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Abstract 

The problem of identifying the writer of a handwritten document image has been an active research 

area over the last few years and enjoys applications in forensic and historical document analysis. 

We have developed an effective method for automatic writer identification and verification from 

unconstrained handwritten text images. Our method relies on two different aspects of writing: the 

presence of redundant patterns in the writing and its visual attributes. Based on the hypothesis that 

handwriting carries certain patterns that an individual would use frequently as he writes, we look to 

extract these patterns by analyzing small writing fragments and grouping similar patterns into 

clusters. In fact this corresponds more to the redundancy of writing gestures than writing shapes. 

These clusters are determined either for each of the writers separately or, for a group of writers 

generating a universal set of patterns. The writing in question is then compared to the produced 

clusters. We next exploit two important visual attributes of writing, the orientation and curvature, 

which enable to distinguish one writing from another. These attributes are extracted by computing 

a set of features from writing samples at different levels of observation. Two writings are then 

compared by computing distances between their respective features. Finally, we combine the two 

facets of handwriting to characterize the writer of a handwritten sample. The proposed 

methodology, evaluated on modern as well as ancient writings exhibited promising results on tasks 

of writer recognition and handwriting classification. 
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Chapter 1 

Introduction 

 

Handwriting is an essential means of communication in our civilization which has developed and 

evolved over time. At school, we all learn to write according to a standard writing style: the copy 

book that varies according to the geographical location, temporal circumstances and the cultural 

and historical backgrounds (Figure 1.1). With the passage of time, we develop individual writing 

characteristics and our handwriting starts to deviate from the learned style. These unique 

characteristics serve to distinguish an individual’s writing from another’s, even if the two writings 

share the same copy book, making it possible to identify the author for which one has already seen 

a written text. This automatic writer recognition serves as a valuable solution for the document 

examiners, palaeographers, graphologists and forensic experts. 

In contrast to the electronic or printed text, the handwritten text carries additional information 

about the personality of the person who has written. The Chinese philosopher King Jo-Hau rightly 

declared: “handwriting infallibly shows us whether it comes from a vulgar or a noble minded 

person” [Olyanova, 1960]. In fact, among the expressive behaviours of human, handwriting carries 

the richest information to gain insight into the physical, mental, and emotional states of the writer. 

Each written movement or stroke reveals a specific personality trait, the neuro-muscular movement 

tendencies being correlated with specific observable personality features [Baggett, 2004]. Two 

personalities might share common characteristics but can never be exactly the same and so is the 

case with handwriting. This explains the stability in the writing style of an individual and the 

variability between the writings of different writers.   

A handwritten text may present varied interests. The ancient manuscripts, for example, could 

serve to study the evolution of the style and form of writing over time that in turn reflects the 

historical and cultural changes of the society. Knowledge about individual letters, ligatures, 

punctuations and abbreviations and, the way they have evolved enables the palaeographers and 

historians identify the periods in which a manuscript was written (Figure 1.2). The quantity of 

these ancient manuscripts stored in archives, libraries and private collections is enormous and it 

will be useful to develop computer systems that could help the palaeographers in manuscripts 

dating, classification and authentication. 
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Figure 1.1 Copybook styles1 (a) United States (Zaner Bloser) (b) Chile (c) Germany

Handwriting also has an interesting relationship with neuroscience and several neurological 

disorders (that could affect the writing motor skills) are 

[Eaton, 1938] [Mergl et al., 2004

therefore be of diagnostic value for the neurologists, particularly if they have previous writing 

samples of the patient. As an example, changes in the writing of a person could be analyzed for the 

diagnosis of the Parkinson’s disease 

manifested in the writing of the patient even in the early stages. The writing of the patient tends to 

get smaller as he/she writes i.e. the writing is well formed and of normal size as the patients starts  

writing but as he/she writes across the page, it progressively gets smaller and smaller and at the end 

the letters might even be unreadable (micrographia) 

patterns in the writing could then be used to follow the progression of the disease.

Figure 1.2 The evolution of writing from Roman square capitals thr

modern handwriting (Image reproduced from 

                                                     
1 Source : www.handwriting.org 
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(b) (c)

(a) United States (Zaner Bloser) (b) Chile (c) Germany

Handwriting also has an interesting relationship with neuroscience and several neurological 

disorders (that could affect the writing motor skills) are reflected in handwriting of the patient 

al., 2004] [Racine et al., 2008] [Ünlü et al., 2006]. Handwriting could 

therefore be of diagnostic value for the neurologists, particularly if they have previous writing 

samples of the patient. As an example, changes in the writing of a person could be analyzed for the 

of the Parkinson’s disease [Ünlü et al., 2006] where the effects of the disorder are 

manifested in the writing of the patient even in the early stages. The writing of the patient tends to 

s i.e. the writing is well formed and of normal size as the patients starts  

writing but as he/she writes across the page, it progressively gets smaller and smaller and at the end 

the letters might even be unreadable (micrographia) [Sage & Duvoisin, 2001

patterns in the writing could then be used to follow the progression of the disease.

 

The evolution of writing from Roman square capitals through medieval Gothic to 

modern handwriting (Image reproduced from [Nickell, 2007]
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Handwriting also has an interesting relationship with neuroscience and several neurological 

handwriting of the patient 

. Handwriting could 

therefore be of diagnostic value for the neurologists, particularly if they have previous writing 

samples of the patient. As an example, changes in the writing of a person could be analyzed for the 

where the effects of the disorder are 

manifested in the writing of the patient even in the early stages. The writing of the patient tends to 

s i.e. the writing is well formed and of normal size as the patients starts  

writing but as he/she writes across the page, it progressively gets smaller and smaller and at the end 

Sage & Duvoisin, 2001]. The changing 

patterns in the writing could then be used to follow the progression of the disease. 

ough medieval Gothic to 
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From the view point of graphology, handwriting is an insightful means of personality profiling, 

highlighting the character traits and 

fact, graphologists claim that handwriting could reveal more than two hundred personality traits 

including moods, temperaments, thinking patterns, fears, work drive, maturity, social interacti

and the list goes on. May be that is why, handwriting is also termed as 

reveals one’s personality, but changing the way one writes, can result in changing the personality 

as well – the grapho-therapy, that involves 

formations from the writing and replacing them by the positive ones, thus eventually developing 

positive personality traits and getting rid of the unwanted ones.

Moving to the world of forensic analys

behavioural biometrics, carries significant importance (

examiners might need to identify the authorship or authenticity of a questioned document (e.g. a 

will, a ransom note, a threatening letter, etc.), verify signatures, identify forgeries, detect alterations 

or analyze indented writings. This analysis is a tiresome procedure for the q

examiners, thus developing computerized systems for handwriting analysis could serve as valuable 

tools in forensic document analysis. These systems take in the scanned document images and 

employ image processing and pattern classificatio

the results of these systems can not be accepted as evidence in a court case and the intervention of 

human experts is inevitable; nevertheless, they have still proved to be quite helpful in speeding up 

the examination process considerably.

Figure 1.3 Lindbergh kidnapping case

the prime suspect (top) and the signature composed from individual letter

notes (bottom) 

Summarizing, we could say that handwriting carries remarkable information abo

style itself, the author of writing and the

decided to carry out a study of how to develop algorithms that allow an automatic analysis of 

handwriting. Since handwriting analysis itself has different aspects, we limited our focus of 

research to the classification of handwritings, in particular, the

handwritten document.  

                                                     
2 Source : FBI History – Famous Cases
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From the view point of graphology, handwriting is an insightful means of personality profiling, 

highlighting the character traits and tracking the feelings and emotions of a person.  As a matter of 

fact, graphologists claim that handwriting could reveal more than two hundred personality traits 

including moods, temperaments, thinking patterns, fears, work drive, maturity, social interacti

and the list goes on. May be that is why, handwriting is also termed as brainwriting

reveals one’s personality, but changing the way one writes, can result in changing the personality 

, that involves identifying and eliminating negative strokes and letter 

formations from the writing and replacing them by the positive ones, thus eventually developing 

positive personality traits and getting rid of the unwanted ones. 

Moving to the world of forensic analysis, handwriting, being an important component of 

behavioural biometrics, carries significant importance (Figure 1.3). The forensic documents 

entify the authorship or authenticity of a questioned document (e.g. a 

will, a ransom note, a threatening letter, etc.), verify signatures, identify forgeries, detect alterations 

or analyze indented writings. This analysis is a tiresome procedure for the q

thus developing computerized systems for handwriting analysis could serve as valuable 

tools in forensic document analysis. These systems take in the scanned document images and 

employ image processing and pattern classification techniques to solve a given problem. Of course, 

the results of these systems can not be accepted as evidence in a court case and the intervention of 

human experts is inevitable; nevertheless, they have still proved to be quite helpful in speeding up 

examination process considerably. 

 

Lindbergh kidnapping case2 (1932): Comparison between the known signature of 

the prime suspect (top) and the signature composed from individual letter

notes (bottom) was a significant investigation development.

Summarizing, we could say that handwriting carries remarkable information abo

of writing and the personality of the writer. Inspired by this very fact w

decided to carry out a study of how to develop algorithms that allow an automatic analysis of 

handwriting. Since handwriting analysis itself has different aspects, we limited our focus of 

research to the classification of handwritings, in particular, the recognition of the writer of a 

              
Famous Cases : www.fbi.gov 

From the view point of graphology, handwriting is an insightful means of personality profiling, 

tracking the feelings and emotions of a person.  As a matter of 

fact, graphologists claim that handwriting could reveal more than two hundred personality traits 

including moods, temperaments, thinking patterns, fears, work drive, maturity, social interactions, 

brainwriting. Not only it 

reveals one’s personality, but changing the way one writes, can result in changing the personality 

identifying and eliminating negative strokes and letter 

formations from the writing and replacing them by the positive ones, thus eventually developing 

is, handwriting, being an important component of 

). The forensic documents 

entify the authorship or authenticity of a questioned document (e.g. a 

will, a ransom note, a threatening letter, etc.), verify signatures, identify forgeries, detect alterations 

or analyze indented writings. This analysis is a tiresome procedure for the questioned document 

thus developing computerized systems for handwriting analysis could serve as valuable 

tools in forensic document analysis. These systems take in the scanned document images and 

n techniques to solve a given problem. Of course, 

the results of these systems can not be accepted as evidence in a court case and the intervention of 

human experts is inevitable; nevertheless, they have still proved to be quite helpful in speeding up 

(1932): Comparison between the known signature of 

the prime suspect (top) and the signature composed from individual letters in the ransom 

was a significant investigation development. 

Summarizing, we could say that handwriting carries remarkable information about the writing 

. Inspired by this very fact we 

decided to carry out a study of how to develop algorithms that allow an automatic analysis of 

handwriting. Since handwriting analysis itself has different aspects, we limited our focus of 

recognition of the writer of a 
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The problem of writer recognition is related to that of handwriting recognition [Plamondon & 

Srihari, 2000][Vinciarelli, 2002]. Handwriting recognition aims at eliminating the writer-dependent 

variations between writings and thus identifying the individual characters and words. Writer 

recognition on the other hand relies on these writer-specific variations between character shapes 

(Figure 1.4) which allow to characterize its writer’s hand. Despite this contradiction between the 

two approaches, writer recognition can be handy in handwriting recognition, exploiting the 

principle of adaptation of the system to the type of writer [Nosary et al., 1999]. 

  

  

Copy book  Deviations Copy book Deviations 

Palmer Style Character ‘a’ Connector Strokes 

Figure 1.4 Copy book norms and individual deviations (Image: [Nickell & Fischer, 1999]) 

[Schomaker, 1998] identifies four factors responsible for variations in handwriting (Figure 1.5). 

These are affine transforms (rotation, translation, scaling etc.), allographic variations (character 

shapes employed by a writer), neuro-biomechanical variability and sequencing variability (variable 

order of stroke production). Among these factors, the allographic variations provide the most 

useful information for automatic writer recognition [Schomaker & Bulacu, 2004]. These variations 

result in the first place from the copy book style taught and then from the writer-specific 

preferences in drawing these shapes, developed over time (Figure 1.4). According to one of the 

greatest handwriting experts of his times, Albert S. Osborn (1858 – 1936): “Only a small portion of 

the vast variety of forms in writing can be accounted for by tracing them back to a pattern system. 

Thousands of these characteristics are individual inventions and developments” [Nickell & Fischer, 

1999].  

Writer recognition is generally divided into writer identification and verification. Writer 

identification involves a one-to-many search where given a handwritten sample s of unknown 

authorship and a database with samples of N known authors, the objective is to find the writer (or a 

likely list of writers) of s in the database. Writer verification on the other hand involves a one-to-

one comparison where given two handwritten samples s1 and s2 the objective is to determine 

whether the two have been written by the same person or not. The two models have been indicated 

in (Figure 1.6). Writer identification is generally carried out by calculating a similarity index 

between the questioned writing and all the writings of known writers and sorting the retrieved 

results in a hit list with an increasing distance from the query. Choosing appropriate acceptance 

thresholds on these similarity indices can then be used to perform writer verification. 
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Neuro-biomechanical variability Sequencing variability 

Figure 1.5 Factors causing handwriting variability. Image reproduced from [Schomaker, 

1998] 

When dealing with large data sets, writer identification can also be employed as a filtering step 

prior to verification [Bensefia et al., 2005b]. The identification step could extract a sub-set of likely 

candidate writings from the database each of which can then be compared to the questioned writing 

either by the verification system or by an expert. The target performance of a writer identification 

system, as reported in [Schomaker & Bulacu, 2004], aims at attaining a near-100 percent correct 

identification rate in a hit list of 100 writers, computed from a database of up to 10,000 samples, 

the size of search sets in current European forensic databases. This performance however, remains 

far from being achieved for the time being. We have attempted to make a contribution in achieving 

this goal by developing a system for writer recognition from scanned image of handwritten 

documents. 
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Figure 1.6 Writer Identification and Verification models 

Our methodology is based on two facets of handwriting. In the first place we exploit the 

existence of certain redundant patterns in a writing to characterize its writer. Unlike classical 

approaches which consider these patterns at the grapheme level, we have introduced much 

elementary writing fragments which correspond more to the writing gestures than writing shapes. 

This approach will make the subject of our study in chapter 3. We will next focus on two important 

visual attributes of writing in chapter 4, namely orientation and curvature that enable distinguishing 

one writing from another. These properties are captured by a set of features extracted from the 

contours of handwriting images. We will then explore the effect of combining the two aspects in 

characterizing the writer of a given sample. Finally, we will demonstrate the application of the 

proposed methodology on ancient medieval manuscripts, Arabic handwritten documents and 

signatures. But before proceeding to the discussion of our methodology, we would present an 

overview of the significant contributions to writer recognition in the next chapter. 

 

 Verification 

System 

Same Writer 

Different Writers 

 Document 1 

 Document 2 

(a) 

(b) 

Reference base of 

known writers 

 

Identification 

System 

Writer 1 

Writer 2 

Writer N 

Test Document 



2 - State of the art 

 

  7

Chapter 2 

State of the art 

 

Despite the development of electronic documents and predictions of a paperless world, the 

importance of handwritten documents has retained its place and the problems of identification and 

authentication of writers have been an active area of research over the past few years. A wide 

variety of systems that are based on the use of computer image processing and pattern recognition 

techniques have been proposed to solve the problems encountered in automatic analysis of 

handwriting and recognition of the writer of a questioned document. A comprehensive survey of 

the work in writer recognition until 1989 has been presented in [Plamondon & Lorette, 1989]. 

Here, we will be more interested in surveying the approaches developed in the last several years, 

thanks to the renewed interest of the document analysis community for this domain. 

The techniques for writer identification and handwriting classification are traditionally 

categorized into two broad classes: text-dependent and text-independent methods.  

In text dependent methods the writing samples to be compared require to contain the same fixed 

text. Signature verification, for example, can be considered in this category. These methods 

normally use the comparison between individual characters or words of known transcription and 

thus require the text to be recognized or segmented (manually or automatically) into characters or 

words prior to writer recognition [Schlapbach, 2007]. 

The text independent methods on the other hand identify the writer of a document independent 

of its semantic content. These methods use features extracted from the entire image of a text or 

from a region of interest. A minimal amount of handwriting is necessary in order to derive stable 

features insensitive to the text content of the samples [Bulacu & Schomaker, 2007].  

Generally speaking, text-dependent methods operate at the character or word level whereas text-

independent methods work on the line or paragraph levels. Evidently, text independent methods 

are less constrained and more useful for practical applications where the human intervention is to 

be minimized. It should however be noted that text-dependent analysis carries significant 

importance in forensic document examination where the forensic experts strive to compare certain 

attributes of individual character shapes. In addition, the discriminating power of different 

characters may vary as well [Zhang et al., 2003] [Greening et al., 1995] [Tan et al., 2009] [Eldridge 

et al., 1984]. An ideal solution would therefore be to use automatic systems to find a set of 

probable candidates from large data sets and then present the reduced list of a manageable size to 

the document examiner. This first part of finding a subset of likely writers of a questioned 
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document has been the focus of the research in the document analysis community and the methods 

proposed in an attempt to achieve this goal will make the subject of this chapter. 

 We will present in this chapter, an overview of significant contributions to the field of writer 

identification. It should be noted that we will not explicitly discuss writer verification as we 

assume that if a (dis)similarity measure has been defined to compare two writings, one can perform 

writer verification by choosing appropriate thresholds on the calculated (dis)similarity values. It is 

also important to distinguish offline and online writer identification systems.  Contrary to offline 

documents, online handwriting contains additional information about stroke sequencing, velocity, 

pressure and pen-up and pen down events etc.  For offline documents, we have to rely on the 

scanned images of handwriting. In our discussion, offline writer identification systems will be the 

main focus of our study.  

We will start with a brief introduction of the commonly used data sets in the domain. We will 

then give an account of some of the major text dependent methods followed by a discussion of the 

text independent methods which will constitute the main part of this chapter. Along with writer 

recognition, we also discuss the closely related area of recognition of writing styles where the 

objective is not to precisely identify the writer of a given document but to group ‘similar’ writing 

styles into classes. Finally we will present a comparative analysis of these methods and try to 

identify where the automatic writer identification stands in terms of performance requisite of real 

world applications. 

2.1 Data Sets 

The availability of data sets is one of the fundamental requirements for development and 

evaluation in any research domain and same is the case with handwriting and writer recognition. 

Furthermore, over the last few years, the comparison of different methods gained much interest in 

the handwriting recognition community which led to the development and annotation of standard 

data sets. Examples of commonly used data sets include IAM [Marti & Bunke, 2002], CEDAR 

[Hull, 1994], NIST [Wilkinson et al., 1992] and CENPARMI [Suen et al., 1992] in the offline 

while UNIPEN [Guyon et al., 1994] and IRONOFF [Viard-Gaudin et al., 1999] in the online 

domain. A relatively new French data set RIMES [Grosicki et al., 2008] is also gaining popularity 

in the research community. In the following, we will give a brief account of IAM and RIMES data 

sets, two interesting collections in the perspective of offline writer recognition.  

2.1.1 IAM Data Set 

The most well known and widely used data set in writer recognition is the IAM3 data set [Marti & 

Bunke, 2002] that contains forms with handwritten English text of variable content. The images 

                                                      
3 IAM = Institut für Informatik und angewandte Mathematik , University of Bern, Bern, Switzerland 
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have been scanned at 300 dpi, 8 bits/ pixel, grey-scale. The data set is fully annotated with 

information about the writer identity, the ground truth text and the segmentation at the line, 

sentence and word levels. A total of 650 writers have contributed to the data set with a variable 

number of handwritten samples per writer that varies from one sample (350 writers) to 59 samples 

(one writer) as illustrated in Figure 2.1 which gives an overview of the samples per writer in the 

data set. (excluding the exceptional writer with 59 samples). 

 

Figure 2.1 Distribution of samples per writer in the IAM data set 

2.1.2 RIMES Data Set 

RIMES4, a relatively new data set, comprises handwritten letters in French text representing the 

content sent by individuals to companies or administrations. More than 1300 writers contributed to 

the data collection by writing up to 5 letters, making a total of 5600 letters (more than 12,000 pages 

if we also count the questionnaire accompanying the letters and the (optional) fax cover sheets). 

The data set is completely annotated and secondary collections of isolated characters, handwritten 

words and logos have also been created. Two phases of evaluation campaigns, targeting 

applications like handwriting recognition, writer identification, layout analysis etc. have been 

carried out, using a subset of the complete database, in the last two years (2007 & 2008). The same 

data set has been employed in the ICDAR 2009 handwriting recognition contest. The data set will 

be made publicly available to the handwritten recognition and document analysis communities 

after the final phase of evaluations.  

After having introduced the data sets, we will now move on to the presentation of writer 

recognition methods in the following sections. 

                                                                                                                                                                
 

4 Reconnaissance et Indexation de données Manuscrites et de fac similÉS 
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2.2 Text- Dependent Writer Recognition 

The earlier research in writer identification has mainly witnessed text-dependent methods. The 

writers would copy a (fixed) given text which could vary from an entire page to individual words 

or characters. In this respect, text-dependent writer identification is quite similar to signature 

verification. In case of signatures, the writer himself has the freedom to choose the text (signature) 

whereas for writer recognition, the user might be asked to copy a predefined text. Naturally, text-

dependent methods can achieve higher accuracy with small amount of available text as opposed to 

text-independent methods.  

The classical text-dependent methods compared in [Plamondon & Lorette, 1989] have mostly 

been applied to a very limited number of writers that varied in general from two to ten writers. 

Only [Naske, 1982] considered a dataset of 100 writers (each having contributed a single word 10 

times), achieving an identification rate of 98%. In our discussion, we will mainly concentrate on 

the recent contributions to text-dependent writer identification. These studies are mainly motivated 

by forensic applications and aim to design computational algorithms to extract the features used by 

forensic document examiners [Huber & Headrick, 1999]. Since writer identification is our main 

focus of study, signature verification methods will not be a part of our discussion. 

One of the most comprehensive studies validating the hypothesis of the individuality of 

handwriting has been presented in [Srihari et al., 2002]. Handwriting samples of 1500 individuals, 

representative of the U.S. population were collected, each individual copying a source document 

(the CEDAR letter containing 156 words capturing all the characters and certain character 

combinations of interest) three times. The authors propose an extraction of a set of macro and 

micro features from each of the samples. Macro-features are extracted at the document level (entire 

handwritten manuscript) or at the paragraph, line and word levels while the micro-features are 

computed at the allograph, or character shape level. 

A total of eleven macro-features have been employed which have been grouped into three broad 

categories: darkness features (entropy of grey values, grey level threshold and number of black 

pixels), contour features (number of interior and exterior contours and the number of horizontal, 

vertical, positive and negative slope components) and averaged line-level features (slant and 

height). Certain of these features are also calculated at the paragraph and word level, the paragraph 

level features being complemented by two (aspect ratio and indentation) while the word level 

features by three (upper and lower zone ratios and word length) additional features. The proposed 

micro-features consist of 512 binary features corresponding to gradient (192 bits), structural (192 

bits), and concavity (128 bits) features, calculated at the character level. 

The effectiveness of the features has been evaluated on writer identification and verification. For 

macro-features, the distance between a pair of documents with feature vectors A and B is defined 
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by the Euclidean distance between A and B while for micro-features, two characters represented by 

binary feature vectors A and B are compared by the following similarity measure: 

 ���, �� = ��� + �
�  �� 2  (2.1)  

The accuracy on writer identification was evaluated using a nearest neighbour rule by randomly 

choosing a number of n writers from a total of 1000; selecting one sample of one of these writers 

as query and the remaining (3 x n - 1) samples as reference. This leave-one-out method was 

performed 1000 times for each n. The macro features were computed at the document, paragraph 

and word levels (to analyze system sensitivity to the amount of text) while the micro features were 

calculated for characters of the word ‘referred’. The two feature sets were tested alone and then 

combined by using the macro-features as a filter that reduces the number of writers from 1000 to 

100 and then using the micro-features to identify the writer among the 100 choices. The authors 

realize an identification in the range of 98% for n=2 to 87% for n=900. Writer verification is 

performed using a fully connected three layer artificial neural network yielding an accuracy of 96% 

once the two sets of features are combined. 

Later studies by the same group focused on investigating the discriminatory power of individual 

characters [Zhang et al., 2003] and numerals [Srihari et al., 2003]. According to their analysis: ‘G’, 

‘b’, ‘N’, ‘I’, ‘K’, ‘J’, ‘W’, ‘D’, ‘h’, ‘f’ came out to be the 10 most discriminating characters. In case 

of numerals, ‘5’ was found to be the most while ‘1’ the least discriminating numeral. The 

individuality of characters was then compared with that of words [Zhang & Srihari, 2003] by 

carrying out a study on four characteristics words ‘been’, ‘Cohen’, ‘Medical’ and ‘referred’ using 

the same set of micro features. Naturally the words were more effective in differentiating writings 

than the individual characters. The study was then extended to 25 words with the addition of Word 

Model Recognition [Kim & Govindaraju, 1997], shape curvature and shape context features 

[Belongie et al., 2002]. The computational details of these features can be found in [Tomai et al., 

2004]. 

