historical document images. PhD

thesis, Graduate School of the University of Massachusetts Amherst.

[Rath et al. 2002] Rath, T. M., Kane, S., Lehman, A., Partridge, E., and Manmatha, R.

(2002). Indexing for a digital library of geaorge washington’s manuscripts: A study of word

matching techniques. Technical report, University of Massachusetts Amherst.

[Rath and Manmatha2003] Rath, T. M. and Manmatha, R. (2003). Features for word spotting

in historical manuscripts. In Seventh International Conference on Document Analysis and

Recognition (ICDAR), page 218.

[Rath and Manmatha2007] Rath, T. M. and Manmatha, R. (2007). Word spotting for

historical documents. IJDAR, 9:139 – 152.

[Reicher1969] Reicher, G. M. (1969). Perceptual recognition as a function of meaningfulness of

stimulus material. Journal of Experimental Psychology, pages 275–280.

[Rodriguez-Serrano and Perronnin2009] Rodriguez-Serrano, J. A. and Perronnin, F. (2009).

Handwritten word-image retrieval with synthesized typed queries. In 10th International

Conference on Document Analysis and Recognition.

[Rothfeder et al. 2003] Rothfeder, J. L., Feng, S., and Rath, T. M. (2003). Using corner features

correspondences to rank word images by similarity. In Conference on Computer vision and

pattern recognition, pages 30 – 35, USA.

[Rui et al. 1998] Rui, Y., Huang, T. S., Ortega, M., and Mehrotra, S. (1998). Relevance

feedback: A power tool for interactive content-based image retrieval. IEEE Transactions on

Circuits and Systems for Video Technology, 8:644 – 655.

 178

[Rusinol and Llados2008] Rusinol, M. and Llados, J. (2008). Word and symbol spotting

using spatial organization of local descriptors. In The Eighth IAPR Workshop on Document

Analysis Systems.

[Sankoff and Kruskal1999] Sankoff, D. and Kruskal, J. (1999). Time Warps, String Edits,

and Macromolecules: The Theory and Practice of Sequence Comparison. CSLI Publications.

[Sauvola and Pietikäinen2000] Sauvola, J. and Pietikäinen, M. (2000). Adaptive document

image binarization. Pattern Recognition, 33:225–236.

[Shi and Govindaraju2005] Shi, Z. and Govindaraju, V. (2005). Multi-scale techniques for

document page segmentation. In Eighth International Conference on Document Analysis and

Recognition (ICDAR), pages 1020 – 1024.

[Siddiqi and Vincent2008] Siddiqi, I. and Vincent, N. (2008). How to define local shape

descriptors for writer identification and verification. In PRIS’08: 8th Int’l workshop on Pattern

Recognition in Information Systems.

[Steinherz et al. 1999] Steinherz, T., Rivlin, E., and Intrator, N. (1999). Offline cursive script

word recognition - a survey. International Journal on Document Analysis and Recognition,

pages 90–110.

[Tan and Zhang2001] Tan, C. L. and Zhang, Z. (2001). Text block segmentation using pyramid

structure. In Proceedings of SPIE, the International Society for Optical Engineering.

[Tang et al. 1993] Tang, Y. Y., Yan, C. D., Cheriet, M., and Suen, C. Y. (1993). Automatic

analysis and understanding of documents, Handbook of pattern recognition & computer

vision. World Scientific Publishing.

[Terasawa et al. 2009] Terasawa, K., Imura, H., and Tanaka, Y. (2009). Automatic evaluation

framework for word spotting. In 10th International Conference on Document Analysis and

Recognition.

[Vamvakas et al. 2008] Vamvakas, G., Gatos, B., Stamatopoulos, N., and Perantonis, S. J.

(2008). A complete optical character recognition methodology for historical documents. In The

Eighth IAPR Workshop on Document Analysis Systems.

[Wagner and Fischer1974] Wagner, R. A. and Fischer, M. J. (1974). The string-to-string

correction problem. Journal of the Association for Computing Machinery, 21:168–173.

[Wilkinson1992] Wilkinson, R. A. (1992). Comparison of massively parallel segmenters.

Technical report, National institute of standards and technology.

 179

[Wolf and Jolion2003] Wolf, C. and Jolion, J.-M. (2003). Extraction and recognition of artificial

text in multimedia documents. Pattern Analysis and Applications, pages 309 – 326.

[Wong et al. 1982] Wong, K. Y., Casey, R. G., and Wahi, F. M. (1982). Document analysis

system. IBM Journal of Research Development, 26:647 – 656.

[Zagoris et al. 2006] Zagoris, K., Papamarkos, N., and Chamzas, C. (2006). Web document

image retrieval system based on word spotting. In IEEE International Conference on Image

Processing.

[Zhang and Tan2001] Zhang, Z. and Tan, C. L. (2001). Recovery of distorted document images

from bound volumes. In Sixth International Conference on Document Analysis and

Recognition, pages 429 – 433. IEEE.

[Zramdini and Ingold1993] Zramdini, A. W. and Ingold, R. (1993). Optical font recognition

from projection profiles. Electronic Publishing, 6:249–260.

 180

 181

Author’s Publications

Khurram Khurshid, Claudie Faure, Nicole Vincent, “A novel approach for Word Spotting using

Merge-Split Edit Distance”, 13th International Conference on Computer Analysis of Images and

Patterns (CAIP), Lecture Notes in Computer Science, September 2009, Germany.

Khurram Khurshid, Claudie Faure, Nicole Vincent, “Fusion of Word Spotting and Spatial

Information for Figure Caption Retrieval in Historical Document Images”, ICDAR 2009, July

2009, Spain.

Khurram Khurshid, Imran Siddiqi, Claudie Faure, Nicole Vincent, “Comparison of Niblack

inspired Binarization methods for ancient documents”, 16th Document Recognition and Retrieval

Conference (DRR 2009), 21–22 Jan 2009, USA.

Claudie Faure, Khurram Khurshid, Nicole Vincent, « Détection des composantes implicitement

associées dans les images de document », EGC-2009, Jan 2009, France.

Khurram Khurshid, Claudie Faure, Nicole Vincent, « Recherche de mots dans des images de

documents par appariement de caractères », Colloque International Francophone sur l'Ecrit et le

Document (CIFED 2008), 28–31 Oct 2008, France.

Khurram Khurshid, Claudie Faure, Nicole Vincent, “Feature based word spotting in ancient

printed documents”, 8th edition of PRIS in 10th Int'l conference on Enterprise Information

Systems (ICEIS 2008), 12–13th June 2008, Spain.