[Pervouchine & Leedham, 2007] studies a set of structural micro features extracted from three 

characters ‘d’, ‘y’ and ‘f’ and grapheme ‘th’. These characters (grapheme) were chosen based on 

an analysis of character frequencies in several novels and their discriminating powers. The 

character images were extracted manually from 600 samples of the CEDAR letter [Srihari et al., 

2002] contributed by 200 writers producing a total of 30, 24, 24 and 27 samples of the respective 

character per writer. A set of 31 features was computed from these characters and was meant to 

represent a subset of the features used by forensic experts [Huber & Headrick, 1999]. These 

features mainly include the widths, heights, width to height ratios, and depending upon the 

character, the relative heights of ascender/descender, presence/absence of loop, certain slants and 
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distances, etc. The classification was carried out using a neural network while normalized 

Manhattan distance was used as the distance measure between the features: 

 �����, ���� = 1� � ���� − ��� ����� − ����  
 

�!�  (2.2)  

Where k is the number of features and maxi and mini represent the maximum and minimum values 

of the ith feature in the data set respectively. 

The authors have also carried out an analysis of the usefulness of features by searching the 

optimal feature sets using a wrapper method. Classification accuracies of 16%, 20%, 26% and 36% 

were achieved using the characters ‘d’,’y’,’f’ and ‘th’ respectively. The highest achieved 

classification accuracy was 58% when using the optimal subset of all four character features. Out 

of the 31 features evaluated, 13 were found to be relevant, 4 irrelevant and the rest partially 

relevant for writer discrimination. The features that came out to be irrelevant included the final 

stroke angle, the fissure angle of character ‘d’ and the presence of loop at the upper and lower 

points of f-stem. The authors however precise that it cannot be concluded that these features are 

useless as the results might be linked to a faulty formalization of features and, feature values might 

not have reflected the real situation. Separate contributions dedicated to the study of similar 

features on letter ‘a’ [Sutanto et al., 2003], grapheme ‘th’ [Pervouchine & Leedham, 2006] and 

numerals [Leedham & Chachra, 2003] can also be found in the literature. 

 

 

Figure 2.2 The morphological opening on the projection function: (a) initial histogram 

function of the word ‘characteristic’ (b) opening with line structuring element of length 3 (c) 

opening with line structuring element of length 7. (Image: [Zois & Anastassopoulos, 2000]) 

In addition to the forensic features discussed above, [Zois & Anastassopoulos, 2000] introduced 

a new feature based on a morphological transform of the vertical histogram function of a word. 

The binarized and one pixel thinned image of the word is projected onto the horizontal direction. 
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Taking into account the blank spaces between the letters, two versions of the projection function 

are created: one with and one without the zero bins. The functions are then resampled to have a 

total of 100 bins, making it independent of the word length. The obtained curves are 

morphologically processed (opening) in order to obtain the feature vector. The differences between 

successive openings denote the amount of information that is removed by the increasing in size 

structuring element.  Figure 2.2 shows the results of applying successive openings to the histogram 

function with line structuring elements of length 3 and 7 respectively. The final feature vector is 

created merely by partitioning the representation space into a number of segments and measuring 

the relative amount of area that the two structuring elements reject in each block. 

The discrimination capabilities of the proposed feature were evaluated on a database of 50 

writers each having 45 samples of two different words of the same length: an English word and the 

corresponding (same meaning) Greek one. Employing two different classification schemes (the 

Bayesian classifier and the neural networks) identification rates in excess of 95% were realized. 

The authors have also shown that the identification results obtained on the English and Greek 

words are equivalent, thus highlighting the language independence of the proposed method. 

Among the methods presented, most of the features are meaningful only in text-dependent mode. 

However, some of the features introduced in [Srihari et al., 2002] e.g. (slant and slopes etc.) could 

also be used to characterize the writer of a document independent of the textual content. 

This concludes our discussion on text-dependent automatic writer identification which might 

achieve very good performance but is very constrained and is mostly not applicable in many 

practical applications like the identification of the writers of archived handwritten documents and 

crime suspect identification from large sized forensic data sets etc. [Said et al., 2000]. Therefore, 

most of the methods developed lately fall in the text-independent analysis of handwriting as 

discussed in the section to follow. 

2.3 Text-Independent Writer Recognition 

We will now present the methods that are based on text independent analysis of handwriting. In 

order to better describe the different approaches for the text-independent writing identification, we 

have compiled existing methods in three parts. The first part makes reference to the approaches 

that we have termed as global. We then present local approaches and finally we will describe the 

methods that are based on handwriting recognition.  

2.3.1 Global Methods 

These methods identify the writer of a document based on the overall look and feel of the writing. 

We will discuss these methods under three categories namely texture, fractal and Zipf analysis of 

writing. Each of these has been detailed in the following sections. 
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2.3.1.1 Texture Analysis of Handwriting 

[Said et al., 2000] presents an algorithm for automatic text-independent writer identification 

considering the writing of each individual as a different texture. The system comprises three main 

steps: normalization, feature extraction and identification. During normalization, the detection and 

correction of the skewed words in the handwriting images is performed using line fitting on the 

connected components. Then, the space between lines/words and margins are set to a predefined 

size by means of cell padding to produce a well defined pattern for texture analysis. The texture 

features are obtained by two established methods namely the multi-channel Gabor filtering [Peake 

& Tan, 1997] and the grey scale co-occurrence matrix (GSCM) [Tan, 1996], implemented on 

random non-overlapping blocks (of 128x128 pixels) extracted from the normalized image. 

The two Gabor filters are of opposite symmetry and are given by: 

 

ℎ#��, $; &, '� = (��, $� cos�2,&��-./' + $/��'��  
ℎ0��, $; &, '� = (��, $� sin�2,&��-./' + $/��'��  (2.3)  

Where g is a 2-D Gaussian function and, f and θ are the radial frequency and orientation 

respectively which define the location of the channel in the frequency plane. Four frequencies of 

4,8,16 and 32 cycles/degree have been used and for each of these frequencies, filtering is 

performed for 4 orientations (0o, 45 o, 90 o and 135 o). This gives a total of 16 output images (4 for 

each frequency), from which the writer’s features are extracted. These features are the mean and 

the standard deviation of each output image. Therefore, 32 features per input image are calculated. 

The matrix of co-occurrence is a square matrix M of size N (number of grey levels) where each 

element M(i,j) of the matrix represents the number of pairs of pixels separated by a distance d for 

an angle α, having the grey values i and j respectively. The authors have considered 5 distances (1, 

2, 3, 4 and 5) and 4 directions (0o, 45o, 90o and 135o) on binary handwriting images (N=2) giving a 

total of 20 matrices. For each 2 x 2 matrix there are only 3 independent values due to the diagonal 

symmetry and they are used directly as features thus giving a total of 60 ( 20 x 3 ) features per 

handwriting image. 

For identification, two classifiers were considered, namely the weighted Euclidean distance 

(WED) classifier and the nearest neighbour classifier (K-NN). Forty writers were divided into two 

equal groups and 25 non-overlapping handwritten blocks were extracted for each person. The 

experiments were carried out by using 10 training and 15 test followed by 15 training and 10 test 

images per writer for each group of 20 writers. Testing was conducted using different 

combinations of features under both classifiers and an identification rate of as high as 96% was 

achieved with Gabor filtering technique under WED. 
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Another significant contribution that employs a set of texture level features [Bulacu et al., 2003] 

proposes a set of contour-based joint directional probability distribution functions to characterize 

an individual handwriting style. The contour direction distribution is determined by analyzing the 

fragment between two contour points (A and B as illustrated in Figure 2.3) taken a certain distance 

apart and finding the angle that the fragment makes with the horizontal. These angles are 

determined for each of contour points and then counted into a histogram (quantized in 8, 12 or 16 

directions) that is finally normalized to a probability distribution p(φ1). 

The authors have introduced two additional features: the bivariate contour-angle probability 

distributions p(φ1,φ2) quantifying the probability of finding two hinged edge fragments oriented at 

angles φ1 and φ2 respectively and, p(φ1, φ3): the joint probability distribution of the two contour 

angles occurring at both ends of a run-length on white [Bulacu & Schomaker, 2003]. These 

features have been illustrated in Figure 2.3.  For the purpose of comparison, the authors have also 

evaluated three other features widely used for writer identification; the run-length distributions 

[Arazi, 1983, Arazi, 1977], autocorrelation and entropy.  

 

Figure 2.3 Extraction of the edge-based texture features on letter "a" (Image: [Bulacu & 

Schomaker, 2006]) 

The features evaluated on 250 subjects of the Firemaker5 data set using a leave-one-out approach 

reported identification rates of 43%, 84% and 63% for the upper case while 48%, 81% and 75% for 

lower case writings for the three proposed features respectively. On the 650 writers of IAM 

database, the authors achieved identification rates of 46%, 81% and 77% respectively. In later 

studies, the authors combined these texture level features with allographic features which will be 

discussed shortly. 

2.3.1.2 Fractal Analysis of Handwriting 

The fractal dimension, as defined by B. Mandelbrot [Mandelbrot, 1975], is a “number which 

measures the degree of irregularity or of fragmentation of a set”, or the measure of the complexity 
                                                      

5 A private data set produced at the Nijmegan Institute for Cognition and Information, Netherlands 
 

A 

B 
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of the studied set. The fractal behaviour of handwritings was first proved by N. Vincent in [Vincent 

& Emptoz, 1995]. Later studies show that under certain conditions of observation, the fractal 

parameters are stable and discriminate enough to establish a handwriting classification according to 

styles [Boulétreau et al., 1998]. The fractal dimension calculus applied was based on the measure 

of the Minkowski-Bouligand dimension which is given for a set X as: 

 3�4� = lim7→9[2 − log �A�X7��log�r� ] (2.4)  

Where A(Xr ) is the area of the optimal covering of X by balls of radius r. For a fractal curve, the 

behaviour of log[A(Xr)/r] versus log(r) is linear and the corresponding graph termed as evolution 

graph. The evolution graph (as indicated in Figure 2.4) is determined by computing the area of the 

covering of X by balls of radius r which is implemented by dilating X, r times by a ball with radius 

1. Three zones with different slopes can be identified in the graph; each characterizes a particular 

behaviour and corresponds to a different scale of observation.  

 

Figure 2.4 Evolution Graph (Image: [Boulétreau et al., 1998]) 

The authors then define two parameters: fractal dimension and secondary dimension of 

handwriting from the slopes of these zones. The fractal dimension (FD) is computed from the slope 

of zone 1 while the secondary dimension (D2) is calculated from the slope of zone 2. These two 

parameters correspond to a perception of writing from an adapted and a remote distance of 

observation respectively. 

The authors tested the stability of fractal dimension towards physical constraints linked to both 

writing and acquisition [Boulétreau et al., 1995]. It was concluded that the use of different writing 

instruments influenced only on the first few points of the evolution graph (zone 0) which is not 

considered for the computation of the FD. It has also been demonstrated [Boulétreau, 1997] that 
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resolution changes produce a translation of the different zones of the graph without affecting the 

slopes of zone 1 and 2 that are used in the computation of the proposed parameters. Representing 

the handwritings in the plane, FD vs. D2, the authors suggest that the distribution is linked to 

legibility. The representation is termed as legibility graph and is illustrated in Figure 2.5. 

 

Figure 2.5 Legibility Graph (Image: [Boulétreau et al., 1998]) 

The legibility graph based on fractal dimension represents a writing in a two dimensional space 

which is good enough for classifying writing styles but might not be sufficient for problems like 

writer identification where assigning a writing to a particular class (writer) requires more precision. 

Later studies on fractal analysis of handwriting include [Seropian, 2003] presenting a writer 

identification system based on fractal compression [Fisher, 1995].  The approach is based on the 

auto-similarity properties present in the writing of an individual. A set of invariant patterns 

extracted from a writing appears along a fractal compression process where the objective is to find 

the transformations that are part of a partitioned iterative function system (PIFS) having the initial 

image as fixed point. To construct the PIFS, the image is partitioned into square sub-images R 

called ranges which are considered to be a result of a transformation of domains D (also sub-

images of initial image). The fractal compression process hence replaces an image by the system of 

transformations and the position of associated R and D. A reference base is thus generated for each 

writer representing inner similarities contained in the writing.  

In the decompression step the transformations are iteratively applied to all sub-images of an 

image until the difference between two successive images of the sequence is small enough. To 

identify the writer of a query document, one proposition is to use the reference bases of the known 

set of writers and compare the quality of the images of the new text after fractal compression and 

decompression steps [Seropian & Vincent, 2002]. Another solution proposed by the authors is to 

partition the query image in ranges and employ a pattern matching process with the elements of the 

reference base. The questioned text is then attributed to the writer whose reference base resulted in 



2 - State of the art 

 

  18

the highest number of correspondences [Seropian et al., 2003]. Evaluations carried out on images 

from 20 different writers reported an identification rate of more than 85%. 

This method of fractal compression/decompression of writing is closely related to the code book 

based methods, both the approaches exploiting the auto-similarities within a writing. The code 

book based methods will be presented later in the chapter. 

2.3.1.3 Zipf Law on Handwriting 

In an attempt to index and identify manuscripts, [Pareti & Vincent, 2006] presents a method based 

on the Zipf law [Zipf, 1949] that models the occurrence of distinct objects in sorted collections, 

originally used in mono-dimensional domains. The law states that when a given set of symbols 

(patterns) is sorted with respect to decreasing occurrence frequency, the following relation can be 

observed: 

 @A��� = � × �C (2.5)  

Where Nσ(i) represents the occurrence number of the pattern with rank i, and k and a are constants. 

This power law is characterized by the value of the exponent a while k is more linked to the length 

of the studied symbol sequence. The relation is not linear but a simple transform leads to a linear 

relation between the logarithm of N and the logarithm of the rank. 

 

Figure 2.6 An example manuscript and its Zipf plot (Image: [Pareti & Vincent, 2006]) 

Application of this law to images requires some kind of encoding. The authors have chosen to 

quantize the grey values to k-levels, k being set to 9 and then to 3. A 3x3 mask (for k=9) and a 4 

connectivity mask (k=3) is employed yielding 99 and 35 possible patterns respectively. Although 

Zipf law does not hold for the whole image, Zipf curves are built and approximated by some 

straight line segments. The authors have chosen to consider in each curve up to three different 

linear zones (Figure 2.6). The splitting point in a curve segment is defined as the farthest point 

from the straight line linking the two extreme points of the curve to be split. The three slopes and 

abscissa of the extremities of each segment are considered as features for document representation 

and two images are compared by the Hamming Distance in the feature space. The method tested on 
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a collection of 16th century documents by 20 different writers reported a writer identification rate of 

as good as 80%. 

The method is quite generic in the sense that its applicability is not limited to document images 

only. The discriminative power of the six primitives however is questionable. Since the mask size 

is very small, the most frequent patterns in the Zipf curve, which influence the first slope and the 

respective abscissa value, generally correspond to combinations which might not characterize a 

writing, e.g. the patterns that are completely white (background) or completely black (contained 

within the text). 

2.3.2 Local Methods 

These methods identify the writer based on the localized features of writing. Instead of the overall 

writing, the focus generally lies on individual characters or allographs and the way a particular 

writer would draw them. In our discussion, we will first briefly present writer identification from 

low level features followed by classification of writing styles using allograph modelling. Finally, 

we will discuss in detail the well-known code book based methods. 

2.3.2.1 Low Level Features 

[Marti et al., 2001] extracts a set of 12 features (that mainly correspond to visible characteristics of 

the writing) from handwritten lines of text, which are then classified using the k-nearest neighbour 

and a feed forward neural network classifier, for writer recognition. Employing the projection 

profiles, the handwritten text image is first segmented into lines which are then binarized. For each 

line, a set of features is extracted which mainly includes the height of the three main writing zones 

and their ratios, width of characters, writing slant and the inter word distances. Additionally, 

features based on the fractal behaviour of the writing, which are correlated with the writing's 

legibility, are also employed. These are the same features as the ones presented in [Boulétreau 

et al., 1998] and correspond to the fractal dimension and secondary dimension as illustrated in 

Figure 2.4. 

The system was evaluated on 100 pages of 20 different writers with a total of 912 text lines 

divided into five disjoint sub-sets (4 used in training and 1 in testing). An average identification 

rate of 87.8% is achieved using 7 of the 12 features with the k-nearest neighbour classification and 

that of 90.7% is measured for the neural network classifier using the complete set of features. 

The writer identification rates achieved with these features are promising but they are based on 

an evaluation protocol where four sample images per writer have been used for training. However, 

in practical problems, one might not have that much text available for each of the writers leaving 

the effectiveness of these features debatable. 
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2.3.2.2 Allograph Modelling 

[Gilloux, 1994] described a method for improving the handwriting recognition rate, including the 

style of writing. A method of writer adaptation is proposed based on several models of writing 

estimated by the Hidden Markov Models (HMMs). Each model is meant to reflect a particular style 

which is known beforehand. Markov models assume that the image can be represented as a 

sequence of observations. In addition, they require these observations to be independent when the 

hidden state is known. The author uses three ways to classify styles to ensure that the observations 

are mutually independent when the hidden states of HMMs are known. The first step is 

normalization of writing, thereby ensuring a better generalization of the markovien model. Other 

aspects of the writing style are taken into account in the HMM by using several sub models.  

The detection of style is carried out during the phase of feature extraction. This step segments 

the connected components of the words into upper and lower contours and then finds the loops and 

extensions of each segment of letters. A different symbol is assigned to each possible configuration 

of loops, extensions and their respective sizes. Taking into account spaces, these characteristics can 

be summarized in a set of 27 symbols. It is the arrangement of these symbols that makes it possible 

to classify the different styles of writers. 

In another major and well-known contribution [Crettez, 1995], the author proposes an analysis 

of the variability of handwritings with the objective of identifying the family of the handwriting 

style before initiating the text recognition process. At this pre-recognition level, the author presents 

a first degree handwriting characterization on the basis of two kinds of observations. The first 

category includes a group of three classical measures which are semantically independent: 

thickness of the tracing, main body of the word and spatial density of characters. The thickness is 

linked to the pen sharpness and writing pressure, the main body refers to the middle of the three 

vertical zones of text while the spatial density is proportional to the number of letters per unit 

length. 

The second kind of observations is linked to the successive directions of the tracing. Based on 

the idea that a given author takes some directions more frequently and more intensively than the 

others, the normalized histogram of different straight line parts of the tracing is drawn as a polar 

diagram which is then segmented into four directional lobes. The set of the eight observations 

defined by the three structural measures, the respective directions of the four lobes and also by the 

relative intensity of the first directional lobe constitutes an eight dimensional space. 

These observations are determined on 3788 words extracted from a set of 980 literal amounts of 

cheques. The set of handwriting families is then determined employing a fuzzy classification. 

These classification methods, although developed primarily for improving the handwriting 

recognition rate, present some interesting features which could be adapted for writer recognition 

systems as well. 
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2.3.2.3 Code book Based Methods 

The concept of writer’s  invariants introduced in [Nosary et al., 1999] was employed by [Bensefia 

et al., 2002] who proposed a system for writer identification based on template matching of the 

graphemes extracted from the writings to compare. The morphological redundancy of individual 

patterns, defined as writer’s invariants (code book), is a set of similar patterns or graphemes 

extracted from the segmentation of handwriting. This allows compression of the handwritten text 

while maintaining a good identification rate. The connected components of the document are first 

extracted and segmented into graphemes which are actually elementary patterns of handwriting 

that are produced by a segmentation based on the analysis of the minima on the upper contour 

[Nosary et al., 1999] as indicated in Figure 2.7. In later studies, the authors also introduced the 

concept of bi-grams (tri-grams) obtained as a result of concatenation of two (three) adjacent 

graphemes (graphemes i and i+1) [Nosary et al., 2002].  

Sample Word 

 

Upper Contour 
 

Produced Graphemes 
 

Figure 2.7 Segmentation into graphemes (Image: [Bensefia et al., 2005b]) 

Once the graphemes have been segmented, morphologically similar ones are grouped together 

using a sequential clustering algorithm [Friedman & Kandel, 1999] where two graphemes are 

compared using a correlation similarity measure. The authors also propose to carry out multiple 

sequential clusterings with a random selection order of the elements to be less sensitive to the order 

in which the elements are presented for clustering. Finally, only the elements that are always 

grouped together, when iterating the clustering procedures, are retained to constitute a cluster, 

termed as an invariant cluster (Figure 2.8). 

                                            

Figure 2.8 Samples of invariant clusters extracted from a handwritten page (Image: 

[Bensefia et al., 2002]) 
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The handwritten document image is represented by the set of extracted graphemes and the 

similarity between two documents Q and D is defined as: 

 �DE�F, 3� = 1-�G��F� � maxJK∈M�/����� , $N��OCPQ�R�
�!�  (2.6)  

The experiments were carried out on the PSI database (88 writers – data set constituted in the 

local lab asking each writer to copy one letter chosen among two suggested ones comprising 107 

and 98 words respectively) to evaluate the influence of the text representation (with or without 

invariants) on writer identification. An identification rate of 97.7% is reported when both the 

reference and test documents are represented by the complete set of graphemes. Representing only 

the questioned text by its invariant clusters achieves almost equally good results. For the other two 

combinations (query document represented by complete set of graphemes and reference documents 

by invariant clusters or both the documents represented by invariant clusters), the authors report 

slightly lesser identification rates of approximately 96.5%. It was also shown that samples of 40 to 

50 graphemes of the writing allow significant identification rates of nearly 90% on average.  

Extending the same idea in the later studies [Bensefia et al., 2003] [Bensefia et al., 2005a] 

[Bensefia et al., 2005b], instead of determining the invariant clusters from the graphemes of each 

writer, the authors cluster all the graphemes of the database thus defining a common feature space 

over the entire dataset. The invariants obtained are viewed as binary features and a feature is 

considered all the more pertinent as it belongs to a low number of writers.  

The writer identification task is formulated within the framework of Information Retrieval for 

which the authors employ the well known Vector Space Model (VSM). During the indexing phase 

a document D is represented by a set of weights that are assigned to the features (invariants) as: 

 3SS� = ��9, ��, … , �UV��W (2.7)  

With: 

 �� = ���X� , 3�D3��X��  

Where FF(φi,D) is the feature frequency in document D while IDF(φi) is the inverse document 

frequency that is the inverse of the number of documents that contain this feature φi.  

In the retrieval phase, the similarity between two documents is defined by the normalized inner 

product of the two vectors e.g. by the cosine of the angle between the two vectors describing the 

query Q and the document Dj from the reference base. The system was evaluated on the PSI 

database as discussed earlier and a subset (150 writers) of the IAM database, achieving 

identification rates of around 93% and 86% respectively. At the bi-gram level the system 

performance on the IAM database falls, while it rises on the PSI data set (96%). In both cases 
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trigrams show the same significant decrease in identification performance because of being more 

dependent on the textual content. 

Using a similar approach, Schomaker and Bulacu consider that an individual writer is 

characterized by a stochastic pattern generator, producing a family of writing shapes. This 

approach was first applied to isolated uppercase handwriting [Schomaker & Bulacu, 2004] and 

later it was extended to lowercase cursive writing [Schomaker et al., 2004] by using a 

segmentation method, the resulting graphemes being termed as fraglets by the authors. The 

segmentation is based on finding the minima of the lower contour with the added condition that the 

distance to the upper contour is in the order of the ink-trace width (Figure 2.9).  In a later study 

[Bulacu & Schomaker, 2005], the contour representation of these fraglets was replaced by 

normalized bitmaps thus making the approach quite similar to [Bensefia et al., 2005b]. 

 

Figure 2.9 Segmentation into fraglets (Image: [Schomaker et al., 2004]) 

Using an independent training set (comprising images from the Unipen [Guyon et al., 1994] 

dataset), a code book of connected component contours (fraglets in case of lowercase cursive 

writing) is computed using a Kohonen [Kohonen, 1988] self-organizing feature map (SOFM). The 

generated code book is then used to compute the probability distribution of these shapes in a given 

handwriting sample and this distribution is used to characterize the writer. The system evaluated on 

the 250 writers of upper and lower case Firemaker data set and 650 writers of the IAM data set 

achieved identification rates of 65%, 75% and 80% respectively. 

In later studies [Bulacu & Schomaker, 2006] [Bulacu & Schomaker, 2007], the authors combine 

these code book based features with the texture level features [Bulacu & Schomaker, 2003] 

[Bulacu et al., 2003] presented in section 2.3.1.1. The authors investigated a number of feature 

combinations (by distance averaging) achieving identification rates of as high as 86%, 83% and 

89% for the three sets respectively. The authors also combined the lower case Firemaker and the 

IAM data sets to generate a large data set of 900 writers and achieved an identification rate of up to 

87%. 

Resuming, one may categorize these methods as being based on one of the two types of code 

books, universal and writer-specific. The methods based on a universal code book are generally 

efficient in terms of computational cost however a new code book is to be generated if the script 

changes. On the other hand, writer specific code books have high computational costs but they 

could present a generic framework independent of the alphabet under study. 
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 It would also be interesting to compare the two universal code book based approaches [Bensefia 

et al., 2005b] and [Bulacu & Schomaker, 2007]. While [Bensefia et al., 2005b] generates the code 

book from the dataset under study, [Bulacu & Schomaker, 2007] computes it from an independent 

dataset. Another important difference between the two is that [Bulacu & Schomaker, 2007] 

employs a fixed size (400) code book whereas [Bensefia et al., 2005b] makes use of a sequential 

clustering algorithm where the size of code book is not fixed a priori. It is however difficult to 

conclude which of these is better as the two methods do not use the same (dis)similarity measure to 

compare two writings. These methods will be discussed further in the next chapter. 

2.3.3 Writer Recognition based on Handwriting Recognition 

While writer identification has been employed in handwriting recognition systems (adapting the 

system to the type of writer) [Nosary et al., 1999], the inverse has also been investigated, that is: 

using handwriting recognition for writer identification. Schlapbach [Schlapbach & Bunke, 2004] 

presents a system for writer identification using Hidden Markov Model (HMM) based recognizers. 

For each writer in the considered population, an individual HMM based handwriting recognition 

system is trained using data from that writer only. Thus for n different writers one can have n 

different HMMs. Given an arbitrary line of text as input, each HMM based recognizer outputs a 

transcription of the input and a recognition score. Based on the assumption that correctly 

recognized words have a higher score than incorrectly recognized words, and that the recognition 

rate of a system is higher on input from the writer the system was trained on than on input from 

other writers, the scores produced by the different HMMs are used to decide who has written the 

input text line. 

Each text line presented to the system is first normalized with respect to slant, skew, baseline 

location and height. A sliding window is used to transform a normalized handwritten text line into 

a sequence of feature vectors. The window is one pixel wide and shifted from left to right over a 

line of text. At each position of the window, nine geometrical features are extracted which 

represent the following geometrical quantities: number of black pixels in the window, centre of 

gravity, second order moment, position and contour direction of the upper and lower-most pixel, 

number of black-to-white transitions in the window, and fraction of pixels between the upper and 

lower-most pixel. Hence the input to the HMM is a sequence of nine dimensional feature vectors 

of variable length. 

A text line to be classified is presented to the HMM of each writer which outputs a transcription 

of the input text line together with its log-likelihood score. The authors have also implemented a 

rejection mechanism calculating the difference between the log-likelihood of the best and the 

second best ranked writer and normalizing it by the length of the text line; thus defining a 
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confidence measure (cm) for a given text line. Once this confidence value has been computed, the 

authors reject an input text line if the value of cm is smaller than a given threshold. 

The system is evaluated on 50 writers (2,207 text lines including 4,210 different words) from 

IAM database. For each writer, the set of available text lines is split into four disjoint subsets to 

perform full four-fold cross validation experiments. In each of the four runs, three subsets are used 

to train each of the handwriting recognition systems whereas the remaining text lines form the test 

set. An average identification rate of 94.47% is achieved which rises to 100% using the confidence 

measure and rejecting 15% of the results. 

This work was followed by the use of Gaussian Mixture Models (GMMs) to model a person’s 

handwriting instead of HMM based recognizers [Schlapbach & Bunke, 2006a]. For each writer, 

one GMM is trained using (the same nine geometrical) features extracted from text lines coming 

from the specific writer only. The training is carried out using the Expectation–Maximization (EM) 

algorithm as a result of which, the authors obtain for each writer a GMM that is specially adapted 

to the individual handwriting style of that writer. During the identification phase, a text line to be 

classified is presented to the GMM of each writer and is then assigned to the best ranked writer. 

The system evaluated on 4,103 text lines from 100 different writers in the IAM database 

produced an identification rate of 98.46% as compared to 97.03% with HMM based recognizers on 

the same data set. The authors conclude that while the GMM based system is conceptually much 

simpler and takes substantially less time to train than the HMM based system, it achieves a 

significantly higher writer identification rates. A detailed comparison of the two methods can be 

found in [Schlapbach & Bunke, 2006b]. 

Although the authors succeed in achieving very high identification rates, a significant amount of 

text has been used to train the GMM (HMM) of a writer, which might not be on hand in real world 

problems. 

This concludes our discussion on writer recognition methods. In addition to writer recognition 

and writing style classification on modern handwritings, studies on ancient manuscripts have also 

been carried out. Some recent contributions involve [Joutel et al., 2007a] and [Eglin et al., 2007] 

where the authors strive to carry out a classification of ancient manuscripts from different historical 

periods. [Joutel et al., 2007a] employs a Curvelets transform while [Eglin et al., 2007] proposes the 

use of Hermite and Gabor transforms for noise reduction and handwriting classification. 

Having presented an overview of some notable studies in the area, summing up, we will now 

provide a comparative analysis of these methods in the following section.  

2.4 Discussion 

From the discussion of text-dependent and text-independent methods, one can conclude that in 

general higher identification rates are achievable with the former type but at the cost of the 



2 - State of the art 

 

  26

requirement to have same fixed text or human intervention to extract the elements (characters or 

words) to be compared. Text-independent methods are much more useful and applicable. These 

methods, however, require a certain minimum amount of text to produce acceptable results. 

Resuming, we could say that the research on writer recognition that started with the analysis of 

very constrained writings and very few writers has matured really well over time. Regarding the 

methods developed, in general, many of the global methods (e.g. Gabor filters, fractal analysis and 

Zipf law) work reasonably good on a small number of writers. The performance of these 

approaches however begins to degrade as the number of writers increases. Only the directional 

features introduced in [Bulacu et al., 2003] maintain a good identification rate when evaluated on 

larger data sets. Among the local methods, in addition to the structural and statistical features, code 

book generation has emerged as a very popular as well as effective method for writer 

identification. These code books could be computed universally for the entire set of writers or for 

each of the writers separately. Finally, the methods developed for the classification of writing 

styles could well be integrated with writer identification systems where a query document is 

compared only to a subset of writings that belong to the same writing style class as that of the 

document in question. 

After a qualitative comparison of methods, we will now summarize the quantitative performance 

of some of the methods discussed earlier, on writer identification. The comparison that we provide 

is based on the results that have been reported in the literature. As it can be noticed from Table 2-1, 

although identification rates of as high as 98% have been reported, they are based on a smaller 

number of writers. Only the studies [Srihari et al., 2002] and [Bulacu & Schomaker, 2007] have 

been evaluated on significantly large data sets (900 writers). The data set in the former one 

however comprises the same text (a letter) written three times by each of the authors hence the 

effectiveness of the system on text- independent analysis is yet to be explored. Therefore, we can 

conclude that Bulacu and Schomaker [Bulacu & Schomaker, 2007] currently hold the best 

performance results reading around 87% on 900 writers. Considering the size of the forensic search 

data sets (as discussed in the 1st chapter) and the performance demands, the methods reported in the 

literature are still far from matching these requirements and there is a lot more to do in the field of 

automatic writer recognition. 
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Table 2-1 Comparison of writer identification performance 

 Writers Data set Samples/writer Sample Size Performance 

[Said et al., 2000] 20*2 - 25 Text blocks of few lines 95.3%/96% 

[Zois & Anastassopoulos, 2000] 50 - 45 One word (English/Greek) 92.48%/92.63% 

[Marti et al., 2001] 20 IAM 5 Paragraph of 5 to 11 lines 90.7% 

[Srihari et al., 2002] 100 CEDAR Letter 3 156 words 94% 

 900 CEDAR Letter 3 156 words 87% 

[Bensefia et al., 2005b] 150 IAM 2 Paragraph/3-4 words 86%/68% 

 88 PSI 1 107 words 96% 

[Schlapbach & Bunke, 2006a] 100 IAM 5 Paragraph (8 lines on avg.) 98.46% 

[Bulacu & Schomaker, 2007] 250 FireMaker Uppercase 1 Paragraph 86% 

 250 Firemaker lower case 2 Paragraph(2 lines to full page) 83% 

 650 IAM 2 Paragraph 89% 

 900 IAM+Firemaker 2 Paragraph 87% 
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Chapter 3 

Writer Characterization: Redundant 

Patterns of Writing 

 

In the previous chapter, we discussed the significant contributions to the field of writer recognition 

over the last two decades. Lately, the focus of research in the domain has shifted towards the 

extraction of writer specific patterns in writing. As an individual writes, he draws similar 

characters using the same basic shapes that are generated by more or less the same gesture of hand. 

This leads to a certain redundancy in the writing of an individual with certain patterns more 

frequent than others. These redundant patterns, termed as writer’s invariants, have been analyzed at 

the grapheme level in [Nosary et al., 1999] and have shown effective performance on writer 

recognition [Bensefia et al., 2002] and [Bensefia et al., 2005b]. These redundant shapes, generally 

termed as ‘code book’ could either be writer specific where the frequent writing forms extracted 

separately for each writer [Bensefia et al., 2002] or universal where these forms are extracted 

globally (either from the dataset under study [Bensefia et al., 2005b] or from an independent data 

set [Bulacu & Schomaker, 2007]). The different possible code books explored in the literature have 

been illustrated in Figure 3.1. In each of these studies, the code book is computed from graphemes 

which could represent over, under or well segmented characters [Heutte et al., 1998]. 

The approach that we present is inspired by the same idea of frequent writing shapes; we 

however, chose to work on a much smaller scale of observation. The methods [Bensefia et al., 

2002] [Bensefia et al., 2005b] [Bulacu & Schomaker, 2007], although text independent, are more 

linked to the way the letters are drawn and segmented and the extracted graphemes might also 

carry some semantic information. We think the recognition of the writer is more linked to the 

physical way the lines or loops are produced and hence the observation scale may be inferior to 

that of a grapheme. The fragments that we consider are small parts of handwritten text that do not 

carry any semantic information and are obtained by a segmentation of handwriting into small 

windows. The redundant patterns characterizing an individual are then extracted by grouping 

similar patterns into clusters.  
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Figure 3.1 Code book based methods for writer recognition

The main advantage of working on small observation windows is that it allows studying the 

frequent shapes that might be part

particular shape (e.g.; loops) in a specific way is expected to always employ the same (similar) 

patterns when drawing that shape, irrespective of the character being written. As an 

Figure 3.2 shows two loops that are very much similar but come from two different characters (‘

and ‘k’ respectively) written by the same author. This redun

the grapheme level depending upon the segmentation scheme employed as well as the character

these loops belong to. 

Figure 3.2 Presence of similar loops in two different characters

Developing the same idea and reducing the observation scale further, one can identify the 

presence of redundancy at the level of even smaller fragments. This is explained by the fact that a 

writer might use the same gesture of hand, and hence the same pattern, while writing the letters 

that share similar basic forms. A writer

produced in a similar form for a number of characters as illustrated in 

small fragments which are extracted from four different characters but they are all very close to 

one another. This redundancy of fragments h

and will be the main focus of our study in this chapter. We will show how these frequent forms can 

be determined from a handwritten sample. We will first introduce the proposed segmentation 
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Code book based methods for writer recognition 
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scheme and then discuss the various possibilities of grouping similar fragments (represented by a 

set of features) together. We will then show how these groups (clusters) of basic writing patterns 

can be used to characterize the author of a document. We will develop t

writer specific code book example and then apply the same idea to a global code book. But before 

presenting the method, we would like to give an overview of the data set that we will be working 

on. 

 

‘a’ 

Figure 3.3 Same pattern repeated across different characters

3.1 Data Set 

We mainly conducted our experimental evaluations on the IAM data set 

As discussed in section 2.1.1

writers with 350 writers having contributed only one page, 300 

writers with at least four pages. In order to fit in all the 650 writers in our study, we kept only the 

first two images for the writers having more than two pages and split the image roughly in half for 

writers who contributed a single page thus ensuring two images per writer, one used for training 

while the other for testing. Furthermore, in order to have an independent validation set, we used the 

pages ‘three’ and ‘four’ of the 125 writers having at least four samples in

3-1 gives an overview of the modified IAM data set employed in our study. Certain experiments 

are carried out on 300 writers (part 1) while

& part2). 

Data set part

1 

2 

3 (Validation)

 

After having described the data set, we now present our approach for characterizing the writer of 

a handwritten text. We start with binarization of the document image and extract small writing 

fragments by dividing the writing into small windows. The frequ
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hen discuss the various possibilities of grouping similar fragments (represented by a 

set of features) together. We will then show how these groups (clusters) of basic writing patterns 

can be used to characterize the author of a document. We will develop the methodology using the 

writer specific code book example and then apply the same idea to a global code book. But before 

presenting the method, we would like to give an overview of the data set that we will be working 
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Same pattern repeated across different characters

We mainly conducted our experimental evaluations on the IAM data set [Marti & Bunke, 2002

2.1.1, this data set contains handwritten texts written by a total of 650 

writers with 350 writers having contributed only one page, 300 writers with at least two and 125 

writers with at least four pages. In order to fit in all the 650 writers in our study, we kept only the 

first two images for the writers having more than two pages and split the image roughly in half for 

buted a single page thus ensuring two images per writer, one used for training 

while the other for testing. Furthermore, in order to have an independent validation set, we used the 

of the 125 writers having at least four samples in the actual data set. 

gives an overview of the modified IAM data set employed in our study. Certain experiments 

are carried out on 300 writers (part 1) while others conducted on the entire set of 650 writers (part1 

Table 3-1 The modified IAM data set 

Data set part Number of Writers Contributing Samples

300 Sample 1 & Sample 2

350 Two halves of the page

3 (Validation) 125 Sample 3 & Sample 4

After having described the data set, we now present our approach for characterizing the writer of 

a handwritten text. We start with binarization of the document image and extract small writing 

fragments by dividing the writing into small windows. The frequent writing patterns are then 

hen discuss the various possibilities of grouping similar fragments (represented by a 

set of features) together. We will then show how these groups (clusters) of basic writing patterns 

he methodology using the 

writer specific code book example and then apply the same idea to a global code book. But before 
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Same pattern repeated across different characters 

Marti & Bunke, 2002]. 

, this data set contains handwritten texts written by a total of 650 

writers with at least two and 125 

writers with at least four pages. In order to fit in all the 650 writers in our study, we kept only the 

first two images for the writers having more than two pages and split the image roughly in half for 

buted a single page thus ensuring two images per writer, one used for training 

while the other for testing. Furthermore, in order to have an independent validation set, we used the 

the actual data set. Table 

gives an overview of the modified IAM data set employed in our study. Certain experiments 

others conducted on the entire set of 650 writers (part1 

Contributing Samples 

Sample 1 & Sample 2 

page 

Sample 3 & Sample 4 

After having described the data set, we now present our approach for characterizing the writer of 

a handwritten text. We start with binarization of the document image and extract small writing 

ent writing patterns are then 
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extracted by grouping similar fragments into clusters which then serve to characterize the writer. 

These steps have been summarized in Figure 3.4 and each of these has been discussed in the 

following sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 An overview of the proposed methodology 

3.2 Document Image Binarization 

Before proceeding to the analysis of small writing fragments, we binarize the document image. 

Although the grey level image might carry additional information (e.g. pen pressure) we chose to 

work on the binarized writing images which simplify the representation and comparison of two 

forms. Since we mainly focus on modern writings and the corresponding digitized images that we 

use are not very noisy, a global thresholding using Otsu’s algorithm [Otsu, 1979] is applied to 

generate a binary image of the writing. All the subsequent steps are then carried out on the 

binarized image. 

In order to extract the patterns that a writer employs frequently as he writes, we first need to 

carry out a division (segmentation) of writing into small sub-images (fragments). This division is 

carried out by positioning small windows over the writing as discussed in the next section where 

we investigate the different ways in which the writing could be divided. 

Clustering of sub-images 

Division of Writing 

Writing Representation 

Binarization 

 
Reference 

Base 

 
Document 

Image 

Writer Recognition 

Reference Document 

Query Document 

Writer 1 Writer 2 Writer K ... 
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3.3 Division of Handwriting 

The division of handwriting is an important step as a ‘good’ division would allow to exploit most 

of the redundancy in writing. For our problem, a ‘good’ division is the one that produces writing 

fragments in a way that allows meaningful comparison of these fragments. We have chosen to 

carry out this division employing square windows of size n. This size should be large enough to 

contain ample information about the style of the author and small enough to ensure a good 

identification performance. Ideally, the window size should be adjusted according to the writing 

details (e.g. ink thickness, character height etc.), however we have worked on a fixed size (13x13) 

that is determined empirically [Siddiqi & Vincent, 2007].  

Once the size has been fixed, we proceed to the positioning of windows over text. We have 

studied a number of window positioning algorithms including regular, horizontal window sliding 

and adaptive division. They are discussed and compared in the following.  

3.3.1 Regular Division 

The simplest technique of dividing the writing would be to divide the entire image regularly from 

left to right and top to bottom and eliminating the windows which do not contain any part of text. 

The method is simple but the problem is that the resulting windows are not ‘well’ positioned over 

the text as illustrated in Figure 3.5 where certain fragments that could have easily been contained 

in a single window, are in fact divided in two different windows. This implies that we will have 

many windows containing writing fragments which might not be useful to characterize the writer. 

In addition, the number of windows that we need to process will be relatively larger than required. 

We need to have a division mechanism that produces comparable writing fragments and ensures 

the invariance of the trace position within the window. Naturally, this problem does not arise in 

cases where the text has been divided into allographs or graphemes but in our case, the image 

(component) is taken in its totality and the study is not based on an intelligent segmentation but on 

a focalisation process, extracting comparable patterns. We thus seek to address these issues by 

employing more sophisticated window positioning as presented in the following. 

  

Figure 3.5 Regular division of writing and its drawback 
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3.3.2 Horizontal Window Sliding 

In an attempt to carry out a division that is more relevant for handwriting, we next employ an 

improved version of the technique proposed in [Vincent et al., 2005]. For each connected 

component in the text, we fix the vertical origin and divide the component into equally spaced lines 

separated by a distance of n pixels (n represents the window size). We then slide a window on each 

of the lines, from left to right, to find the first text (black) pixel that is not already contained within 

a window. While [Vincent et al., 2005] shifts the entire grid horizontally, we do it for each 

individual window, thus achieving a better window positioning. The method has been illustrated in 

Figure 3.6. In general, this approach achieves better positioning as compared to the regular 

division, however the vertical axis still remains divided in a regular fashion which could result in 

problems similar to the ones in regular division. We thus need to have an adaptive method that 

could adjust the position of a window with respect to the writing trace. 

 

Figure 3.6 Sliding windows horizontally over text 

3.3.3 Adaptive Window Positioning 

We now propose a division technique that is more adapted to the ink trace and strives to address 

the problems that are linked to the lack of invariance of line position within the window. Since the 

images are offline, it is not possible to follow the stroke trajectory that was followed by the writer. 

Nevertheless, we will seek to follow the ink trace with the objective of achieving an optimal 

window positioning that is based on the analysis of the skeleton with respect to the drawing. 

Given a connected component, we first find its skeleton by removing the pixels on the 

boundaries of the component without allowing it to break apart (Matlab Image Processing 

Toolbox). We then place the first window on the original component by finding the first text pixel 

in top-bottom, left-right scanning (Figure 3.7 (a)) and copy the same window on the skeleton 

image as well. For each window, we define four flags namely: East, West, North and South, the 

respective flag being set if the skeleton exits from that particular side (Figure 3.7 (b)). If the 

skeleton exits from the E (or W), we place the next window towards the right (respectively left) of 

the current window (on the original component), and displace it in the vertical direction (up and 

down) to find its ‘best’ position with respect to the text. On the other hand, if the skeleton exists 
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from the N (or S), we place the next window on top (respectively bottom) of the current window 

and move it horizontally (left or right) so that it is ‘well placed’ over the text. In cases where the 

skeleton exists from more than one side, we treat each of the branches separately.  

  

(a) Start of ink trace (b) Choice of the next side with exiting trace 

 

 

(c) Initial Position of the next window (d) Sliding the window with respect to the trace 

Figure 3.7 Adaptive Window Positioning 

 

Algorithm 3.1 : Window Positioning on text 
 

Place the firstWindow and set its flags 

Push the firstWindow on the stack 

while (stack is NOT empty) 

 previousWindow = Pop  

Place the currentWindow on the first set flag  f of previousWindow 

Reset the flag  f 

Set the flags for the currentWindow 

 if (Any flag of previousWindow is Set)   

                            Push previousWindow  

 if (Any flag of currentWindow is Set) 

   Push currentWindow 

 

 

The term ‘well positioned’ could be explained by the example in Figure 3.7 (c) where a window 

is placed to the right of an existing window and needs to be moved in the vertical direction to find 

its final position. Evidently, moving it upwards would result in gaining text pixels in the empty 

W 

N 
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rows and achieving a better positioning with respect to the stroke whereas moving it downwards 

would eventually end up in exiting the text pixels of the image. The method is summarized in 

Algorithm 3.1. It does not guarantee an ‘ideal’ division of writing; nevertheless it attempts to work 

out the issues with the methods discussed earlier. 

 

(a) Regular Division: 84 Windows 

 

(b) Horizontal Sliding: 67 Windows 

 

(c) Adaptive Positioning : 54 Windows 

Figure 3.8 Comparison of window positioning algorithms 

The window positioning algorithm is applied component by component to the complete image 

thus resulting in a division of handwriting into small sub-images. A comparison of the division by 

regular partitioning, sliding the windows horizontally, and positioning them adaptively has been 

illustrated for the word ‘headlines’ in Figure 3.8. It can be noticed that the last method significantly 

improves the window positioning with respect to the text pixels and as a result of which, though 

not our primary goal, the number of windows containing text pixels is also reduced. A quantitative 

comparison of these (last two) methods in terms of performance on writer identification also 

validates the effectiveness of adaptive window positioning [Siddiqi & Vincent, 2008]. 

It would be interesting to analyze how the number of windows evolves with respect to the 

number of words and whether this number is writer dependent or not. Figure 3.9 (a) shows the 

number of windows as function of the number of words for images of the same text (of 75 words) 

written by two different writers. Naturally the two curves are quite close to each other in the start 

and as the number of words increases the gap between the two curves widens, generating about 

18% more windows for writer 2 than for writer 1 for the same text. The difference is more or less 

consistent on different window sizes as illustrated in Figure 3.9 (b) where the number of windows 

is plotted against the window size. 
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(a) 

 

(b) 

Figure 3.9 For the same text written by two writers number of windows as function of (a) 

number of words (b) window size (in pixels) 

As we have seen, some writer-specific information has already started to show up just by 

dividing the writing into sub-images. Our objective now is to identify the characteristic (frequent) 

sub-images (writing fragments) which could eventually characterize the writer of a sample. This is 

accomplished by implementing a clustering of the sub-images that would group similar fragments 

into classes as detailed in the following section. 

3.4 Clustering of sub-images 

Clustering, also known as unsupervised classification is the process of constructing a set of clusters 

or classes from unlabeled data according to a proximity measure. The objective of clustering in our 

case is that the sub-images that have been produced by the same gesture of hand are grouped in the 

same classes (clusters). These clusters would then represent the set of redundant patterns for an 

individual, the redundancy of a particular pattern being proportional to the (relative) cardinality of 
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the cluster it belongs to. [Jain & Dubes, 1988] defines the following key steps in a clustering 

procedure: 

• Data representation 

• Definition of a (dis)similarity measure 

• Clustering / Grouping 

We will discuss each of these steps with respect to our problem that involves clustering of sub-

images. 

3.4.1 Representation of sub-images 

The comparison between the sub-images can be made either on the images directly (pattern 

matching) or by first extracting a set of features and representing the images in a feature space. 

Directly comparing pixel values is simple but suffers from the disadvantage of keeping n2 pixel 

values (for a window size of n) and in addition, the resulting comparisons might not be robust to 

noise and distortions. We therefore chose to represent the patterns by a set of features. The position 

of the trace with respect to window is first adjusted (by moving the shape towards the upper-left 

corner of the window: Figure 3.10) so that the features computed do not depend upon the way a 

window was positioned over a fragment. It is however not desirable in our case to have rotation 

invariance as a pattern and its rotated version are not produced by the same gesture of hand and 

thus should not be grouped in the same class. As far as the scale is concerned, within the same 

sample, we do not expect a writer to change the writing scale; therefore two sub-images can be 

compared using the features that are not necessarily scale invariant. Across different samples of a 

writer, if there is a very significant change in the text size or if the images have been scanned at 

different resolutions, we assume that the writings have been normalized prior to window 

positioning and feature computation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Patterns translated before calculating the features 

 

The set of features that we compute for each window includes:  

 

a) Horizontal Histogram: The number of text pixels in each row of the sub-image.  
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b) Vertical Histogram: The number of text pixels in each column of the sub-image.  

c) Upper Profile: The distance of first text pixel from the top of each window.  

d) Lower Profile: The distance of the last text pixel from the top of each window.  

e) Orientation: The overall direction of the shape: the angle (ranging from -90º to 90º) 

between the x-axis and the major axis of the ellipse that has the same second-moments as 

the shape.  

f) Eccentricity: The eccentricity of the ellipse that has the same second-moments as the 

shape. It is the ratio of the distance between the foci of the ellipse and its major axis length 

and takes on a value between 0 and 1. (An ellipse whose eccentricity is 0 is actually a 

circle, while an ellipse whose eccentricity is 1 is a line segment.) 

g) Rectangularity: The ratio between, area of the object and area of the bounding box.  

h) Elongation (Aspect Ratio): The ratio of the height and width of the minimal bounding 

box. It is defined by the ratio between the shape’s minor and major axes. 

i) Perimeter: The number of pixels in the boundary of the shape.  

j) Solidity: The proportion of the pixels in the convex hull that are also in the shape, and is 

computed as: shape area/convex hull area.  

 

These features are known classically [Costa & Jr, 2001] and have been employed in a variety of 

applications. The profiles and histograms, for example, have shown good performance on character 

recognition [Heutte et al., 1998], word spotting  [Rath & Manmatha, 2007] and font recognition 

[Zramdini & Ingold, 1993] while the shape descriptors are known to be effective on tasks like 

image retrieval [Sarfraz & Ridha, 2007] and shape grouping [Peura & Iivarinen, 1997] etc. The 

sub-images/writing fragments that we consider can be viewed as parts of characters, each having a 

specific shape and thus a combination of profiles and shape descriptors is likely to perform well in 

grouping these patterns. 

Once all the features have been calculated, the values are normalized in the interval [0 1] and 

hence each window is represented by a vector of dimension d=4n+6, where n is the window size. 

In our case, let S be the set of vectors representing the sub-images, thus we have:  

 � = Y��Z  [�\ℎ ]�-ℎ �� = �/��, /��, … , /�Q� (3.1)  

3.4.2 (Dis) Similarity Measure 

After having represented the sub-images by a set of features, we need to choose a (dis)similarity 

measure that enables us to compare two sub-images. For the direct comparison of raw pixels, 

among the several similarity measures defined in the literature [Duda & Hart, 2000], the following 
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correlation measure has shown good results, for example, in comparing graphemes in the studies 

[Bensefia et al., 2002, Nosary et al., 1998]: 

 /���4, ^� = ����99 − ��9�9�[���� + ��9���9� + �99����� + �9�����9 + �99�]�/� (3.2)  

With n
ij being the number of pixels for which the two sub-images X and Y have values i and j 

respectively, at the corresponding pixel positions. This measure will be close to 1 if the two 

compared sub-images are similar and in extreme case it will have a value equal to 1 indicating that 

the two shapes are exactly the same.  

In our case, the sub-images have been represented by a set of features and we calculate the 

dissimilarity between two patterns by using a distance measure (Euclidean distance) defined on the 

feature space with dimension d. 

 ��4, ^� = `��� − $ ��Q
 !�  (3.3)  

3.4.3 Clustering 

A wide variety of clustering algorithms have been proposed and a comprehensive review can be 

found in [Jain et al., 1999] where different methods of data clustering have been described. Among 

the available options, we need to choose a clustering algorithm that does not need to know a priori 

the number of clusters to retain as this number would vary from one writing to another. We have 

experimented with a number of algorithms that include sequential clustering, multi-phase 

sequential clustering, hierarchical clustering and minimum spanning tree clustering. We will 

present them one by one and discuss the pros and cons of each. 

3.4.3.1 Sequential Clustering 

Sequential clustering [Friedman & Kandel, 1999] is the simplest and the most natural way to 

cluster data once the number of classes is not known. This method has been employed in [Nosary 

et al., 1999] for the clustering of graphemes. The algorithm starts with the choice of a proximity 

threshold and the first element as the centroid of the first cluster. For each of the subsequent 

patterns, the similarity between the current element and each of the clusters is calculated. The 

element is then either attributed to the nearest cluster or, in case, it is not close enough to any of the 

clusters (with respect to the threshold), a new cluster is created.  

For our implementation, the (dis)similarity between an element Si and a cluster Cj is calculated 

as the Euclidean distance between Si and the mean (µ j) of Cj: 
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 ����, aN� = `��/�, − bN, ��Q
 !�  (3.4)  

Every time an element is added to a cluster, the mean of the cluster is also updated. The process is 

repeated until all the patterns have been assigned to clusters. This sequential assignment of 

elements to clusters seems promising but the procedure suffers from the drawback of being 

sensitive to the order in which the patterns are presented. The problem is addressed in [Nosary 

et al., 1999] [Bensefia et al., 2005a] by carrying out a multi-phase sequential clustering. 

3.4.3.2 Multi-phase Sequential Clustering 

In this method, in order to be less sensitive to the order of presentation, multiple phases of 

sequential clustering with random selection of the data points are iterated. Each of the clustering 

phases thus provides a set of clusters and the final clusters are defined as the groups of patterns that 

are always clustered together during each sequential clustering phase. While in [Nosary et al., 

1999] the authors create single element clusters for the patterns that are not always assigned to the 

same cluster, we assign them to the nearest clusters (provided the proximity threshold constraint is 

satisfied, otherwise we also create new clusters). 

3.4.3.3 Hierarchical Clustering 

This approach comprises a series of partitions, which normally runs from N clusters each 

containing a single data point to a single cluster containing all the data points (agglomerative 

hierarchical clustering). At each stage the method merges together the two closest clusters.  

Differences between methods arise because of the different ways of defining distance (or 

similarity) between clusters. Depending upon whether the distance between two clusters is 

calculated as the minimum, maximum or the average of all pair wise distances between data points 

in the two clusters, the methods are termed as single-link, complete-link and average-link 

respectively, the three most commonly used hierarchical clustering methods. One may decide to 

stop clustering either when the clusters are too far apart to be merged (distance criterion) or when 

there is a sufficiently small number of clusters (number criterion).  

For the clustering of sub-images, we have employed the average-link method and the number of 

clusters retained is determined using the distance criterion as the number of clusters is not known a 

priori in our case. 

3.4.3.4 Minimum Spanning Tree Clustering 

Among the graph theoretical clustering methods the most well-known algorithm is the minimum 

spanning tree (MST) clustering [Zahn, 1971] that has been widely used in a variety of applications 
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[Päivinen, 2005] [Xu & Uberbacher, 1997]. A spanning tree T of a (connected) weighted graph G 

is a connected sub graph of G such that: 

• T contains every vertex of G and, 

• T does not contain any cycle.  

A minimum spanning tree is a spanning tree with the minimum total weight i.e. it connects all the 

given data points at the lowest possible cost. From the perspective of clustering, if the weights of 

the edges represent the distances between the data points, removing edges from the MST leads to a 

collection of connected components which can be defined as clusters [Nadler & Smith, 1993].  

For our set of sub-images, we define the weighted (undirected) graph c��� = �d, e� as follows:  

• The vertex set d = Y��|�� ∈ �Z  and,  

• The edge set e = Y���, �N�|��, �N ∈ � ��� � ≠ hZ    

Each edge �i, j� ∈ e has a weight that represents the (Euclidean) distance d(u, v), between u and 

v. A spanning tree T of the graph G(S) is a connected sub graph of G(S) such that T contains every 

vertex of G(S), and the one with the minimum total distance is the MST. The clustering procedure 

has been summarized in the following:  

• Construct a fully connected graph G of S 

• Construct a minimum spanning tree T of G 

• Remove all edges with weights > threshold value 

• Retain the connected components as clusters 

The MST is constructed using Prim’s algorithm [Prim, 1957] and the clustering is based on the 

idea that two data points with a short edge-distance should belong to the same cluster (sub tree) 

and data points with a long edge-distance should belong to different clusters and hence be cut. The 

number of clusters obtained, naturally, is sensitive to the threshold value chosen. The algorithm 

works quite well provided the inter-cluster edge-distances are clearly larger than the intra-cluster 

edge-distances. 

3.4.4 Representative Clusters 

The sub-images are grouped into clusters using one of the methods discussed above. We next need 

to identify the clusters that would characterize the writer of a given sample. We thus sort the 

classes with respect to their cardinality and keep only those having ‘sufficient’ number of elements. 

These classes would then correspond to the frequent patterns occurring in a writing. The number of 

elements per class, however, depends upon the amount of text in the writing sample, so the 

‘sufficient’ number can not be fixed value. We therefore compare the number of clusters against 

the area of text pixels covered and pick the top most important M classes which allow to cover 

90% of text pixels in the image as illustrated in the plot of Figure 3.11. It can also be noticed that 

the number of clusters retained (M) for two different samples of the same writer is quite close 
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which could serve as a useful parameter in the identification phase (as we will see later on). Figure 

3.12 compares the number of clusters on the training and test images of the first few writers in the 

validation set, the two curves having more or less similar forms. 

 

Figure 3.11 Number of clusters and the corresponding area of text pixels covered 

 

 

Figure 3.12 Number of clusters for two (training & test) samples of writers 

 

An example of clusters obtained on a document image has been illustrated in Figure 3.13 along 

with the first five most frequent clusters (after applying PCA and reducing the dimensionality to 2) 

in Figure 3.14 showing that the clusters are well separable using the proposed representation. 
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Figure 3.13 Clusters obtained on a document image 
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Figure 3.14 The first five most frequent classes  (shown in Figure 3.13) after application of 

PCA and dimensionality reduced to 2 

After having extracted the representative clusters that correspond to the frequent patterns of the 

writer of a document, we now need determine how this information could be employed to represent 

a writing. This representation would also depend upon the classification method used to compare 

two writings. We have chosen a representation that comprises certain properties of the extracted 

classes (clusters) and thus not dealing with the individual elements of each class, as explained in 

the following section. 

3.5 Writing Representation 

A document image D, having retrained M
D classes is represented by the corresponding set of 

classes as:  

 aM = Ya�|1 ≤ � ≤ EMZ (3.5)  

For each class Ci in CD, we have: 

 a� = l��,�, ��,�, … , �U,�m,   � = -�G��a�� (3.6)  

 ��� ]�-ℎ  �N,� = �/N,�� , /N,�� , … , /N,�Q �  

We then estimate for each class, the probability of its occurrence P(Ci): 

 n�a�� = -�G��a��∑ -�G��aN�OCPQ�pq�N!�  (3.7)  

the mean vector 
iS : 
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 �
� = ∑ �N,�OCPQ�pr�N!�-�G��a��    (3.8)  

and the covariance matrix Covi : 

 a.j� = �4� − �
���4� − �
��W (3.9)  

With Xi being the matrix whose columns are the elements of class i, each sub-image is represented 

as a dx1 column vector, with d=4n+6. A document D is thus represented as: 

 3P = Y��, 1 ≤ � ≤ -�G��aM�Z (3.10) 

 [ℎ]G]:  �� = Yn�a��, a.j�, �
�Z  

We extract these features for each of the N documents in the training set and thus create a reference 

base R: 

 t = Y3�, 1 ≤ � ≤ @Z (3.11) 

3.6 Writer Identification 

In the previous sections, we presented the methodology for characterizing a writer by the frequent 

writing patterns. We would now like to study how good these patterns are in identifying the writer 

of an unseen text, written by any of the writers in the reference base. This is carried out by finding 

a similarity index between the questioned document and all the documents in the reference base, 

the writer of the unknown sample being identified as the writer of the document that maximizes the 

similarity index. 

The first step towards writer identification is the extraction of features from the document whose 

writer is to be identified. We start with a binarization of the test image T followed by the division 

of text into small sub-images and then their clustering, as discussed in the previous sections. As a 

result of these steps, the questioned document T is represented by the frequent patterns of its 

author, a set of clusters CT: 

 aW = YaN|1 ≤ h ≤ EWZ (3.12) 

M
T being the number of clusters (classes) retained for document T. 

We have seen in section 3.4.4 that for two samples written by the same author, the number of 

classes obtained by clustering is quite close to each other. Using this observation, if the difference 

between the number of classes of T and the reference document D is above a certain threshold, we 

straightaway discard D and proceed to the next document of the reference base. 
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|-�G��aW� − -�G��aM�|  -�G��aW� < v (3.13) 

The parameter η is chosen large enough not to introduce any errors at this stage, i.e. we do not 

want that a reference document written by the same author as the test document be discarded by 

this filter. A value of η = 0.5 has been used in our experimentation. If a reference document 

satisfies condition 3.13, we proceed to the classification which is carried out using a nearest 

neighbour rule. We will present two approaches; we first employ the Bayesian classifier (to assign 

patterns in the test document to classes in the training document) and then use the probability 

distribution of the redundant patterns in a writing to characterize its writer. 

3.6.1 Bayesian Classifier 

The Bayesian Classifier is based on the assumption that decision problem can be specified in 

probalistic terms and that all of the relevant probability terms are known. To find the probability 

that class i is present when feature X is observed, Baye’s formula is given as: 

 n�a�|4� = w�4|a���n�a��w�4�  (3.14) 

With n�a�|4� the posterior probability, w�4|a�� the class conditional probability (likelihood),  n�a�� the prior probability and w�4� the normalizing factor. 

To find the class i that maximizes the probability of pattern X belonging to class Ci, the Baye’s 

decision rule can be re-written as: 

 �xCJ#y = arg max� �n�a�|4�� = arg max� w�4|a�� n�a�� (3.15) 

In our case, the prior probability of each class n�a��  is known from the available training set while 

we assume the class-conditional probability density to have a Gaussian distribution for each class 

Ci. 

 w�4|a�� = 1�2,�Q/�|a.j�|�/� exp �− 12 �4 − b��Wa.j�V��4 − b��� (3.16) 

b� = E]�� .& -|�// � �� × 1 j]-\.G� a.j� = a.j�G���-] ��\G�� .& -|�// � �� × � ��\G��� 
We thus employ Baye’s decision theory under the assumption of multivariate Gaussian densities 

and the classifier is commonly known as a Gaussian Classifier. The discriminant function in 

equation 3.15 can thus be reformulated as:  

 ���}� = log w�4|a��n�a�� (3.17) 
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Which is equivalent to: 

 ���}� = − �2 |.(2, − 12 log|a.j�| − 12 �4 − b��Wa.j�V��4 − b�� + |.(n�a�� (3.18) 

Leaving out the constant factor π2log
2

d
− , we are left with the following expression to maximize: 

 ���}� = − 12 log|a.j�| − 12 �4 − b��Wa.j�V��4 − b�� + |.(n�a�� (3.19) 

Coming back to our problem, we have the test document represented by the mean vector of each 

class as: 

 ~P = l�
��, 1 ≤ h ≤ -�G��aW�m (3.20) 

These vectors represent the patterns that have to be attributed to one of the classes of a reference 

document, defining the overall similarity between two documents as: 

 �DE�~, 3� = 1-�G��~P� � Maxpr∈pq n�a�|����  OCPQ�W��
N!�  (3.21) 

That is: for each ���  in ~P, the objective is to find the class i of document D that maximizes the 

probability of ���  belonging to class Ci. n�a�|���� is estimated by 3.19 which can be re-written for 

our problem as:  

 ����
K� = − 12 log|a.j�| − 12 ��
N − �
� �Wa.j�V���
N − �
� � + log n�a�� (3.22) 

Where ��� = �]�� .& -|�// � �� × 1 j]-\.G� a.j� = a.j�G���-] ��\G�� .& -|�// � �� × � ��\G��� 

We calculate the similarity index between document T and all the documents in the reference 

base R and identify the writer of the questioned document as the author of the document 

maximizing the index (nearest neighbour classification, k-nn with k=1). 

 �G�\]G�~� = �G�\]G��G( maxMr∈���DE�~, 3���� (3.23) 

3.6.2 Probability Distribution of Redundant Writing Patterns 

We have the reference documents represented by a set of clusters, a family of basic redundant 

shapes with a known probability of emission for a particular writer. For a document D, we may 

consider these occurrence probabilities as a probability distribution hD, where each bin in hD would 

represent the emission probability of the respective shape by the author of document D. For the 

questioned document T, we may opt not to carry out the clustering procedure and assign each of 
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the segmented sub-images to one of the clusters in the reference document. To compare the query 

document T with a reference document D with MD clusters, we build a histogram hDT with one bin 

allocated to each cluster of D. For every pattern p (represented by its respective feature vector) in 

the test document, its nearest cluster is found using the Euclidean distance and the occurrence is 

counted in the respective histogram bin: 

 � = arg minN ���/\�w, aN�� ;   ℎ�MW ← ℎ�MW + 1 (3.24) 

 h = 1, … , EM;     EM = -�G��aM�  

Thus in fact, the questioned document is represented in the feature space of the reference document 

and the distance between the two documents is computed by calculating the (χ²) distance between 

the respective distributions hD and hDT: 

 3�3, ~� = � �ℎNMW − ℎNM��ℎNMW + ℎNM
OCPQ�pq�

N!�  (3.25) 

The writer of T is finally identified as the writer of the document Di that reports the minimum 

distance. 

3.7 Writer Verification 

For writer verification, we compute the distance (or similarity) between two given images. 

Distances that are less than a predefined decision threshold are viewed as sufficiently low for 

considering that the two samples have been written by the same person. Beyond the threshold 

value, we consider the samples to be written by different writers. We can thus have, like for all 

biometric verification tasks, two types of errors: 

False Acceptance: Concluding that two samples are written by the same person when, in 

fact they are not. 

False Rejection: Concluding that two samples are written by different persons when, in 

fact they are written by the same person. 

The respective error rates are termed as False Acceptance Rate (FAR) and False Rejection Rate 

(FRR). Evidently, the FAR and FRR are dependant on the chosen threshold. Increasing the 

threshold value, the FAR will increase, while FRR will decrease and vice versa (Figure 3.15). This 

relationship between the FRR and FAR as a function of the threshold value is normally depicted 

graphically by Receiver Operating Characteristic (ROC) curves. The ROC curves are computed by 

varying the acceptance threshold, the performance of the biometric system being quantified by the 

Equal Error Rate (EER): the point on the curve where the False Acceptance Rate (FAR) equals the 

False Rejection Rate (FRR). Smaller the Equal Error Rate (EER), more precise the system is. For 
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our writer verification system, we will present the equal error rates and, in some cases, illustrate 

the complete ROC curves. 

 

Figure 3.15 FAR and FRR on the distribution of distances 

3.8 Redundant Writing Patterns: Universal Code Book 

After having presented the study of frequent writing patterns for an individual leading to the 

generation of a writer specific code book, we will now extend the same principle to a universal set 

of basic shapes as proposed at the grapheme level in [Bulacu & Schomaker, 2007] and [Bensefia 

et al., 2005b]. As we discussed earlier (in section 2.3.2.3), the main difference between the two 

approaches is that in [Bulacu & Schomaker, 2007] the authors have generated a fixed size (set to 

400) code book from an independent dataset (of 65 writers) while in [Bensefia et al., 2005b] the 

authors have clustered all the graphemes of the database under study using a sequential clustering 

algorithm. Examples of redundant graphemes in the two studies have been illustrated in Figure 

3.16. It should be noted that the code book is not meant to represent an exhaustive list of all 

possible allographic shapes of a particular script and alphabet. Rather, its objective, as described in 

[Bulacu & Schomaker, 2007], is to ‘span a shape space and act as a set of nearest-neighbour 

attractors for the graphemes extracted from a given writing sample’. 

  

(a) (b) 

Figure 3.16 Examples of the invariant patterns obtained in studies: (a) [Bensefia et al., 2005b] 

and (b)  [Bulacu & Schomaker, 2007] (Images reproduced from the cited references) 

Intra-writer Distances Inter-writer Distances 
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We will apply the principle of universal code book generation on the small writing fragments, as 

per the segmentation method discussed in section 3.3. The code book is produced from 50 

handwritten samples (selected from the data set RIMES [Grosicki et al., 2008]) and the fragments 

are clustered using k-means algorithm in the feature space (section 3.4.1) with k being varied from 

50 to 750 and finally fixed to 100 after evaluations on the validation set. Figure 3.17 shows an 

example code book (grey levels correspond to intra-cluster variability) and comparing it with the 

ones in Figure 3.16 where one can notice the presence of graphemes that correspond to complete 

characters (e.g. ‘a,’ ‘e’, ‘c’, ‘l’ ‘s’, ‘p’ etc), the shapes that we study are much more elementary. 

 

Figure 3.17 Code book of size 100 generated from 50 samples of the dataset RIMES 

For a document image, we initialize a histogram with all bins set to zero, the number of bins 

being equal to the size of the code book. For each of the extracted sub-images (patterns) in the 

document, we find its nearest prototype in the code book and count it in the respective histogram 

bin as explained in section 3.6.2, the only difference being that instead of comparing the patterns to 

the code book of each writer, we now compare them to a common code book. The distribution is 

used to characterize the writer and is computed for all the documents in the training set. 

 � = arg minN ���/\�w, aN�� ;  ℎ�M ← ℎ�M + 1  (3.26) 

 h = 1,2, … , a.�] �..� /��]  

For a query document, we repeat the same procedure and find its corresponding distribution hT. 

Two documents are then compared by computing the (χ²) distance between their respective 

distributions. Figure 3.18 shows the distribution of the probability of occurrence of the code book 

entries for two different text samples written by the same writer. The two curves more or less  

follow similar forms exhibiting peaks and valleys for the same code book entries and showing that 

their comparison might be useful in identifying the writer of a document. 
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Figure 3.18 Probability distribution for two samples of the same writer when using a 

universal code book 

3.9 Experimental Results 

We will now present the experiments that we conducted in order to evaluate the proposed 

methodology on writer recognition. These experiments have been carried out on the IAM dataset 

as presented in section 3.1. We will first report the results on writer-specific code book approach 

and then present the system performance employing the universal code book. It should also be 

noted that these results represent only a subset of our series of experiments. 

3.9.1 Writer-specific code book 

We first evaluate the performance of different clustering methods using the two classifiers. The 

threshold value for each of the methods was optimized on the validation set and the method was 

then evaluated on the first 150 writers of the IAM database. The results as presented in Figure 3.19 

reveal that although the overall identification rates vary for the two classifiers, the performance of 

the clustering methods is more or less consistent with hierarchical clustering out performing the 

rest achieving an identification rate of 86% (Bayesian classifier) and 92% (χ² distance) on the two 

classifiers. The sequential clustering performs approximately equally good (identification rates of 

83% and 91% respectively) while the multi-phase (iterative) sequential clustering, that produced 

very fine clusters, falls behind the two. The relatively degraded performance of the MST clustering 

might be due to the existence of small inter-class distances, grouping two or more clusters into one 

big cluster and thus resulting in a relatively weak performance.  
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(a) Bayesian Classifier 

 

(b) χ² Distance 

Figure 3.19 Writer identification results for different clustering methods (150 writers) 

Regarding the two classifiers, comparing the distribution of redundant patterns across two 

writings using χ² distance exhibits significant performance improvements. Of course an improved 

performance is also linked to the fact that while representing the questioned writing in the 

reference document space (computing the probability distribution of writing fragments in the query 

writing) we employed the complete set of patterns while in case of Bayesian classifier, only the 

mean vector of each cluster of the test document is attributed to one of the candidate classes in the 

reference document. Employing the same protocol across the two classifiers reveals that χ² distance 

still outperforms the Bayesian classifier hence we carry out the subsequent experiments on the 

complete data set by employing hierarchical clustering as the regrouping method and χ² distance 

between the probability distributions of writing fragments as classifier. The results are summarized 
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in Table 3-2 where we achieve an identification rate of 81% and an equal error rate of 5.44% on 

the entire data set. 

Table 3-2 Identification and verification performance based on writer specific code book 

(Clustering: Hierarchical, Classifier: χ² Distance) 

Performance Identification Verification 

Number of Writers Top1 Top10 EER 

150 92 97 5.27 

300 85 94 4.67 

650 81 94 5.44 

3.9.2 Universal Code book 

For the universal code book, Table 3-3 summarizes the identification and verification results.  An 

identification rate of 84% and an equal error rate of 4.49% are realized when using the complete 

set of 650 writers. These results have been achieved by generating the code book of size 100 from 

50 different writing samples from the RIMES data set. We also study the performance evolution 

with respect to the number of writing samples used to generate the code book as well as the size of 

code book. This is carried out (on 300 writers of the data set with two samples each) by fixing one 

of these two parameters and varying the other as illustrated in Figure 3.20. It can be noticed that 

performance shows a consistence decrease as the size of the code book increases beyond 250. 

Another interesting observation is that the number of samples used to generate the code book does 

not cause a dramatic change in the performance. Employing only one writing sample to produce 

the code book results in an identification rate of 84% which further validates the argument that the 

code book needs not to be exhaustive. 

Table 3-3 Identification and verification performance based on the universal code book 

Performance Identification Verification 

Number of Writers Top1 Top10 EER 

150 93 97  4.26 

300 90 95 5.12 

650 84 96 4.49 
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(a) Code book generated from 50 sample image 

 

(b) Size of code book fixed to 100 

Figure 3.20 Writer identification performance (on 300 writers) as a function of (a) code book 

size and (b) the number of samples used to generate the code book 

3.9.3 Discussion 

We have presented the results of the two approaches to exploit the redundancy in writing, a writer-

specific and a universal code book. A comparative analysis of the performance of the two reveals 

that representing writings into a common code book space leads to better results on writer 

identification and verification as compared to representing them in a writer-specific space 

(identification rate of 84% against 81% and EER of 4.49 % against 5.44%). However, as we 

discussed earlier, the methods based on a writer-specific code book are more adaptive to alphabet 

change as opposed to the ones based on a universal code book. 

It would also be interesting to compare our results with the ones achieved by generating a code 

book at the grapheme level. Table 3-4 presents an overview of the performance on writer 

identification task in these studies. For the writer-specific code book [Bensefia et al., 2002] reports 
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an identification rate of 98% on 88 writers but since the dataset employed is not the same, the 

comparison would not be meaningful. Later studies [Bensefia et al., 2005b] by the same authors 

achieve an identification rate of 86% on 150 writers employing a code book generated from the 

entire data set. The best performance so far has been reported in [Bulacu & Schomaker, 2007] 

where the authors achieve an identification rate of 80% with a code book generated from an 

independent data set. (It should be noted that since our objective is to compare the performance of 

different code book based methods, this 80% represents the identification rate achieved by using 

the code book and not the highest rate achieved by authors by combining different other features. 

The performance of their complete system would be compared in the next chapter). 

By changing the observation scale from grapheme to small fragments, we achieve an 

identification rate of 84%. It is however, important to precise that the evaluation criterion in 

[Bulacu & Schomaker, 2007] is not the same as ours. We have distinguished the training and test 

sets while in [Bulacu & Schomaker, 2007] the authors have used a leave-one-out approach on the 

entire data set. Thus, in order to present an honest comparison we also carried out a similar 

experimentation and achieved an identical identification rate of 80%. Our method however relies 

on a much smaller code book size and the patterns contributing to the code book have been issued 

from a very generic segmentation scheme. 

Table 3-4 Performance comparison of code book based methods 

 Code book Dataset Writers Performance 

[Bensefia et al., 2002] Writer-Specific PSI 88 98% 

[Bensefia et al., 2005b] Universal IAM 150 86% 

[Bulacu & Schomaker, 2007] Universal IAM 650 80%* 

Our method Writer-Specific IAM 150 92% 

   650 81% 

 Universal  150 93% 

   650 84% / 80%* 

 

Finally, we would be interested to study how the performance of the two approaches varies with 

respect to the amount of text present (for training and testing). This study is carried out on the 300 

writers of the IAM base who contributed at least two pages. This allows varying the amount of text 

from one word to complete page (instead of half a page if we also use the 350 writers having 

contributed only one page). The words and lines are extracted by using the ground truth 

information provided with the data base. The corresponding writer identification rates for writer-

specific and universal code books have been summarized in Figure 3.21. Naturally, the universal 

                                                      
* k-nn using a leave-one-out approach 
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code book performance is relatively less sensitive to the amount of text where the identification 

rates rise from about 10% for a single word to 90% for the complete page which may vary from 5 

to 10 lines on the average. The performance begins to stabilize a bit from three lines of text 

onwards, specially the Top-5 and Top-10 performances. 

 

(a) Writer specific code book 

 

(b) Universal code book 

Figure 3.21 Identification rate as function of amount of text on 300 writers of IAM data set 

3.10 Conclusion 

We have shown, in this chapter, how the frequent writing patterns can be employed to characterize 

the writer of a handwritten text sample. Contrary to the classical approaches which exploit this 

0%

20%

40%

60%

80%

100%

One Word Tw o

Words

One Line Tw o Lines Three

Lines

Four Lines Complete

Page

Amount of text

Id
e
n

ti
fi

c
a
ti

o
n

 r
a
te

Top1

Top5

Top10

0%

20%

40%

60%

80%

100%

One Word Tw o

Words

One Line Tw o Lines Three

Lines

Four Lines Complete

Page

Amount of text

Id
e
n

ti
fi

c
a
ti

o
n

 r
a
te

Top1

Top5

Top10



3 - Writer Characterization: Redundant Patterns of Writing 

 

  58

redundancy at the grapheme level, we studied writings at a much smaller observation scale 

extracting clusters of small writing fragments first for each of the individuals separately (writer 

specific code book) and then for the entire set of writers (universal code book). Thus the notion of 

redundancy in our case is more linked to the redundancy of writing gestures rather than that of the 

graphemes or allographs. The performance of the proposed methodology on writer recognition task 

is comparable to the best results reported so far in the literature for methods based on the idea of 

redundancy of writing patterns. We have however achieved these results employing a code book of 

much smaller size. In addition, the segmentation scheme that we employed is quite generic and 

could be applied to non-Latin scripts as well. In an attempt to improve the recognition rates further, 

we will now try to employ the visual attributes of writing to characterize its author. The features 

based on these attributes will make the subject of next chapter. 
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Chapter 4 

Writer Characterization: Contour Based 

Features 

 

After having studied the redundant patterns of writing and their effectiveness in characterizing the 

writer, we will now turn to a different aspect of writing and analyze the different visual attributes 

of writing that allow to capture the writing style of its author. The most important of these 

attributes is the overall writing orientation (slant) which is known to be a stable parameter [Maarse 

& Thomassen, 1983] with the assumption that the writing under consideration represents the 

natural writing style of the writer and is not a forged one (as the most common disguising ploy is to 

change the writing slant [Nickell, 2007][Koppenhaver, 2007]). In most of the cases, merely by 

looking at two handwritten samples, one can instinctively conclude that they come from different 

writers, without the need to read what is written and, in some cases, even without the alphabet 

knowledge of the script written (Figure 4.1). Besides orientation, curvature is known to be another 

fundamental characteristic of handwriting [Lee, 1999] and the features based on curvature have 

shown effective performance in characterizing writing styles [Joutel et al., 2007b] and writers 

[Bulacu et al., 2003] and, recognition of characters [Legault & Suen, 1992] [Miura et al., 1997] and 

numerals [Yang et al., 2005]. Inspired by the power of these attributes of handwriting, we 

endeavoured to design a set of features that would capture these characteristics and allow us to 

characterize the writer of a handwritten text sample. This chapter is devoted to the discussion of 

these features. 

We will first introduce the proposed features that are computed from the contours of handwritten 

images by employing different representations of contours. The strength of these features for writer 

recognition is then highlighted by carrying out a series of evaluations, first employing the 

individual features and then their various combinations. A statistical study on the stability of these 

features with respect to certain parameters is then presented. We also explore the combination of 

these contour based features with the code book based features introduced in the previous chapter. 

Finally, we study the relevance of the proposed features by employing a feature selection 

mechanism. 
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Figure 4.1 An example of instinctively distinguishable writings 

4.1 Feature Extraction 

Features in automatic analysis of handwriting are generally based on two categories: skeleton and 

contours, and over the years each of these has received considerable research attention [Chung & 

Wong, 1998] [Madhvanath & Govindaraju, 1997] [Chiu & Tseng, 1997] [Ke Liu & Suen, 1999]. 

For handwriting recognition, writer-dependent variations between the character shapes need to be 

eliminated and skeletonization generally is a good choice to represent a writing. Writer recognition 

on the other hand relies on these variations which are preserved by the contours, encapsulating the 

writing style of its author. We therefore chose to extract our features from the contours of the 

handwritten text images. In addition, human eye, that can instinctively distinguish two different 

writings, is mostly sensitive to contours and changes, validating our choice of working on the 

contours. 

In order to extract the contours, we first need to binarize the document image which is carried 

out using Otsu’s global thresholding (as discussed in section 3.2). We then perform connected 

component detection (using 8-connectivity) and for each of the connected components we extract 

the interior and exterior contours (Figure 4.2). Each contour is a sequence of consecutive points 

located on the ink-background boundary: 

 a.�\.iG� = YwN|1 < h ≤ E�, w� = w�r} (4.1)  

With Mi being the length of contour i.  

    

Figure 4.2 Images and their contours 
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Once the writing shapes are replaced with their respective contours we need to represent the 

extracted contours in a form that will facilitate the extraction of features. We have chosen to 

represent the contours in two ways that correspond to two different levels of writing details : 

i) By the well known Freeman chain codes [Freeman, 1974] 

ii) By a set of polygons approximating the contours 

We first find the chain code sequence of the contours in a handwritten text image and extract a set 

of features at a global as well as a local level of observation. We also approximate each contour by 

a polygon and compute features from the straight line segments estimating the contours. The 

features extracted from the two representations are a set of distributions and as discussed earlier, 

they are mainly aimed to capture the orientation and curvature information in a writing, the two 

most important visual aspects that enable humans instinctively discriminate between two writings. 

We will now discuss the proposed features and the pros and cons of each in the sections to follow. 

4.1.1 Chain Code Based Features 

Chain codes  have shown effective performance for shape registration [Ahmad et al., 2003] and 

object recognition [Bandera et al., 1999] and since the handwritten characters issued by a particular 

writer have a specific shape, chain code based features are likely to work well on tasks like writer 

recognition as well.  

We calculate the Freeman chain code associated with each contour, thus representing it by the 

sequence:  

 

l-N�1 < h ≤ E� − 1m   [ℎ]G] -N ∈ {0,1, … ,7Z 

 

 

 

 

 

The boundary pixels in the original binary image I are then labelled by their respective codes 

(Figure 4.3). We then proceed to the extraction of features from the newly formed image Ic. The 

contours are analyzed both at global and local levels. At global level, to remove errors due to a 

false ordering of the contour pixels, we employ the histograms of chain codes and their variants. 

Since only a global analysis might not be enough to distinguish two writings, at the local level, we 

analyze small handwritten fragments and compute certain features. Finally the set of extracted 

features is used to characterize a handwritten sample. 
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Figure 4.3 Contours replaced by direction codes (Colours represent codes) 

4.1.1.1 Global Features 

We will now present the chain code based global features which are in fact a set of distributions 

(histograms) as discussed in the following. 

 

a) Distribution of Chain Codes 

In order to capture the overall orientation information in the writing, we compute the well-known 

slope density function (histogram of all the chain codes/slopes f1) of the contours. The eight bins 

of the histogram represent the percentage contributions of the eight principal directions in an 

individual’s writing. Since the images are offline, we do not have the drawing order of the strokes 

hence whether a stroke is considered forward or backward is dependent on the way the contour is 

traced. A solution could be to quantize the histogram into four bins representing the four principal 

stroke directions: horizontal, vertical, left-diagonal and right-diagonal. Our experience however 

has shown that keeping the eight bins and being always consistent in the way a contour is traced is 

a better choice. Figure 4.4 illustrates the distribution of chain codes computed from two samples 

each, coming from two different writers. One can instinctively notice the overall vertical 

orientation in samples ‘a’ and ‘b’ which is reflected by two peaks at the respective bins of the 

corresponding histograms. Similarly, for samples ‘c’ and ‘d’ the peaks can be observed at the bins 

corresponding to the right-diagonal directions. 

 

b) Distribution of Differential Chain Codes  

The histogram of chain codes is invariant towards different deformations but the most obvious 

limitation of the chain code histogram is that two totally different shapes can have similar 

histograms. This problem is dealt with by encoding not only the direction, but also the differences 

in successive directions: differential chain codes, computed by subtracting each element of the 

chain code from the previous one and taking the result modulo d, where d is the connectivity (8 in 

our case). Thus we get more information on the contour curve. The differential chain code at pixel 

pi represents the angle θi (as indexed in Table 4-1) between the vectors pi-1pi and pipi+1 (as shown in 
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Figure 4.5) and their histogram f2 (also known as curvature density function) is used as the second 

feature to represent a handwritten text. 

(a) (b) 

 

 

 

 

  

 

 

 

 

  

 
 

 

 

 

 

 

(c) (d) 

Figure 4.4 Distribution of chain codes on writing samples from two writers 

Table 4-1 Differential Chain Codes and the corresponding Angles 

(ci+1-ci) mod 8 0 1 2 3 5 6 7 

θi 180° 135° 90° 45° 315° 270° 225° 

 

 

 

Figure 4.5 Angle θi at pixel pi 
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Employing the same principle, we also compute the histogram f3 from the second order 

derivative of the chain code C, which gives us an estimate of the variation of the angles as the 

contour progresses. 

 

c) Distribution of Chain Code Pairs and Triplets 

The slope and curvature histograms could serve well to provide a crude idea about the handwritten 

shapes but are insufficient to capture the fine details in writing. We thus propose to count not only 

the occurrences of the individual chain code directions but also the chain code pairs. We scan the 

chain code sequence and for each pair (i,j) we increment the bin (i,j) of the histogram f4. We next 

employ the same principle on chain code triplets, that is; we define a three dimensional histogram 

(f5) where the bin (i,j,k) of the histogram represents the percentage contribution of the triplet i,j,k 

in the chain code sequence of the contour of a handwriting image. This gives us two matrices of 

sizes 8x8 and 8x8x8 respectively. All the possible 64 pairs and 512 triplets, however, cannot exist 

while tracing the contours. Consider for example, the four types of L-junctions in Figure 4.6 that 

may arise while tracing a contour. Starting at any of the three junction pixels, depending upon the 

way the directions are prioritized while contour scanning, we can have only one of the two possible 

pairs, as explained for one of the junctions in Figure 4.7 (For simplicity, we have replaced the 

chain code sequence 0–7 by 1–8). Similarly, during the contour trace, moving from pixel pi-1 to pi, 

we cannot move back from pi to pi-1 and thus the corresponding chain code pairs do not exist.  

 
 

   

  

 

  

  

 

  

  

 

  

  

Figure 4.6 The four possible L-junctions 
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Figure 4.7 Two possible chain code pairs, starting at each of the three pixels of an L-junction 
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Summarizing, we can have a total of 44 

similar fashion, for the chain code triplets, without presenting the details, we would like to resume 

by precising that out of the 512 possible triplets, only 236 exist. An example of two writings and 

their respective distributions of chain code pairs

 

 

Figure 4.8 Two writings and their respective distributions (normalized) of chain code pairs
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d) Distribution of Curvature Indices

To get some visual feeling from the text, curvature is an interesting property to study and is very 

much linked with the physiological way the strokes are written, the strength involved 

muscles and the way they are operated. The estimate of curvature that we achieve from the 
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izing, we can have a total of 44 �64 − �12 B 3 	 8�) possible chain code pairs. 

similar fashion, for the chain code triplets, without presenting the details, we would like to resume 

by precising that out of the 512 possible triplets, only 236 exist. An example of two writings and 

their respective distributions of chain code pairs has been illustrated in Figure 4

 

 

 

Two writings and their respective distributions (normalized) of chain code pairs

It is important to precise that there exists a partial redundancy between the distribution of first 

order differential chain codes (f2) and the distribution of chain code pairs (f4

the distributions of second order differential codes (f3) and the code triplets (

owards the end of this chapter. 

d) Distribution of Curvature Indices 

To get some visual feeling from the text, curvature is an interesting property to study and is very 

much linked with the physiological way the strokes are written, the strength involved 

muscles and the way they are operated. The estimate of curvature that we achieve from the 

differential chain codes and the code pairs and triplets is very local (span of few pixels only). 

Therefore, an approximation of curvature that is based on a relatively larger neighbourhood of a 

contour pixel would be a better indicative of the stroke curves. We thus employ a chain code 

histogram based estimate of curvature, presented in [Bandera et al., 1999] for obj

where a correlation measure between the distributions of directions on both sides (forward and 

pj is used to approximate the curvature at pj. 
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much linked with the physiological way the strokes are written, the strength involved by the 

muscles and the way they are operated. The estimate of curvature that we achieve from the 

differential chain codes and the code pairs and triplets is very local (span of few pixels only). 
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Figure 4.9  a) Contour pixel pj (with code cj) of a character b) Backward histogram ‘b’ at pj c) 

Forward histogram ‘f’ at pj 

For each cj in image Ic, we take K forward and K backward neighbours (K being linked to the 

height of the character base line and fixed to 7 in our case) and calculate two histograms (f and b) 

representing the orientation of the segments on both sides of cj (Figure 4.9). The curvature index at 

cj is then estimated by the reciprocal of the correlation coefficient between the forward and the 

backward histograms. 

 � = ∑ �&��� − �������� − �����!9
�∑ �&��� − ��������� − ������!9

 
(4.2)  

With f and b being the forward and backward histograms while mf and mb their mean values 

respectively. A high value (close to 1) of the correlation coefficient characterizes similar 

histograms and hence a low curvature index and vice versa. The correlation coefficients are 

calculated for each point of the contour sequence and are counted in a histogram f6. The histogram 

is partitioned into 11 bins determined empirically on the validation set. 

After having defined the features that bring some global information on the directions of the 

strokes, the evolution of directions and on the curvature of drawings, we now introduce some local 

features. 
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4.1.1.2 Local Features 

The features f1 – f6, although computed locally, capture the global aspects of writing thus the 

relative stroke information is lost. We therefore chose to carry out an analysis of small stroke 

(contour) fragments as well. These fragments are chosen in a similar fashion as presented in 

section 3.3. The fragments we consider are parts of the handwritten text image contained in small 

windows that are positioned over the image employing an adaptive window positioning algorithm 

(section 3.3.3), the fragments under consideration thus do not carry any semantic information. The 

windows positioned over a text image and the corresponding contour image (pixels labelled by 

respective codes) have been illustrated in Figure 4.10. 

 

  

 

 

 

 

 
 

(a) (b) (c) 

Figure 4.10 a) Windows positioned over text b) Windows positioned over the contour image 

c) Directional distribution in a window 

For each window, we determine how the 8 directions are distributed with respect to the total 

contour length within the window, the percentages being divided into p intervals. We build an 

accumulator (local stroke direction distribution f7) which is a two dimensional dxp array where d 

is the connectivity (8 directions). The accumulator is initialized with all bins set to zero. For each 

window w, containing the chain code sequence Cw, the bins (i,j) of the histogram (accumulator) are 

incremented by 1 if the direction i is represented in the jth interval, where j is given by: 

 h = -]�|� -�G��a���-�G��a�� × w × 100� (4.3)  

 ��\ℎ:  a�� = Y- ∈ a�|- = �Z  ��� � = 0,1, ⋯ ,7  

The process has been illustrated in Figure 4.11 where the three directions encountered in the 

window result in incrementing the respective bins of the distribution f7. The distribution is finally 

normalized by the sum of all the entries as illustrated for a handwritten image in Figure 4.12. 

Naturally the first half of percentage axis is much denser than the second one. 
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Contour length in the 

window : 42 pixels 

Direction (c) 

Number of 

Pixels in 

Direction c 

Percentage 

of Contour 

Length 

Interval Bin to Increment 

5 4 9% 1 5,1 

7 2 5% 1 7,1 

6 36 86% 9 6,9 

 42 100%   
 

 

  

Figure 4.11 Contribution of a window to the stroke direction distribution 

 

The number of intervals p should be large enough to capture the difference in the distribution of 

directions in the windows and small enough to allow marginally different distributions contribute 

to the same intervals of f7. We have made p vary from 2 to 20 on the validation data set and finally 

chosen a value of p equal to 10 for our system.  

Using the same principle, we calculate the distributions f8 and f9, superimposing the windows 

on images I
c′
 and I

c′′
 generated by labelling the contour pixels by their first and second order 

differential chain codes respectively. These distributions could in fact be viewed as the local 

variants of f2 and f3. 

Summarizing, these chain code based features compute the orientation and curvature information 

of writing. However, these estimates are computed from raw pixels and it would be interesting to 

carry out a similar analysis at a different observation level. We therefore propose to estimate the 

contours by a set of polygons and then proceed to feature extraction (a set of global features) which 

not only corresponds to a distant scale of observation but the computed features are also more 

robust to noise distortions. These features have been discussed in the following section. 
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Figure 4.12 Normalized local stroke direction distribution of a writing 

4.1.2 Polygon Based Features 

These features are aimed at keeping only the significant characteristics of writing (enough to 

characterize its author) discarding the minute details. For this purpose, we carry out an estimation 

of the writing contours by a set of line segments, employing the sequential polygonization 

algorithm presented in [Wall & Danielsson, 1984]. The algorithm requires a user defined 

parameter T that controls the accuracy of approximation. Larger values of T create longer segments 

at the cost of character shape degradation and vice versa. Figure 4.13 shows the polygon estimation 

of the contours of a handwritten word for different values of T. For our system, we have used a 

value of T equal to 2, chosen empirically on the validation set. We then extract a set of features 

from these line segments. 

  

T=1 T=2 

  

T=3 T=5 

Figure 4.13 Polygonization at different values of T 
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a) Distribution of Slopes 

From the polygonized contours of the handwritten image, we first compute the slope of each of the 

line segments and employ their distribution (f10) for characterizing the writer. Each line is 

identified as belonging to one of the bins (classes) illustrated in Figure 4.14. These bins are chosen 

in such a way that the lines having nearly the same orientations as the principal directions (vertical, 

horizontal etc.) fall in their respective classes. For example, all the segments in the range -12° to 

12° are classified as (nearly) horizontal and so on.  

 

 
 

Bin Class 

1 Horizontal (H) 
2 Vertical (V) 
3 Left Diagonal (LD) 
4 LD Inclined towards Horizontal (LDH) 
5 LD Inclined towards vertical (LDV) 
6 Right Diagonal (RD) 
7 RD Inclined towards Horizontal (RDH) 
8 RD Inclined towards Vertical (RDV) 

 

Figure 4.14 Division of Slopes (-90° to 90°) into bins and the corresponding segment classes 

The writer specificity of the distribution of slopes can be seen from Figure 4.15 where the 

cumulative sum of the slopes’ distribution is shown for two different samples from three writers. 

The contribution of each bin (segment class) for the two samples of the same writer is quite close 

as opposed to the samples from other writers, showing the effectiveness of f10 in characterizing the 

writer. 

 

Figure 4.15 Cumulative sum of the slope distribution for three writers (two samples each) 
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Not only the number of slopes in a particular direction is important but their corresponding 

lengths as well, so in order to complement the distribution f10, we also compute a length-weighted 

distribution of slopes (f11), where for each segment at slope i, the bin i in f11 is incremented by the 

length of the segment. The distribution is finally normalized by the total length of segments in the 

image. 

The distributions f10 and f11 can thus be viewed as the number and the length of segments 

belonging to the pre-defined segment classes respectively. 

 

b) Distribution of Curvatures 

A histogram based estimate of curvature, calculated from the chain code representation of the 

contours has been presented in section 4.1.1. From the polygonized version of writing, we compute 

the angle measurement between two connected straight segments as: 

 �� = , − cosV� d�. d���|d�| |d���|  (4.4)  

With Vi and Vi+1 being the vectors from (xi-1,yi-1) to (xi,yi) and from (xi,yi) to (xi+1,yi+1) respectively 

as illustrated in Figure 4.16. 

 

 

 

 

 

 

 

Figure 4.16 Curvature (Angle) between two connected segments 

The distribution of these angles is then employed as our next feature (f12). The angle bins (0º – 

180º) are partitioned in a similar fashion as for the slopes. Similarly, in order to take into account 

the lengths of the segments forming a particular angle, a length-weighted version of f12, f13 is also 

computed where each bin of f13 is incremented by the sum of lengths of the two segments forming 

the respective angle. The distribution is then normalized to have a sum equal to 1. 

 

c) Distribution of Segment Lengths 

Finally, irrespective of the orientation, it would be interesting to analyze the distribution of the 

lengths of segments in a writing. Generally, smooth strokes will lead to longer and fewer segments 

while shaky stokes will result in many small segments, thus the straight segment lengths could be 

useful in distinguishing the writings of different authors. We therefore use the distribution of these 

lengths (f14) as a writer specific feature. An important issue here is how to determine the number 

Vi 

Vi+1 

(xi+1,yi+1) 

(xi,yi) 
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and partitioning of the bins in f14 as the lengths are not normalized. This is done by studying the 

variation of lengths on the validation data set and setting an upper limit on the allowed segment 

lengths maxL, above which the segments are considered to be spurious and are discarded. In our 

case, this value was set to 100 pixels. 

Summarizing, we extract a set of fourteen (normalized) distributions to represent a document 

image. The distributions for which the number of bins is not discussed explicitly have been 

partitioned empirically on the validation set. Table 4-2 summarizes the proposed features with the 

dimensionalities of each. 

Table 4-2 Features and their dimensionalities 

Feature Description Dimension 

f1 Distribution of chain codes 8 

f2 Distribution of 1st  order differential chain codes 7 

f3 Distribution of 2nd order differential chain codes 8 

f4 Distribution of chain code pairs  44 

f5 Distribution of chain code triplets 236 

f6 Distribution of curvature indices 11 

f7 Local stroke direction distribution 80 

f8 f2 computed locally 70 

f9 f3 computed locally 80 

f10 Distribution of segment slopes 8 

f11 Length-weighted distribution of segments slopes 8 

f12 Distribution of curvatures 8 

f13 Length-weighted distribution of curvatures 8 

f14 Distribution of segments lengths 10 

 Total: 586 

4.2 Writer Recognition 

Once the handwriting samples have been represented by their respective features, we need to 

compute the distances between respective features to define a (dis)similarity between two 

handwriting samples. We tested a number of distance measures including: Minkowski (order 1 to 

5), χ2, Bhattacharyya, (Non-) Intersection and Hamming distance as summarized in Table 4-3 

(where p and q represent the two histograms to be compared,  pi and qi are the entries in bin i of the 

histograms and dim represents the total number of bins in the histogram). In our series of 

experimentation χ2 distance performed the best and the results that we will report in the subsequent 

sections would be based on χ2 distance unless stated otherwise.  
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Table 4-3 Distance measures to compare two distributions 

Minkowski Distance EP�w, �� = ��|w� − ��|P��/PQ�U
�!�  

 χ2
 Distance ���w, �� = � �w� − ����w� + ��

Q�U
�!�  

 Bhattacharyya Distance  ��w, �� = `1 − � �w���
Q�U
�!�  

 Hamming Distance  �w, �� = �|w� − ��|Q�U
�!�  

(Non-) Intersection Distance D�w, �� = 1 − � min �w�, ���Q�U
�!�  

4.2.1 Writer Identification 

Writer Identification is performed by computing the distance between the query image Q and all 

the images in the training data set using a selected feature, the writer of Q being identified as the 

writer of the document that reports the minimum distance. This corresponds to the nearest 

neighbour classification (k-nn with k=1). For a query document, we not only find the nearest 

neighbour (Top-1) but a longer list up to a given rank (Top-K) thus increasing the chance of 

finding the correct writer in the retrieved list. 

4.2.2 Writer Verification 

For writer verification, we compute the distance between two given samples and consider them to 

be written by the same person if the distance falls within a predefined decision threshold. Beyond 

the threshold value, we consider the samples to be written by different writers. As discussed in 

section 3.7, varying the acceptance threshold the ROC curves are computed and the verification 

performance is quantified by the Equal Error Rate (EER), the point on the curve where the False 

Acceptance Rate (FAR) equals the False Rejection Rate (FRR). The lower the equal error rate 

value, the higher the accuracy of the system. The identification and verification results are 

presented in the following section. 

4.3 Experimental Results 

The experiments were mainly carried out on writing samples of 650 writers in the IAM data set 

presented in section 3.1. In addition to that, being a part of the campaign RIMES [Grosicki et al., 

2008], we had the opportunity to access this data set, so we also evaluated our features on 375 
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writers from the RIMES database. One sample of each writer is contributed to the training set 

while the other to the test set. For writer identification we report the Top-1 and Top-10 

identification rates while for writer verification we present the Equal-Error-Rate (EER). These 

results are presented first for the individual features and then for their various combinations. 

4.3.1 Performance of Individual Features 

We first present the performance of the individual features (shown in Table 4-4) that we discussed 

in the above sections. The results have been grouped according the feature type (global, local or 

polygon-based) while the numbers represent percentages. Although the performance of the features 

varies significantly, it can be noticed that, for a chosen feature, the performance is more or less 

consistent across the two data sets. The distribution of chain code triplets (f5), the local stroke 

distribution (f7) and the length-weighted distribution of segment slopes (f11) perform the best 

among their respective feature groups, with f5 achieving the overall maximum identification rate 

on IAM (79%)  and  f7 on RIMES (78%). Another interesting observation is that the local variants 

(f7,f8 & f9) of the chain code based features outperform their global counter parts (f1,f2 & f3). For 

writer verification, we achieve equal error rates of as low as 3.86% and 6.70% for the two data 

sets respectively. 

Table 4-4 Performance of individual features 

Data Set IAM 

650 Writers 

RIMES 

375 Writers 

Feature Class Feature Top1 Top10 EER Top1 Top10 EER 

Global f1 36 74 7.23 48 77 10.32 

f2 34 76 6.89 50 74 11.40 

f3 42 81 6.56 52 76 11.47 

f4 67 88 5.67 68 85 8.05 

f5 79 93 4.64 75 91 6.70 

f6 43 77 6.96 55 77 10.87 

Local f7 77 93 3.86 78 92 7.02 

f8 46 83 7.10 58 82 10.25 

f9 42 79 7.95 55 79 11.39 

Polygon Based f10 55 86 5.82 64 86 8.21 

f11 58 87 5.42 65 88 7.98 

f12 37 75 6.97 52 76 11.12 

f13 40 78 6.56 52 79 10.29 

f14 31 72 7.51 51 75 12.04 
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(a) A successful search with the true writer found at rank 1 

 

(b) True writer found at rank 2 in the retrieved list of writers 

Figure 4.17 Writer identification search on the IAM data set 
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The writer identification rates on individual features (as a function of hit list size) and the 

corresponding ROC curves have been presented in Appendix C. 

4.3.2 Performance of Feature Combinations 

After having evaluated the performance of individual features, we combine them by computing the 

distance between two writings as an average of the distances between the individual features. But 

before we could add up the distances together, we first need to carry out a normalization. Although 

we normalize each of the features to the range [0, 1], the individual distances di  can be of quite 

different dynamic ranges and combining these distances, the distance with larger magnitude might 

dominate the others. For example, Figure 4.18 illustrates the distances d1 and d2 of a query image 

to 100 images in the reference base. Evidently, adding the two will cause d1 to overshadow d2, we 

therefore need to normalize each of the distances before proceeding to their combination. 

 

Figure 4.18 Distances (d1 & d2) to a query image 

The simplest normalization technique would consist in finding the maximum and minimum 

values in di and normalize the sequence to the range [0,1]. This normalization, however, suffers 

from the drawback that an outlier (e.g. an abnormally high value) can take away most of the [0,1] 

range, leaving a very narrow range for the rest of the values. We thus employ the Gaussian 

normalization, with the assumption that the values in di are distributed normally. 

In the training set of N writing samples, we compute the individual distances (di) between each 

pair of images Im and In. For N images, there are Nx(N-1)/2 possible values for each of the 

distances. Treating each di as a data sequence we find its mean µdi and standard deviation σdi. 

These values are computed offline and are based on the assumption that N is large enough so that 

the calculated values are good estimates of the true mean and standard deviation of the distances 

(di) between images. These values are then used in the normalization procedure. 
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When a questioned document Q is presented to the system we first compute the raw distances, 

between Q and the documents in the database, according to each of the features. These distances 

are then normalized as follows: 

 ��¡�3N, F� = ���3N, F� − bQ�3¢Q�  (4.5)  

 h = 1,2, … , @  

This normalization produces 99% of all the distances in the range [-1,1] which is finally shifted to 

[0,1] as: 

 ��¡¡�3N, F� = ��¡�3N, F� + 12  (4.6)  

 
The distances having a value greater than 1 are of course very dissimilar to the query and can be 

discarded without affecting the results. 

Once the distances have been normalized, we proceed to feature combination which is 

performed by averaging the distances of the features participating in the combination. Among the 

various combinations tested, we will report a subset of results only that corresponds to the natural 

combinations: combining the individual features within each class of features, combining two 

feature classes and, combining all the features, summarized in Table 4-5. The identification rates as 

function of hit list size have been illustrated in Figure 4.19 while the corresponding ROC curves in 

Figure 4.20. 

Table 4-5 Performance of feature combinations 

Data Set IAM 

650 Writers 

RIMES 

375 Writers 

Feature Combination Top1 Top10 EER Top1 Top10 EER 

Global  81 93 4.08 77 92 6.18 

Local 81 95 3.76 77 89 7.85 

Polygon Based 83 97 2.77 81 93 5.16 

Global & Local 83 96 3.81 80 91 6.65 

Global & Polygon Based 85 96 3.32 82 92 5.92 

Local & Polygon Based 87 97 3.03 83 93 5.11 

All Features 89 97 2.46 85 93 4.87 
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IAM Data Set RIMES Data Set 

  

  

  

Figure 4.19 Performance of feature combinations on Writer Identification 

 

As with the individual features, the performance of combined features is more or less consistent 

across the two data sets with the exception of local features. Contrary to IAM dataset, the global 

features outperform their local counterparts on the RIMES images (Figure 4.19). Although the 

Top1 identification rate on the RIMES writings for global and local features is the same (77%), the 

overall (Top1 – Top10) performance of global features is better than the local features. This is 

linked to the fact that the local features are calculated within small observation windows of fixed 

size therefore the wider variety in the writing size of the samples in the RIMES dataset results in a 

decreased performance.  
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IAM Data Set RIMES Data Set 

  

  

  

Figure 4.20 ROC Curves for feature combinations 

The results that we presented are based on simple distance averaging where each feature 

contributes equally to the sum. We also evaluated a weighted combination of distances, the weights 

being chosen with respect to the performance of individual features. This however resulted only in 

marginal improvements in the over all performance of the system. Regarding the features that 

share some redundancy with others, we will discuss them towards the end of this chapter. 

Keeping only the two best performing features f5 and f7, we achieved an identification rate of 

approximately 83%. Figure 4.21 illustrates the effect of their weighted combination where the final 

distance between two writings is computed as: �1 − ���£ + ��� and it can be observed that the 

results exhibit only slight improvement in performance as compared to simple distance averaging 

(� = 0.5).  
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Figure 4.21 Writer identification performance for a weighted combination of f5 and f7 

We also performed the same experimental evaluations by merging the two datasets into one 

large set of (650+375) 1025 writers. This combined set represents, in terms of number of writers, 

the largest data set used for text independent writer recognition until present. We will present the 

results of combined features only, summarized in Table 4-6 where we have achieved an overall 

identification rate of 86% and EER of as low as 3.30%. 

Table 4-6 Performance of combined features on the combined dataset (1025 writers) 

Data Set IAM+RIMES 

1025 Writers 

Feature Combination Top1 Top10 EER 

Global  78 92 4.39 

Local 79 92 4.84 

Polygon Based 80 93 3.92 

Global & Local 82 93 4.34 

Global & Polygon Based 83 94 3.87 

Local & Polygon Based 84 95 3.76 

All Features 86 95 3.30 

 

Two important parameters that influence the performance of the system are the number of 

writers and the amount of text available for each writer. It would therefore be interesting to analyze 

how these parameters affect the results as presented in the following. 

4.4 Stability of Features 

We first present the influence of number of writers on the identification rate. These evaluations 

have been carried out on the IAM dataset by varying the number of writers from 10 to 650. It can 

be seen from Figure 4.22 (a) that there is a consistent but not dramatic decrease in the identification 
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rate as the number of writer increases starting with 100% for 10 writers and dropping to 89% for 

650 writers. Naturally, the Top-5 and Top-10 performances are much more stable dropping to 96% 

and 97% respectively when the entire dataset is used. 

 

(a) Identification rate as function of number of writers on the 650 writers of IAM dataset 

 

(b) Identification rate as function of amount of text on 300 writers of IAM dataset 

Figure 4.22 Writer Identification performance as function of (a) Number of writers (b) 

Amount of text 

The influence of amount of available text for each writer is studied on the 300 writers (having 

contributed at least two samples) of the IAM base. Similar to section 3.9.3, the amount of text 

(both for training and testing) is varied from one word to complete page the identification rates 

being presented in Figure 4.22 (b).  For a single word an identification rate of about 20% is 

achieved which is increased to 91% when the complete page (5 to 10 lines on the average) is used.  
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Comparing these results with the ones presented for the code book based features (Figure 3.21) 

indicates that contour-based features are relatively more stable when the amount of text is varied. 

After having studied the contour based features, their combinations and stability, we would now 

be interested to see if we could go a step further and improve the writer recognition performance 

by combining these features with the information on redundant writing patterns of a writer. 

4.5 Combining Contour-based Features with Redundant Writing Patterns 

It would be interesting if we could combine the idea of redundant patterns in a writing presented in 

the previous chapter with the contour based features. We exploited this redundancy by generating a 

writer-specific as well as a universal code book, the questioned writing being compared to these 

code books, the later reporting better results on writer identification and verification. Since the 

frequent writing shapes of a writer are represented in the common code book space as a 

distribution (which will be termed as f15 from here onwards), it could well be combined with the 

contour based distributions capturing the orientation and curvature information in a writing. We 

will report the performance of combined features on 650 writers of the IAM dataset (summarized 

in Table 4-7). Combining the contour based features and the code book distribution, the over all 

identification rate rises to 91% while the equal error rate drops to 2.23%. 

Table 4-7 Performance of combining contour based features and the code book distribution 

Data Set IAM 

650 Writers 

Features  Top1 Top10 EER 

f15 (Code book) 84 96 4.49 

f1 – f14 89 97 2.46 

f1 – f15 91 97 2.23 

 

As in section 3.9, we will present a comparative overview of the results of recent studies on 

writer identification task on the IAM data set. The comparison that we presented earlier was meant 

to give an idea of the performance of code book based methods only while the one in Table 4-8 

provides a general comparison where the overall identification rates reported in different studies 

have been summarized. Although an identification rate of as high as 98% has been realized, it has 

been achieved on 100 writers with sufficient text from each of the writers (4 samples per writer in 

training and 1 in testing). Until present, [Bulacu & Schomaker, 2007] is regarded as achieving the 

best results with an identification rate of 89% on the entire IAM dataset. With the proposed 

features, we are also able to correctly identify the writer of a questioned document 89% of the 

times, on the same dataset and by using the same evaluation criterion as in [Bulacu & Schomaker, 
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2007] (leave-one-out approach on the entire dataset without distinguishing the training and test 

sets). 

Table 4-8 Performance comparison of writer identification systems on IAM dataset 

 Writers Samples/writer Performance 

[Marti et al., 2001] 20 5 90.7% 

[Bensefia et al., 2005b] 150 2 86% 

[Schlapbach & Bunke, 2006a] 100 5/4 98.46% 

[Bulacu & Schomaker, 2007] 650 2 89%* 

Our method 650 2 91% / 89%* 

 

As we discussed earlier, there exists a partial redundancy among certain features as well. This is 

one of the reasons why, for example, combining the chain code based global features did not result 

in a significant performance gain as compared to the results on individual features (f5 alone 

achieved an identification rate of 79% while combining the features f1 to f6 resulted in 81%). We 

therefore carry out a study in an attempt to discover, which subset, among the features f1 – f15, 

represents the relevant features for our problem of writer recognition. In a similar fashion, within 

each of the features, certain components (bins) might be more relevant than others. The selection 

of these features (as well as the components within a feature) is discussed in following section 

where we will very briefly introduce feature selection, and then demonstrate its application on our 

feature set. 

4.6 Feature Selection 

Feature selection is the process selecting relevant and informative features with the motivation of 

data/feature set reduction, performance improvement and data understanding [Guyon et al., 2006]. 

Our primary objective in carrying out a feature selection process would be to identify, among the 

proposed feature set, the features (or feature components) that are relevant in characterizing the 

writer of a handwritten text. Feature selection algorithms are mainly classified into two broad 

categories: filter and wrapper methods. Filters carry out feature selection independent of any 

learning algorithm and the features are selected as a pre-processing step. Wrappers on the other 

hand use the performance of a learning machine as a black box to score feature subsets. In addition 

to filters and wrappers, there are also Embedded methods which perform variable selection in the 

process of training and are usually specific to given learning machines [Guyon & Elisseef, 2003]. 

Traditionally a feature selection method involves four key steps as illustrated in Figure 4.23. 

 

                                                      
* k-nn using a leave-one-out approach 
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Figure 4.23 Key steps in Feature Selection 

The generation process implements a search method that produces subset of features. It may start 

with an empty set (features are added successively: forward selection), with all the features 

(features are removed successively: backward elimination), at both ends (adding and removing 

features simultaneously: bidirectional) or a randomly selected subset. The goodness of generated 

subset is then evaluated by an evaluation criterion which may be independent (filter) or dependent 

(wrapper). A stopping criterion is tested every iteration to determine when the FS process should 

stop. Typical criteria involve achievement of optimal subset or bounds on number of features or 

iterations etc. The resulting subset of features can be validated once the stopping criterion has been 

satisfied.  

For our problem, we have used a genetic algorithm (GA) to implement feature subset selection 

(generation step), the evaluation is carried out using a wrapper method while the stop criterion is 

based on the number of generations. 

4.6.1  Genetic Algorithms 

GAs belong to a group of methods, called evolutionary algorithms, that have been applied to 

feature selection with different degrees of success [Siedlecki & Sklansky, 1989]. In general, a GA 

begins with an initial set of random solutions called population. These solutions (individuals) are 

represented using a fixed-length binary string coding where each bit (gene) represents the 

elimination (0) or inclusion (1) of the respective feature. The individuals are evaluated using a 

fitness function and are assigned a fitness value. A selection function then decides which 

individuals to pick from the current population to create the next generation. The population is then 

updated using the genetic operators (crossover and mutation); an iteration of these operators being 

a generation. The process is repeated until a termination criterion (e.g. number of generations) is 

satisfied.  

Genetic algorithms have the advantage of quickly scanning a large solution space however they 

suffer from drawbacks like finding the sub-optimal solution and over fitting. A number of solutions 
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Criterion 

Stop Continue 

Feature Set Subset 
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have been proposed in the literature to improve the selection performance of genetic algorithms 

[Dos Santos et al., 2009] [Chen & Chen, 1997].  We have however limited our study to the 

application of basic genetic algorithms only. 

Fitness function, that evaluates the goodness of each individual in a population, plays the most 

important role in genetic search. The simplest fitness function for our system could be the writer 

identification rate. For a query document Q we compute its distance to all the samples in the 

training set, the samples are then ordered in a sorted hit list with increasing distance to the 

questioned document. The identification rate is the percentage of finding the correct writer at rank 

1 in the hit list. The objective of our system, however, is not only to get a good top 1 performance 

but also to improve the rank of the correct writer in the hit list, as high as possible. We thus 

propose the following fitness function where the identification rates are weighted with respect to 

the hit list size, the performance on a hit list of size 1 being given the maximum weight. 

 ��\�]// = ∑ �@ − � + 1� × t�¥�!�@�@ + 1�/2  (4.7)  

Where Ri is the writer identification rate on a hit list of size i, N is the total number of writers and 

the denominator represents the normalization factor. 

4.6.2 Analysis of Feature Relevance 

In order to analyze the usefulness of the features we divide them into three categories: 

indispensable, partially relevant, and irrelevant features. This division corresponds to the one 

proposed in [Pervouchine & Leedham, 2007] where the authors aim to study the usefulness of 

some of the features used by forensic document experts. A feature is attributed to one of these 

categories based on how often it is selected among several executions of the selection procedure. 

We have used the same definitions for the three categories as follows: 

 

• Indispensable:   Feature selected in each selected feature subset. 

• Irrelevant:   Feature not selected in any of the selected subsets. 

• Partially Relevant:  Feature selected in some of the subsets. 

 

The feature selection in our case may operate at two different levels. We may either opt to select 

the features f1 to f15 or apply the selection mechanism on the individual components of each 

feature. We will analyze both of them one by one and then combine the two in a cascaded form as 

discussed in the following. It should be noted that we will be using the terms feature and feature 

selection for both levels (features and feature components). 



4- Writer Characterization: Contour Based Features 

 

  86

4.6.2.1 Selection of Features 

We will first analyze the relevance of the features f1 – f15.  The GA is used to generate individuals 

of length 15 and the set bits are used to select the respective features. The feature selection 

mechanism is executed on the first 100 writers of the RIMES data set and the selected subset is 

evaluated on the 650 writers of the IAM data set. The GA is executed ten times with the following 

parameters (chosen experimentally):  

• Population Size:  50,  

• Crossover Rate: 0.6,  

• Mutation Rate:  0.02, 

• Selection Rule: Roulette wheel selection, 

• Number of Generations: 50. 

 

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 
               

 
               

 
               

 
               

 
               

 
               

 
               

 
               

 
               

 
               
               
  Feature selected:   Feature not selected:      

Figure 4.24 Features selected in ten runs of the GA 



4- Writer Characterization: Contour Based Features 

 

  87

 

Figure 4.25 Frequencies of selected features 

Table 4-9 Division of features according to relevance 

Indispensable Partially Relevant Irrelevant 

f9,f12,f14,f15 f3,f4,f6,f7,f8,f10,f13 f1,f2,f5,f11 

 

Table 4-10 Performance of selected feature subsets on 650 writers of the IAM data set 

Run Features Top 1 Top 10 

1 f3,f8,f9,f12,f14,f15 90.61 97.54 

2 f3,f6,f8,f9,f12,f14,f15 90.31 97.54 

3 f3,f4,f8,f9,f12,f14,f15 90.61 97.54 

4 f9,f12,f14,f15 91.08 98 

5 f8,f9,f10,f12,f14,f15 89.69 97.54 

6 f3,f7,f9,f10,f12,f13,f14,f15 91.08 97.69 

7 f3,f6,f8,f9,f12,f14,f15 90.31 97.54 

8 f3,f7,f9,f10,f12,f13,f14,f15 91.08 97.69 

9 f7,f9,f12,f13,f14,f15 91.38 98 

10 f3,f8,f9,f12,f14,f15 90.61 97.54 

Average - 90.68 97.66 
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The initial population is randomly generated. For each generation of the GA, each chromosome 

is evaluated using the fitness function, the fitness values of the current population being used to 

find the off springs of the next generation. The generational process ends when the termination 

criterion is satisfied which in our case is the number of generations. The selected features 

correspond to the best individual in the last generation. Figure 4.24 gives an overview of the 

features selected in the 10 runs of the GA while Figure 4.25 indicates the corresponding selection 

frequencies of these features. In our case, features f9, f12, f14 and f15 are selected in each of the 10 

runs and thus are considered indispensable for our problem whereas the features f1, f2, f5 and f11 

that are not selected in any of the runs are regarded as irrelevant, i.e. they do not result in 

improving the performance once used with other features in our feature set. The division of 

features according to their relevance has been summarized in Table 4-9 while the writer 

identification performance of selected feature subsets on the 650 writers of the IAM data set has 

been shown in  

Table 4-10. An average identification rate of 90.68% (Top10: 97.66%) is realized by employing 

6.5 features on the average. It is important to note that the features which are regarded as 

‘irrelevant’ during the feature selection mechanism should not be considered as useless. They 

should be viewed as not contributing to performance enhancement in the presence of other features 

(in the combination). All features however might not be possible to compute in all situations. For 

example, the code book based feature (f15) might not be available if the method is applied to a text 

written in a different script than the one for which we have an available code book. So in such 

cases, a feature that was regarded as irrelevant might play a useful role.  

We will next study the feature selection mechanism on the individual components within each of 

the features as discussed in the following. 

4.6.2.2 Selection of Feature Components 

In our proposed feature set, the contour based features add up to a total of 586 dimensions (Table 

4-2) while adding the distribution of frequent writing patterns (f15) gives a dimensionality of 686. 

Thus in order to select a subset among these 686 feature components (bins), the GA thus generates 

individuals of length 686 and the set bits are used to select the respective bins. As earlier, the 

selection algorithm is executed on the RIMES data set and the selected subset is evaluated on the 

IAM data set with the following parameters for the GA: 

• Population Size:  300,  

• Crossover Rate: 0.6,  

• Mutation Rate:  0.02, 

• Selection Rule: Roulette wheel selection, 

• Number of Generations: 50 
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Figure 4.26 Feature components selected in 10 runs of the GA 

Figure 4.26 indicates the feature components selected in the 10 runs of the genetic algorithm 

while Figure 4.27 shows the average (of 10 runs) number of components selected from each of the 

features f1 – f15. In general, the dimensionality of each of the features reduces to one half on the 

average. Since the total number of possible feature (component) subsets is very high (2686) as 

opposed to applying the selection mechanism directly on the features f1 – f15 (215), it is quite rare 

to find the feature components that are selected in each (or none) of the ten optimal subsets. It is 

therefore difficult to classify the selected feature components into groups (indispensable, relevant 

and irrelevant) as we did for the features. After ten executions, an average identification rate of 

89.82% (Top10: 97.65%) is achieved with approximately 50% overall reduction in the feature 

dimensions, summarized in Table 4-11. 

 

Figure 4.27 Average number of components selected for each of the features 
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We also applied the GA iteratively, each iteration beginning with the feature set selected in the 

previous iteration. The performance however begins to deteriorate so we have limited our 

discussion to the results of first iteration only. 

Table 4-11 Performance of selected feature components on 650 writers of IAM data set 

Run Dimension Top 1 Top 10 

1 324 90.46 96.77 

2 335 89.85 97.54 

3 350 89.38 97.69 

4 349 88.62 97.69 

5 351 90.15 97.69 

6 331 89.23 98.15 

7 318 89.54 97.54 

8 328 89.85 97.69 

9 328 90.46 98 

10 317 90.62 97.69 

Average 333 89.82 97.65 

 

After having applied the feature selection at the feature and component levels, it would now be 

interesting to combine the two by re-defining our feature set where each feature comprises only the 

frequently selected components as presented in the following. 

4.6.2.3 Selection of Features (Reduced Dimensions) 

Analyzing the selection frequencies of the feature components in the ten runs of the genetic 

algorithm (Figure 4.28), we define the feature set f1’ – f15’ where  fi’ comprises the components of 

fi that are selected in at least 50% of the times. This results in reducing the overall dimension of our 

feature set from 686 to 399 as summarized in Table 4-12. We then execute the genetic algorithm 

using the same parameters as we used for the selection of features f1 – f15 (section 4.6.2.1). 

The selection frequencies of the features f1’ – f15’ have been shown in Figure 4.29 while the 

actual features selected in each of the runs as well as the respective identification rates have been 

summarized in Appendix D. Using 7.5  features on the average (average dimension: 315), we 

achieved an overall identification rate of 90.06% (Top10: 97.90%) as compared to 90.68% (Top10: 

97.66%) when using an average of 6.5 features (average dimension: 281) from the feature set f1 – 

f15. 
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Figure 4.28 Feature selection distribution 

 

Table 4-12 Features with reduced dimensions 

 Features f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 Total 

Dimension 
Original 8 7 8 44 236 11 80 70 80 8 8 8 8 10 100 686 

Reduced 4 2 5 22 140 3 51 40 47 1 5 2 6 4 67 399 

  

 Comparing the division of features (according to their relevance) across the two selection 

scenarios (Table 4-9 vs. Table 4-13) it can be noticed that f9 and f15 come out to be the common 

indispensable features in the two cases. On the contrary, the features f14 and f5 are assigned to the 

groups indispensable and irrelevant respectively whereas f14’ and f5’ are assigned to these groups 

in the reverse order (f14’: irrelevant and f5’: indispensable). Another interesting observation is that 

the selected feature subsets are more consistent on the set f1’ – f15’ than on the initial set f1 – 15. 

However, considering the overall identification rates and the dimensionality of the feature subsets, 

we can say that applying feature selection on the actual feature set f1 – f15 is more useful than on 

the redefined set f1’ – f15’. 
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Figure 4.29 Frequencies of selected features (reduced dimension) 

Table 4-13 Division of features (reduced dimension) according to relevance 

Indispensable Partially Relevant Irrelevant 

f5’, f6’, f8’, f9’, f10’, f15’ f4’, f12’ f1’, f2’, f3’, f7’, f11’, f13’, f14’ 
 

 

4.7 Conclusion 

We presented in this chapter a set of features that were mainly designed to capture the orientation 

and curvature information in a writing. We first discussed the usefulness of extracting these 

features from contours rather than the skeleton and then presented the two representations for the 

extracted contours: a sequence of chain codes and a set of polygons. The effectiveness of these 

features in characterizing the writer of a handwritten document was demonstrated by evaluating 

their performance on writer identification and verification. We then combined the idea of 

redundant writing patterns with these features and the results realized were as good as the best 

results reported in the literature so far. A study on the relevance of the proposed features was also 

conducted using a feature selection mechanism. We also evaluated our system on the largest data 

set (in terms of number of writers) used so far in a study on text-independent writer recognition 

and the system was able to perform reasonably well without degrading the recognition rates too 

much. 
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Chapter 5 

Applications 

We have seen in the previous chapter how the proposed contour-based features are employed in 

characterizing the author of a document image. We then demonstrated the effectiveness of these 

features by applying them to identify and verify the writer of a questioned document. The proposed 

methodology is very generic which allows its application not only to writer recognition on non-

Latin scripts but also enables to address a number of other problems like signature verification, 

classification and retrieval of ancient manuscripts and even recognition of characters. 

In this chapter, we will present the application of our method to three of the potential 

applications namely the classification of medieval documents, writer recognition on Arabic script, 

and verification of signatures as presented in the following sections. We will limit our feature set to 

the contour-based features (introduced in the previous chapter) only, although the idea of 

redundant writing patterns can also be applied to each of these applications. In addition, we will 

not distinguish between the feature groups (indispensable, partially relevant and irrelevant) that we 

achieved as a result of the feature selection mechanism. Instead, for simplicity, we will show the 

application of the entire set of contour-based features, detailed in the following sections. 

5.1 Classification of Ancient Manuscripts 

Writing styles and forms are bound to evolve over time and the knowledge about these forms and 

the way they have evolved, enables the palaeographers identify the periods and the geographical 

location in which a manuscript was written. The quantity of these ancient manuscripts stored in 

archives, libraries and private collections is enormous and a system that could help the 

palaeographers in manuscripts dating, authentication and studying the links between writing styles 

and writers could be very useful. The analysis and classification of writing styles is similar in many 

respects to the recognition of writers, the latter requiring more precision in the decision to assign a 

script to a particular class.  

Among the well known methods for handwriting classification [Crettez, 1995] proposes an 

analysis of the variability of handwritings with the objective of identifying the family of the 

handwriting style. The fractal analysis of a handwritten image reflects the writing style of its author 

and serves to classify writings according to their legibility [Boulétreau, 1997]. These methods have 

been validated on contemporary writings. Important contributions on medieval and humanistic 

manuscripts include [Aiolli et al., 1999] [Eglin et al., 2007] [Joutel et al., 2008] [Yosef et al., 2004] 

and [Moalla et al., 2006].  
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We will be interested in applying our proposed feature set for automatically classifying the bases 

of ancient manuscripts with particular focus on the digitized medieval handwritten text

we will be working on a sample of 310 medieval manuscripts selected from the collection of IRHT 

(Institut de Recherche en Histoire des Textes). In fact, this study has been carried out in the 

framework of the project ANR

‘Graphem dataset’ to refer these images. 

Since we are dealing with ancient documents, we will first be discussing the extraction of text 

regions and binarization of extracted text before proceeding to feature extraction. We w

show how we generate a set of overlapping classes using these features and then employ the idea 

of relevance feed-back to improve the performance of document image retrieval when presented 

with a query. Finally, we will try to present our results 

5.1.1 Text Extraction 

In addition to handwritten text, the documents that we consider contain plenty of drop caps, fancy 

borders and separators, drawings, images and marks of stamps etc (

characterize the document by writing and not by other objects (e.g. drop caps), we first need to 

extract text regions from the documents. The quality of the documents and the varie

objects, however, does not allow an automatic segmentation of text areas. We therefore carry out a 

manual segmentation of text by cropping a part of image containing homogeneous text. All the 

subsequent steps are then applied to these segmen
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We will be interested in applying our proposed feature set for automatically classifying the bases 

of ancient manuscripts with particular focus on the digitized medieval handwritten text

we will be working on a sample of 310 medieval manuscripts selected from the collection of IRHT 

(Institut de Recherche en Histoire des Textes). In fact, this study has been carried out in the 

framework of the project ANR-GRAPHEM6, so from now onwards, we will use the term 

to refer these images.  

Since we are dealing with ancient documents, we will first be discussing the extraction of text 

regions and binarization of extracted text before proceeding to feature extraction. We w

show how we generate a set of overlapping classes using these features and then employ the idea 

back to improve the performance of document image retrieval when presented 

with a query. Finally, we will try to present our results in a quantified form.  

In addition to handwritten text, the documents that we consider contain plenty of drop caps, fancy 

borders and separators, drawings, images and marks of stamps etc (Figure 

characterize the document by writing and not by other objects (e.g. drop caps), we first need to 

extract text regions from the documents. The quality of the documents and the varie

objects, however, does not allow an automatic segmentation of text areas. We therefore carry out a 

manual segmentation of text by cropping a part of image containing homogeneous text. All the 

subsequent steps are then applied to these segmented images as discussed in the following.

 

 

Examples of non-text regions in the document images

              
MDCO-006-04. 

We will be interested in applying our proposed feature set for automatically classifying the bases 

of ancient manuscripts with particular focus on the digitized medieval handwritten texts. For that, 

we will be working on a sample of 310 medieval manuscripts selected from the collection of IRHT 

(Institut de Recherche en Histoire des Textes). In fact, this study has been carried out in the 

onwards, we will use the term 

Since we are dealing with ancient documents, we will first be discussing the extraction of text 

regions and binarization of extracted text before proceeding to feature extraction. We will next 

show how we generate a set of overlapping classes using these features and then employ the idea 

back to improve the performance of document image retrieval when presented 

In addition to handwritten text, the documents that we consider contain plenty of drop caps, fancy 

Figure 5.1). Since we 

characterize the document by writing and not by other objects (e.g. drop caps), we first need to 

extract text regions from the documents. The quality of the documents and the variety of non-text 

objects, however, does not allow an automatic segmentation of text areas. We therefore carry out a 

manual segmentation of text by cropping a part of image containing homogeneous text. All the 

ted images as discussed in the following. 

 

 

text regions in the document images 
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5.1.2 Document Binarization 

Our feature set is extracted from the contours of the writing and in order to extract the contours, the 

document images first need to be binarized. Contrary to the modern data sets that we considered 

earlier, the quality of historical manuscripts is generally quite poor as the documents degrade over 

time due to, for instance, storage conditions. Thus the foreground and background are difficult to 

separate and the classical thresholding methods fail when applied to these documents [Leedham 

et al., 2003]. We investigated a number of local thresholding methods where the threshold is 

computed for each pixel of the image as a function of its neighbourhood. The most classical 

example of such a method is the Niblack algorithm [Niblack, 1986] that calculates the threshold 

value for a pixel as a function of the mean and standard deviation of its neighbouring pixels. Over 

the years, a number of Niblack inspired have been proposed, in an attempt to improve the quality 

of binarization or to adapt to a certain type of documents. Notable contributions include [Sauvola 

et al., 1997] [Wolf & Jolion, 2003] [Feng & Tan, 2004]. Table 5-1 summarizes the calculation of 

threshold value in these methods.  

Table 5-1 Summary of neighbourhood based thresholding methods 

Method Threshold  Parameters 

Niblack ~¥��¦CO = � + � × / 

 

m = mean value of pixels in the 

window; s = standard deviation; 

k=-0.2 

Sauvola ~�C§¨0¦C = � × ©1 − � × �1 − /t�ª 

 

 

k=0.5 ; R=128 

Wolf ~«0¦� = �1 − �� × � + � × E + � × /t �� − E� 

 

k=0.5; M=minimum grey-value in 

the image; R = maximum grey-

value standard deviation over all 

the local neighbourhoods 

(windows)  

Feng ~¬#® = �1 − ��� × � + �� × ¯ /ty° × �� − E�
+ �± × E 

Rs =dynamic range standard 

deviation calculated in a larger 

neighbourhood; 

α2 = k1 (s/Rs)
γ
; α3 = k2 (s/Rs)

γ
 ; γ = 

2; α1 =0.1-0.2;  k1=0.15-0.25; 

k2=0.01-0.05 

 

 



5-Applications 

 

  96

Since we could not carry out a quantified comparison of these methods, we evaluated them by 

visual inspection which revealed that none of the methods produced ‘acceptably good’ results on 

these images. We then evaluated the binarization scheme presented in [Bar-Yosef, 2005] which 

claims to work quite well on degraded images. First a global thresholding is carried out that 

enables separating the background from noise-free characters. A more sophisticated local method 

is then employed to binarize the noisy characters. Figure 5.2 shows an example of binarizing a 

noisy image while the algorithmic details of these steps could be found in [Bar-Yosef, 2005]. This 

method produced by far the (visually) best binarized images.  

 

 

   

(a) Original Image (b) Global Thresholding (c) Final Binarized Image 

Figure 5.2 Binarization Steps 

Once binarized, we extract the connected components in the image (using 8-connectivity) and 

for each of the components we find its contours and the two representations, the Freeman chain 

code and the set of polygons approximating the contours. We then proceed to the extraction of 

features. 

5.1.3 Feature Extraction 

Among the features presented in section 4.1 we have chosen to keep the global chain-code-based 

and the polygon-based feature sets as the wide variety in writing conditions, writing instrument and 

writing size etc. makes it difficult to apply the window-based local features on these images. Just to 

recall, the global feature set comprises the features f1 – f6 while the polygon-based feature-set 

includes f10 – f14.  

5.1.4 Similarity based Incremental Grouping 

We will now try and group similar writings into classes (clusters) which are then presented to the 

palaeographers for inspection and feedback. What makes the task difficult is that there are no 

ground truth classes so the ‘goodness’ of the produced classes is estimated by the feedback of the 

palaeographers. An image in the data set is selected as query q and its distance to all the i ≠ q 

images in the data set is computed using the features discussed earlier. The documents are then 

sorted with increasing distance to the query and the list is presented to the palaeographers who then 

identify the first ‘false’ image (f) in the retrieved list, i.e. the first image in the list which 

(according to their expert opinion) should not belong to the same writing class as that of the query 

document. All the samples in the list up to this wrongly retrieved image are then grouped into a 
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class and we start with f as the next query image. The process is repeated until all of the images 

have been attributed to one of the (potentially overlapping) classes. Evidently, the classes obtained 

are sensitive to the initial query so the entire procedure has to be carried out repeatedly each time 

starting with a different query image. So basically, it is more of an Image Retrieval than a 

classification. An example of a group of similar images retrieved on the Graphem dataset has been 

illustrated in Figure 5.3 where the first image represents the query document. 

 

Figure 5.3 An example of images retrieved on the Graphem dataset 

5.1.5 Relevance Feedback 

Certain features might be of more interest for the palaeographers than the others and it might be 

desirable to assign more weight to a specific subset of features while calculating the similarity 

between two documents, according to the characteristics of the writing under study. This could be 

done by allowing the user (palaeographer in our case) to assign weights to the features [Niblack 

et al., 1993] [Bach et al., 1996]. This manual assignment of weights however, is not feasible 

solution as it imposes a big burden on the user, requiring the user to have a comprehensive 

understanding of the low level features used in the system, which generally is not the case [Lee & 

Street, 2002]. The most common solution to this problem is the relevance feedback method that 
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automatically adjusts the feature weights according to the preferences of the user. It is the process 

of automatically adjusting an existing query using information feed-back by the user about the 

relevance of previously retrieved documents [Rui et al., 1997]. Starting with a query, the initial 

results are presented to the user who marks them as relevant or irrelevant as per his requirements/ 

perception. The weights associated with the features are then dynamically updated to better model 

the user’s preferences. The working principle of a relevance feedback system has been illustrated 

in Figure 5.4 

 

 

 

 

 

 

 

Figure 5.4 Principle of a relevance feedback system 

We define the distance between a questioned document Q and a reference document D as: 

 3�F, 3� = � [����F, 3�¥0.0� �#C�§P#y
�!�  (5.1)  

Where di represents the distance between the two documents computed for feature i and is given 

by: 

 ���F, 3� = ���&�R, &�M� (5.2)  

The objective of the relevance feedback, in our particular case, is to update the weights wi. We 

have chosen to use the vector space feedback model presented in [Rui et al., 1998] where the new 

query feature vector is generated as weighted linear combination of the original feature vector and 

the feature vectors of the images that were labelled as relevant or irrelevant by the user. 

To start with, the weights wi are initialized to w0, the non-bias weights. For a query document Q the 

N most similar documents are retrieved using equation 5.1 and presented to the user.  

 t = Y3�, 3�, … , 3¥Z (5.3)  

The user then assigns a relevance score S to each of the retrieved documents. [Rui et al., 1998] 

suggests the scores of +3, +1, 0, -1 and -3 to capture the semantic meaning of highly relevant, 

relevant, no opinion, irrelevant and highly irrelevant and we have kept the same scores for our 

system. 

User IR System 
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We then find the set of documents Ri similar to the query with respect to each of the individual 

features fi. 

 t� = Y3�� , 3�� , … , 3¥� Z (5.4)  

The weight wi for fi is then calculated as follows: 

 
[� = [� +  �-.G]N, �& tN� �/ �� t[� + 0, �& tN� �/ �.\ �� t  

h = 1,2, … , @ 

(5.5)  

This weight updating will ensure that larger the intersection of Ri
 and R, the greater is the weight 

assigned to fi which is the very idea behind relevance feedback. Finally, the wi<0 are set to 0 and 

the weights are normalized ensuring that the total sum of the weights remains 1: 

 [� ← [�∑ [��  (5.6)  

Figure 5.5 illustrates a retrieval session where given a query (the first image in the image set) the 

system first retrieves the most similar images with non-bias weights (Figure 5.5.a). The user 

(palaeographer) then remarks that two of the retrieved images (at ranks 5 and 9) do not belong to 

the same writing class as that of query and thus marks them as irrelevant. The system then 

recalculates the weights wi incorporating user’s preferences and as it can be seen from Figure 5.5.b, 

one of the irrelevant images has been eliminated from the list, the other has moved from rank 5 to 

rank 9 and a new relevant image has appeared as well (at rank 8). The user may perform multiple 

feedback iterations to improve the retrieval results. 

The retrieval and feed back methodology discussed above is appropriate in the framework of the 

project Graphem, however, in order to estimate the goodness of our feature set, we need to have 

some quantified results. For this purpose, we propose to distinguish these images into training and 

test sets and perform a classification task. We split the documents into two equal parts, the first 

half contributing to the training while the other to the evaluation set. The features are extracted 

from the training images and a k-means clustering algorithm is applied with two writings being 

compared using the χ2 distance. Since the palaeographers currently search for a ‘good’ value of k, 

we have made k vary from 2 to 30. Applying a Principal Component Analysis (PCA) and reducing 

the writing representation to two dimensions, the writing classes obtained have been visualized (for 

k=3 & 5) in Figure 5.6. 

The classification is then carried out by picking up each image in the test set and assigning it to 

one of the k classes. An image is said to be correctly classified if it is attributed to the same class as 

that of its counter part in the training set, i.e. the two halves (training & test) of an image should 

belong to the same class to be considered as correct classification. The classification is carried out 
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using the k-nearest neighbours (k-nn) with k=3,5,7. It should also be noted that a k-means with k=1 

(i.e.; no clustering of the training set) and then a k-nn with k=1 changes the problem of 

classification to writer identification. 

 

 

(a) Initial retrieval results 

 

(b) Retrieval results after relevance feedback 

Figure 5.5 Retrieval results with and without feedback 
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(a) (b) 

Figure 5.6 Writing classes obtained with k-means for (a)  k=3 (b) k=5 

Figure 5.7 illustrates the classification performance as a function of number of classes. Naturally 

the performance drops as the number of classes increases. For up to 10 classes, classification rates 

in excess of 80% are realized (k-nn with k=3). It should however be noted that the clusters of 

writings that we obtain by employing the proposed features have yet to be compared with the ones 

suggested by the palaeographers. The evaluation procedure that we followed (dividing the images 

into two disjoint sets) was meant to give a rough idea about the effectiveness of the system in a 

quantified form. Since the results are very promising, we expect that the suggested features would 

be of great help for the palaeographers. 

 

Figure 5.7 Classification performance (knn) on the Graphem dataset with k=3,5 and 7 
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5.2 Writer Recognition on Arabic Documents 

After having applied the proposed features on ancient manuscripts, we will now see how stable 

their performance is once applied to a non-Latin script. For this purpose, we will perform the writer 

recognition task on Arabic handwritten documents from the IFN/ENIT database. The IFN/ENIT 

database comprises forms with handwritten Arabic town/village names (more than 26,000 words) 

collected from 411 different writers. This dataset was originally developed for the training and 

testing of Arabic handwriting recognition systems and was also used in the ICDAR 2005, 2007 and 

2009 Arabic OCR competitions [Margner et al., 2005] [Margner & Abed, 2007] [Margner & Abed, 

2009]. However, since each image also contains the identity of its writer, this data set can be 

employed for writer identification as well. The original dataset is divided into four disjoint sets and 

we will show our results on set ‘A’ only, containing word samples of 100 writers. Each writer 

contributed on the average 50 to 60 words. As always, we divide the available set of words for 

each writer into two roughly equal parts, one used in training while the other in testing.  

 

 

 

Figure 5.8 Division of a word into sub-images and its polygon approximation 

We will report the writer recognition performance only for the feature combinations in each 

feature type and the overall combination of all the features. As with Latin scripts, the combination 

of polygon-based features performs the best with an identification rate of 85% and an equal error 

rate of 3.22%. The combination of all the features produces an overall identification rate of 92% 

and an equal error rate of as low as 2.94%, indicating the generality of the features. The results 

have been summarized in Table 5-2 and illustrated in Figure 5.9.  

Table 5-2 Writer recognition performance on the IFN/ENIT database 

Data Set IFN/ENIT 

100 Writers 

Feature Combination Top1 Top10 EER 

Global  84 97 3.95 

Local 82 98 4.97 

Polygon Based 85 100 3.22 

All Features 92 100 2.94 
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Figure 5.9 Identification rates and ROC curves on the IFN/ENIT dataset

5.3 Signature Verification

We will now present the application of our method not on the texts but on the signatures of 

different writers in an attempt to perform signature verification. Of course our objective here is not 

to propose a solution to the signature verification problem b

would work on signatures. In comparison to writer recognition, signature verification enjoys the 

advantage of comparing same text (signature) for an individual. The disadvantage on the other 

hand is that a very limited amount of text per writer is available making it a challenging task. We 

have worked on a collection of signatures from 48 different individuals (students) with 15 

signatures of each used for training whereas 15 for testing. We considered only the simple cas

where there are no forgeries and the data set comprises genuine signatures only. 

samples of three of the signatures used in our study.

Before the extraction of features the signatures are first normalized. The normalization includes 

a rotation according to the inertial axis 

scaling that ensures that all the signatures are contained in a rectangle o

pixels) preserving the proportions of the signature.

Once normalized, for each of the signatures we compute the contour

represent an individual by the mean vector of the features computed from his/her 15 sampl

an example, Figure 5.12 illustrates the chain code distributions computed from 10 signatures of an 
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Identification rates and ROC curves on the IFN/ENIT dataset

Signature Verification 

We will now present the application of our method not on the texts but on the signatures of 

different writers in an attempt to perform signature verification. Of course our objective here is not 

to propose a solution to the signature verification problem but to see how the proposed features 

would work on signatures. In comparison to writer recognition, signature verification enjoys the 

advantage of comparing same text (signature) for an individual. The disadvantage on the other 

mount of text per writer is available making it a challenging task. We 

have worked on a collection of signatures from 48 different individuals (students) with 15 

signatures of each used for training whereas 15 for testing. We considered only the simple cas

where there are no forgeries and the data set comprises genuine signatures only. 

samples of three of the signatures used in our study. 

  

Figure 5.10 Examples of signatures 

Before the extraction of features the signatures are first normalized. The normalization includes 

a rotation according to the inertial axis [Wirotius, 2005] (as indicated in Figure 

scaling that ensures that all the signatures are contained in a rectangle of fixed width (fixed to 300 

pixels) preserving the proportions of the signature. 

Once normalized, for each of the signatures we compute the contour

represent an individual by the mean vector of the features computed from his/her 15 sampl

illustrates the chain code distributions computed from 10 signatures of an 

individual along with the mean distribution. These mean values are computed for each of the 
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We will now present the application of our method not on the texts but on the signatures of 

different writers in an attempt to perform signature verification. Of course our objective here is not 

ut to see how the proposed features 

would work on signatures. In comparison to writer recognition, signature verification enjoys the 

advantage of comparing same text (signature) for an individual. The disadvantage on the other 

mount of text per writer is available making it a challenging task. We 

have worked on a collection of signatures from 48 different individuals (students) with 15 

signatures of each used for training whereas 15 for testing. We considered only the simple case 

where there are no forgeries and the data set comprises genuine signatures only. Figure 5.10 shows 

 

Before the extraction of features the signatures are first normalized. The normalization includes 

Figure 5.11) and then a 
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Once normalized, for each of the signatures we compute the contour-based features and 

represent an individual by the mean vector of the features computed from his/her 15 samples. As 
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features for all the 48 individuals. Each individual can thus be viewed as a class comprising 15 

elements (signatures) and that is represented by its mean value. 

  

Figure 5.11 Inertial axis of the signature and the redressed signature 

For evaluation we compute the distance of each signature in the test set (15x48=720 signatures) 

to each of the 48 classes (individuals). 91% of the times, the signatures are assigned to the correct 

individual in the training set. The performance on signature verification is quantified, like in case 

of writer verification, by the equal error rate which comes out to be 5.88% on the tested set of 

signatures and is illustrated in Figure 5.13. The error of course is relatively higher in comparison to 

the state of the art methods in signature verification. But as we mentioned earlier, the objective of 

this study was to analyze the goodness of the features designed for writer recognition (with 

relatively larger amount of text per writer available) on signature verification. Considering this 

fact, the performance can be regarded as good enough.  

 

Figure 5.12 Distribution of chain codes for 10 signatures of an individual 
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Figure 5.13 ROC curve on the signatures 

5.4 Conclusion 

We presented in this chapter the application of our method on the classification of ancient 

manuscripts, recognition of writer from Arabic handwritten documents and finally the verification 

of signatures. We mainly focused on the contour-based features that are simple and efficient to 

compute, nevertheless, the idea of frequent writing patterns could well be applied to these 

applications as well. As we mentioned earlier, the objective of this chapter was to study the 

effectiveness and generality of the proposed features and the encouraging results achieved on each 

of the considered applications validate that our proposed features are not only generic but quite 

effective as well. 
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Chapter 6 

Conclusion and Perspectives 

 

The objective of our research was to address the problem of automatic writer identification and 

verification from offline scanned images of handwriting, a problem that enjoys a renewed interest 

of the community due to its applications in forensic document analysis, indexing and retrieval of 

document bases and recognition of handwriting. This objective was met by developing an original 

method that exploits two different facets of handwriting: the existence of certain redundant patterns 

in writing and the visual attributes of orientation and curvature characterizing the writer of a 

handwritten text.  

Contrary to the classical approaches which analyze the redundancy of writing shapes at the 

grapheme level, we exploited it at a much smaller scale of observation that correspond to small 

writing fragments and allows to capture the redundancy of writing gestures which might be 

common across different graphemes. These fragments are extracted by positioning windows over 

text and then grouping similar fragments into clusters which are determined either for each of the 

writers separately or for a group of writers generating a universal set of patterns. A comparison of 

the two revealed that employing a common code book to represent writing samples reports better 

results on writer identification and verification as compared to representing them in a writer-

specific space reading an identification rate of 84% against 81% and EER of 4.49 % against 5.44% 

on a data set of 650 writers.  

We next used the orientation and curvature information in writing which is extracted by 

computing a set of features from writing contours at different levels of observation. These features 

were extracted by representing the contours by the chain code sequence and then by a set of 

polygons eliminating the minute writing details. The effectiveness of these features in 

characterizing the writer of a handwritten sample was then demonstrated by evaluating their 

performance on two data sets (IAM & RIMES) realizing identification rates of 89% and 85% and 

equal error rates of 2.46% and 4.87% on the two data sets respectively. 

Finally, we combined the idea of redundant writing patterns with the contour-based features and 

achieved very promising results on tasks of writer identification and verification which are 

comparable to the best results achieved so far in the domain. We also conducted a study on the 

relevance of the proposed features using a feature selection process where we were able to 

maintain very good identification rates by keeping approximately 50% of the features only. 
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Our method was also implied in the project ANR-Graphem where based on our proposed 

features, we developed a software for the indexing and retrieval of medieval manuscripts that could 

eventually serve the palaeographers for classification of writing styles. Finally, we showed the 

generality of our method by employing it for signature verification and applying it on Arabic 

handwritten documents for writer recognition. 

To end, we will enumerate some interesting research directions laid down by our work. First of 

all, for the extraction of frequent writing shapes, it would be better if one could determine the 

window size (for division of text) automatically depending upon the writing details rather than 

using a fixed size for all writings. This would in turn require either a representation that would 

allow a comparison of writing fragments at different sizes or a normalization of these fragments 

prior to comparison. The idea of redundant writing patterns may be developed further to study 

whether an individual who writes more than one script (for examples someone who writers French 

& Arabic) share some basic patterns/shapes across the two scripts. This could be realized by 

comparing the writer-specific code books computed from the texts written in the two scripts. It 

would be very interesting to analyze if one could recognize the writer of a text written in one script 

from the samples of same writer written using a different script or, identify the script of a given 

text based on the basic writing shapes present in the text, comparing them to a universal code book 

of the respective alphabet. 

For the contour-based features we tried to capture the direction and curvature information in 

writing by a set of distributions and it would be a good idea to extract this information at different 

image resolutions which in fact will correspond to different levels of observations. The features at 

different resolutions can then be combined and their effect on the performance could be studied to 

identify the observations scales which might be more effective for the problem of writer 

recognition. 

 In addition to the applications that we presented, after a normalization that would allow to 

eliminate writer-dependent variations in the text, the method could be adapted for applications like 

character recognition or word spotting. 

Finally, the author hopes that the content of this thesis would be of valuable help to the 

researchers working on writer recognition or similar problems. Although the target performance 

requirements for forensic applications have yet to be met, this work would nevertheless be an 

important contribution to the domain. 
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Appendix A 

Résumé en Français 

 

Introduction 

Malgré les prédictions d'un monde sans papier et le développement des documents électroniques, 

les documents manuscrits ont gardé leur importance et les problèmes de l'identification et de 

l'authentification des auteurs ont constitué un domaine de recherche actif au cours de ces dernières 

années. Comparé au texte électronique ou imprimé, le texte manuscrit diffuse des informations 

additionnelles sur la personnalité de la personne qui a écrit. Il existe un certain degré de stabilité 

dans le modèle d'écriture d'un individu, ce qui permet d’identifier l'auteur pour lequel on a déjà vu 

un texte écrit. 

La nécessité d'authentifier un texte écrit est un problème récurrent, non seulement du point de 

vue de la biométrie comportementale [Plamondon & Lorette, 1989] [Bensefia et al., 2005b] 

[Seropian & Vincent, 2002] [Srihari et al., 2002], mais également dans le contexte de la 

reconnaissance d'écriture [Nosary et al., 1999] en exploitant le principe de l'adaptation du système 

au type du scripteur. On utilise également l’écriture pour l'analyse des documents anciens dans un 

but d’indexation et de recherche.  

La recherche dans le domaine a beaucoup évolué dans les années récentes et une grande variété 

de techniques ont été proposées qui peuvent être divisées en deux approches principales : les 

méthodes dépendantes et  les méthodes indépendantes du texte.  

Dans les méthodes dépendantes du texte, les échantillons d’écriture à comparer doivent contenir 

le même texte. Ces méthodes utilisent normalement la comparaison entre des caractères ou des 

mots de transcription connue et nécessitent donc que le texte soit reconnu ou segmenté 

(manuellement ou automatiquement) en caractères ou en mots avant de faire l’identification de 

scripteur. Ces études sont principalement motivées par des applications légales et visent à  

concevoir des algorithmes qui permettent d’extraire les caractéristiques qui sont utilisées par les 

examinateurs légaux de document. On peut noter que ces méthodes sont très contraignantes, aussi 

la majeure partie de la recherche ces dernières années s'est concentrée sur des approches 

indépendantes du texte. 

Évidemment, les méthodes indépendantes du texte sont plus utiles pour les applications pratiques 

où l'intervention humaine est minimisée. Ceux-ci utilisent des caractéristiques extraites de l'image 

entière d'un texte ou d'une région d'intérêt. On a proposé une grande variété de techniques qui 
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peuvent être classées soit comme globales [Boulétreau et al., 1998] [Said et al., 2000]: basées sur 

l'aspect soit global de l'écriture, soit local. [Marti et al., 2001] [Seropian et al., 2003] identifient 

l'auteur à partir de l’extraction des caractéristiques locales de l'écriture. L’identification de 

scripteur basée sur la reconnaissance d'écriture a également été proposée dans la littérature 

[Schlapbach & Bunke, 2004] [Schlapbach & Bunke, 2006a]. 

Depuis quelques années, la tendance des recherches sur la reconnaissance de scripteur, s’est 

focalisée vers les méthodes basées sur les codebooks où l'écriture est segmentée en graphèmes qui 

sont ensuite comparés avec des éléments d’un codebook soit propre au scripteur [Bensefia et al., 

2002] soit un codebook universel [Bensefia et al., 2005b] [Schomaker & Bulacu, 2004] [Bulacu & 

Schomaker, 2005]. Ces méthodes ont été très développées au cours des dernières années et elles 

ont démontré une grande performance pour l’identification de scripteur. La combinaison de ces 

caractéristiques de codebook avec d'autres caractéristiques de niveaux différents est également 

connue pour améliorer le taux d'identification [Bulacu & Schomaker, 2007]. 

Le problème de la reconnaissance du scripteur comprend les tâches d'identification et de 

vérification. Pour l’identification de scripteur, étant donné un échantillon manuscrit S inconnu et 

une base avec des échantillons de N scripteurs connus, l'objectif est de trouver le scripteur (ou une 

liste probable de scripteurs) de S dans la base de données. Pour la vérification de scripteur, étant 

donné deux échantillons de manuscrits S1 et S2 l'objectif est de déterminer si les deux ont été écrits 

par la même personne ou pas. En traitant de grandes bases de données, l'identification de scripteur 

peut également être employée comme une étape de filtrage préalable à la vérification [Bensefia et 

al., 2005b]. L'étape d'identification pourrait extraire un sous-ensemble des candidats probables à 

partir de la base de données et l’écriture de chaque candidat peut alors être comparée à l’écriture en 

question, soit par le système de vérification soit par un expert humain. 

Nous avons développé une méthode efficace pour la reconnaissance automatique de scripteur à 

partir des images de texte manuscrit offline. Notre méthode repose sur deux aspects différents de 

l'écriture, la présence des formes redondantes dans l'écriture et des attributs visuels de l’écriture. En 

nous basant sur l'hypothèse qu’un individu utilise certaines formes plus fréquemment que les autres 

quand  il écrit, nous espérons extraire ces formes en analysant des petits fragments d'écriture et en 

regroupant les formes similaires dans des classes. Ces classes sont déterminées soit pour chacun 

des scripteurs séparément ou pour un groupe de scripteurs générant un ensemble universel de 

formes. L'écriture en question est ensuite comparée à ces classes de formes produites. Ensuite, 

nous exploitons les deux importants attributs visuels de l'écriture, l'orientation et la courbure, qui 

permettent de distinguer une écriture d'une autre. Ces attributs sont extraits par le calcul d'un 

ensemble de caractéristiques à différents niveaux d'observation. Deux écritures sont ensuite 

comparées en calculant les distances entre leurs caractéristiques respectives. Enfin, nous 

combinons les deux facettes de l'écriture pour caractériser le scripteur d'un échantillon manuscrit.  
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Formes redondantes de l’écriture 

Pour les caractéristiques basées sur le codebook, on cherche à mettre en évidence des détails 

fréquents dans une écriture. Cette redondance des formes est aussi la base des  études dans 

[Bensefia et al., 2002] [Bensefia et al., 2005b] [Bulacu & Schomaker, 2007] . En effet, dans toutes 

ces méthodes, l’approche est liée à la façon dont les lettres sont tracées et segmentées comme si le 

but était de lire le texte. Nous pensons que la reconnaissance du scripteur est indépendante de ce 

qui est écrit et est plutôt liée à la manière physique par laquelle des lignes ou des boucles sont 

produites. Ainsi l'échelle de l’observation peut être inférieure à celle d'une lettre. Aucune 

interprétation sémantique des portions de trait analysé n’est nécessaire. Les fragments que nous 

considérons sont des petites parties d'un texte manuscrit qui ne contiennent aucune information 

sémantique. Ces formes ont été extraites par un découpage adaptatif de l’écriture en imagettes, puis 

l’extraction de descripteurs de chacune des imagettes  et enfin une classification groupant les 

imagettes similaires.  

Le découpage de l’écriture est utilisé pour extraire des éléments inhérents au scripteur, donc c’est 

une partie importante du processus. Il doit être dépendant du tracé pour que les contenus puissent 

être comparables. On a choisi un découpage en carrés de taille nxn où la taille n a été choisie 

empiriquement égale à 13x13 [Siddiqi & Vincent, 2007]. En utilisant un algorithme adaptatif de 

positionnement, ces fenêtres sont placées sur le texte divisant ainsi l'écriture en un grand nombre 

de petites imagettes [Siddiqi & Vincent, 2008]. Les fenêtres sont consécutivement positionnées en 

suivant le squelette de l’écriture. Sans chercher à reconstituer l’ordre du tracé, nous réalisons un 

suivi du trait. 

Une fois que le texte est divisé en imagettes, nous procédons à l'extraction de descripteurs de 

forme sur chacune. La position de la trace écrite dans la fenêtre est d'abord normalisée afin que les 

caractéristiques calculées soient invariantes à la translation. Il n'est cependant pas souhaitable dans 

notre cas d'avoir: i) l'invariance à l'échelle: puisque nous ne prévoyons pas que le scripteur modifie 

la taille de l’écriture dans un même échantillon d'écriture et ii) l’invariance à la rotation: comme 

une forme et sa version tournée ne sont pas produites par le même geste de la main. 

L'ensemble des descripteurs que l'on calcule pour chaque imagette comprend les histogrammes 

horizontaux et verticaux, les profils supérieur et inférieur et  une série de descripteurs de forme. 

Chaque imagette est alors représentée par un vecteur de dimension d = 4n +6, où n est la taille de 

la fenêtre. 

Représentant chaque imagette par un vecteur, on procède ensuite à leur regroupement de manière 

à réduire la quantité de données et à rendre le résultat indépendant de la quantité de texte étudié. 

L'objectif est de grouper les formes produites par le même geste de la main dans les mêmes classes. 

La méthodologie de classification dépendra du type de codebook selon qu’il soit propre au 

scripteur ou universel.  
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Pour un codebook propre au scripteur, nous avons évalué un certain nombre d’algorithmes qui ne 

demandent pas un choix préalable du nombre de classes car ce paramètre va varier d'une écriture à 

une autre. Après une série d'expériences sur l'ensemble de validation, nous avons choisi une 

classification hiérarchique pour extraire les formes redondantes de l'écriture et générer le codebook 

propre au scripteur. Pour chaque classe dans le codebook, on estime sa probabilité d’apparition et 

aussi on calcule le vecteur moyen représentant la classe. L'ensemble de ces probabilités peuvent 

être considérées comme une distribution hD, où chaque cardinal de classe de hD représenterait la 

probabilité d'émission de la forme respective par l'auteur du document D. Cette distribution est 

ensuite utilisée pour caractériser l'auteur d'un échantillon donné. 

Nous prolongeons la même idée en générant un codebook universel. Puisque nous avons choisi 

de travailler sur un codebook qui n'est pas produit à partir de l'ensemble de données à l'étude, le 

codebook est généré à partir d'échantillons manuscrits de la base RIMES [Grosicki et al., 2008] 

pour évaluer les écritures du jeu de données IAM [Marti & Bunke, 2002] et vice versa. Un total de 

50 échantillons d'écriture sont utilisés pour produire le codebook tandis que les fragments sont 

regroupés en utilisant l'algorithme k-means dans l'espace de caractéristiques avec k fixé à 100 après 

les évaluations sur l'ensemble de validation. Une fois le codebook généré, on trouve pour chaque 

scripteur, les fréquences de production des formes dans le codebook, la répartition étant 

caractéristique du scripteur. 

 

Les attributs visuels de l'écriture 

Nous analysons aussi deux importants attributs visuels de l'écriture qui permettront de capturer le 

style d'écriture de son auteur, l'orientation et la courbure des traits. L’information de l'orientation et 

de la courbure dans une écriture est capturée par un ensemble de caractéristiques. Ces 

caractéristiques sont calculées à partir des contours de l'écriture qui encapsulent le style d'écriture 

de l'auteur et permettent de préserver des variations (qui dépendent du scripteur) entre les formes 

de caractères. Nous avons choisi de représenter les contours de deux manières qui correspondent à 

deux échelles d'observation et deux niveaux de détails différents. Ces représentations incluent les 

chaînes de Freeman et un ensemble de polygones approximant les contours.  

De la chaîne de Freeman associée aux contours, nous calculons un ensemble de caractéristiques, 

d'abord à un niveau global, puis à partir des fragments de contour dans des fenêtres d'observation 

de petite taille. Au niveau global, on utilise la distribution des codes de Freeman et de leurs 

différences, la distribution des indices de courbure et la distribution des paires et des triplets des 

codes de la chaîne. Au niveau local, on trouve comment les orientations de Freeman et leurs 

différences sont réparties au sein de petites fenêtres d'observation. Ces fenêtres sont positionnées 

sur l'image du contour de la même manière que celles utilisées pour la production de codebook. 

On calcule également des caractéristiques similaires à un niveau d'observation différent, en 

estimant les contours par un ensemble de polygones. Cela ne correspond pas seulement à une 
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échelle d'observation lointaine, mais les caractéristiques calculées sont aussi plus robustes à des 

distorsions. Nous procédons d'abord à une approximation des contours par un ensemble de 

segments de ligne en employant un algorithme séquentiel de polygonisation [Wall & Danielsson, 

1984]. Les caractéristiques sont ensuite calculées qui comprennent la distribution de pentes et de 

mesures des angles formés par les segments consécutifs, les mêmes distributions, pondérées par la 

longueur des segments (ayant une pente/angle donné) et la distribution des longueurs des segments 

dans une écriture.  

On a extrait ainsi un ensemble de quatorze distributions (normalisées) qui permettent de 

représenter une image du document dans un espace de dimension totale 586 (Tableau A-1). 

Tableau A-1 Caractéristiques et leurs dimensionalities 

Carac. Description Dimension 

f1 Distribution des codes de Freeman 8 

f2 Distribution des differences (1er ordre) de codes de Freeman 7 

f3 Distribution des differences (2e ordre) de codes de Freeman 8 

f4 Distribution de paires de codes de Freeman 44 

f5 Distribution de triplets de codes de Freeman 236 

f6 Distribution des indices de courbure 11 

f7 Distribution locale des directions de trait 80 

f8 f2 calculé localement 70 

f9 f3 calculé localement 80 

f10 Distribution des pentes de segments 8 

f11 Distribution pondéréedes pentes de segments  8 

f12 Distribution des courbures 8 

f13 Distribution pondérée des courbures 8 

f14 Distribution des longeurs de segments 10 

 Total: 586 

 

Reconnaissance de scripteur 

Pour la reconnaissance de scripteur, après avoir évalué un certain nombre de mesures de 

distance, nous avons gardé la distance du χ² pour calculer les distances entre les valeurs des 

caractéristiques (histogrammes) de deux échantillons d'écriture. 

���w, �� = � �w� − ����w� + ��
Q�U
�!�  

 

où p et q représentent les deux histogrammes à comparer, pi et qi sont les fréquences associées aux 

classes i et j des histogrammes et dim représente le nombre total de classes dans l'histogramme. 
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Pour les caractéristiques basées sur les contours, le calcul de (dis)similarité entre deux 

documents D et Q est relativement simple et est donné par la distance entre les caractéristiques fi
D 

et fi
Q. Pour les caractéristiques basées sur le codebook, il est tout d’abord nécessaire de diviser le 

texte dans l'image requête Q en petites imagettes.  

Lorsqu’on utilise un codebook propre au scripteur, chacun des fragments de l’image requête est 

attribué à l'une des classes dans le document de référence. Pour comparer le document en question 

Q avec un document de référence D, pour chaque forme dans le document de test, on retrouve la 

plus proche classe dans le document D. Nous trouvons par conséquent comment les entrées dans le 

codebook du scripteur de D sont distribuées dans le document Q. Ainsi, en fait, le document en 

question est représenté dans l'espace du document de référence et les deux écritures sont comparées 

en calculant la distance entre les distributions respectives hD et hDQ. 

Pour le codebook universel, on compare les imagettes extraites du document en question aux 

formes contenues dans le codebook et donc on trouve les fréquences d'occurrence des formes du 

codebook pour un scripteur particulier. Deux écritures sont ensuite comparées en calculant la 

distance entre les distributions de probabilité respectives h
D et h

Q de produire les formes du 

codebook. 

L’identification de scripteur est effectuée en calculant la distance entre l'image requête Q et 

toutes les images dans la base d’apprentissage en utilisant une caractéristique sélectionnée, l'auteur 

de Q étant identifié comme l'auteur du document qui donne la distance minimale. Cela correspond 

à la classification du plus proche voisin (knn avec k = 1). 

Pour la vérification de scripteur, on calcule la distance entre deux échantillons donnés et on 

considère qu'ils sont écrits par la même personne si la distance est inférieure à un seuil prédéfini. 

Au-delà de la valeur du seuil, on considère que les échantillons sont écrits par des scripteurs 

différents. En faisant varier le seuil d'acceptation, des courbes ROC sont calculées et la 

performance de la vérification est quantifiée par le « equal error rate » (EER), le point de la courbe 

où le taux de fausses acceptations (FAR) est égal au taux de faux rejets (FRR).  

 

Résultats expérimentaux 

Concernant les résultats expérimentaux, nous avons d'abord effectué une évaluation comparative 

des codebooks universel et propre au scripteur sur les 650 scripteurs dans la base IAM. Une 

analyse comparative des performances des deux révèle que représenter les écritures dans un espace 

commun conduit à de meilleurs résultats sur l'identification et la vérification par rapport à une 

représentation dans un espace spécifique au scripteur (un taux d'identification de 84% contre 81% 

et EER de 4,49 % contre 5,44% comme indiqué dans le Tableau A-2). 
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Tableau A-2 Résultats (en pourcentages) des caractéristiques basées sur des codebooks 

Data Set IAM 

650 Writers 

Codebook Top1 Top10 EER 

Writer-specific 81 94 5,44 

Universal 84 96 4,49 

 

Pour les caractéristiques basées sur le contour, nous avons réalisé une série détaillée 

d'expériences pour évaluer la performance des caractéristiques individuelles, ainsi que leurs 

diverses combinaisons. En plus de la base IAM, nous avons également testé ces caractéristiques sur 

375 scripteurs de la base de données RIMES. Nous avons réalisé un taux d'identification de 89% 

(Top10: 97%) sur les écritures dans la base IAM et de 85% (Top10: 93%) sur les images de 

RIMES tandis que les EER correspondant étaient de 2,46% et 4,87% respectivement. Les résultats 

de la combinaison de différentes caractéristiques sont résumés dans le Tableau A-3. Nous avons 

également étudié l'effet de combiner les caractéristiques de contour avec celles de codebook. En 

utilisant ces caractéristiques, on obtient des taux d’identification qui sont comparables aux 

meilleurs résultats rapportés à ce jour pour l'identification de scripteur hors ligne (Tableau A-4).  

Tableau A-3 Résultats (en pourcentages) des caractéristiques basées sur des contours 

Data Set IAM 

650 Writers 

RIMES 

375 Writers 

Feature Combination Top1 Top10 EER Top1 Top10 EER 

Global  81 93 4,08 77 92 6,18 

Local 81 95 3,76 77 89 7,85 

Polygon Based 83 97 2,77 81 93 5,16 

Global & Local 83 96 3,81 80 91 6,65 

Global & Polygon Based 85 96 3,32 82 92 5,92 

Local & Polygon Based 87 97 3,03 83 93 5,11 

All Features 89 97 2,46 85 93 4,87 

 

Nous avons également mené une étude sur la pertinence des caractéristiques proposées en 

utilisant un processus de sélection de caractéristiques. En considérant les fréquences de sélection, 

nous les avons régroupées en trois catégories, les caractéristiques indispensables, partiellement 

pertinentes et non pertinentes [Pervouchine & Leedham, 2007]. Nous avons été capable de 

maintenir de très bons taux d’identification en gardant environ 50% des caractéristiques 

uniquement. 

Enfin, nous avons démontré la généralité de notre méthode en l'employant pour la classification 

de manuscrits médiévaux, pour la vérification des signatures et la reconnaissance de scripteur sur 
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les documents manuscrits en Arabe. Les résultats sur chacune de ces applications sont très 

prometteurs, validant ainsi les caractéristiques proposées. 

Tableau A-4 Comparaison de performance de l'identification de scripteur sur la base IAM 

 Scripteurs Echantillon/ 

scripteur 

Performance 

[Marti et al., 2001] 20 5 90.7% 

[Bensefia et al., 2005b] 150 2 86% 

[Schlapbach & Bunke, 2006a] 100 5/4 98,46% 

[Bulacu & Schomaker, 2007] 650 2 89%* 

Méthode propose 650 2 91% / 89%* 

 

Il y a aussi quelques pistes de recherche intéressantes prévues par notre travail. Tout d’abord, en  

ayant la capcité d'ajuster automatiquement la taille des fenêtres locales (dépendant des détails de 

l'écriture) pendant la phase de découpage de l’écriture, on peut avoir un système plus robuste. 

L'idée des formes redondantes d'écriture pourrait être développée afin d'étudier si une personne qui 

écrit plusieurs langues ou utilise différents alphabets partage certaines caractéristiques de 

base/formes entre les deux cas. Il serait très intéressant d'analyser si l'on pouvait reconnaître le 

scripteur d'un texte écrit dans un alphabet à partir d'échantillons du même scripteur dans un 

alphabet  différent. La capacité d’analyser le texte à différentes résolutions et avec différentes 

épaisseurs des traits peut également être inclus dans le système. 

Pour finir, l'auteur espère que le contenu de cette thèse sera d'une aide précieuse aux chercheurs 

qui travaillent sur la reconnaissance de scripteur ou des problèmes similaires. Bien que l'objectif de 

performance exigé pour les applications « forensic »  ne soit pas encore rempli, ce travail est 

néanmoins une contribution importante au domaine. 

 

 

 

 

 

 

 

 

 

 

 

                                                      
* k-nn using a leave-one-out approach 
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Appendix B 

Results: Codebook Features 

 

Table B-1 Writer identification rates (on 150 writers of IAM dataset) on different clustering 

methods for writer-specific and universal codebooks 

Codebook Writer Specific Universal 

Clustering method Top1 Top10 Top1 Top10 

Sequential clustering 83 96 91 97 

Iterative sequential clustering 80 92 86 95 

Minimum spanning tree clustering 77 89 80 92 

Hierarchical clustering 86 97 92 97 

 

 

Table B-2 Writer identification performance (on 300 writers of IAM dataset) as a function of 

codebook size 

 

 

 

Table B-3 Writer identification performance (on 300 writers of IAM dataset) as a function of 

the number of samples (writers) used to generate the codebook 

 

 

 

 

 

 

 

Codebook Size 50 100 250 300 350 400 500 750 

Top1 86 90 90 89 88 85 84 86 

Top10 94 95 95 95 95 95 95 94 

Number of samples 1 5 10 25 50 100 

Top1 84 89 89 89 90 91 

Top10 94 95 95 95 95 96 
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Table B-4 Writer identification rates (on 300 writers of IAM dataset) as function of amount 

of text 

Codebook Writer Specific Universal 

Amount of text Top1 Top10 Top1 Top10 

One word 07 22 10 34 

Two words 17 41 18 50 

One line 21 51 29 66 

Two lines 43 78 48 88 

Three lines 58 85 68 94 

Four lines 71 92 78 94 

Complete page 85 94 90 95 
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Appendix C 

Results: Contour Based Features 

IAM Data Set RIMES Data Set 

  

Global Chain Code Features 

  

Local (Window-based) Chain Code Features 

  

Polygon-based Features 

Performance of individual features on Writer Identification 
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IAM Data Set RIMES Data Set 

  

Global Chain Code Features 

  

Local (Window-based) Chain Code Features 

  

Polygon-based Features 

ROC curves for individual features 
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Appendix D 

Feature Selection Results 

This appendix presents the features  f1’ – f15’ selected in ten runs of the genetic algorithm where fi’ 

represents the feature fi with a reduced dimension (as discussed in section 4.6.2.3). 

 

f1’ f2’ f3’ f4’ f5’ f6’ f7’ f8’ f9’ f10’ f11’ f12’ f13’ f14’ f15’ 
               

 
               

 
               

 
               

 
               

 
               

 
               

 
               

 
               

 
               
               
  Features selected:   Features not selected:      

Features (reduced dimension) selected in ten runs of the GA 

Run Features Top 1 Top 10 

1 f4’,f5’,f6’,f8’,f9’,f10’,f12’,f15’ 90.15 98 

2 f5’,f6’,f8’,f9’,f10’,f15’ 89.85 97.69 

3 f4’,f5’,f6’,f8’,f9’,f10’,f12’,f15’ 90.15 98 

4 f4’,f5’,f6’,f8’,f9’,f10’,f12’,f15’ 90.15 98 

5 f4’,f5’,f6’,f8’,f9’,f10’,f12’,f15’ 90.15 98 

6 f5’,f6’,f8’,f9’,f10’,f15’ 89.85 97.69 

7 f4’,f5’,f6’,f8’,f9’,f10’,f12’,f15’ 90.15 98 

8 f4’,f5’,f6’,f8’,f9’,f10’,f12’,f15’ 90.15 98 

9 f5’,f6’,f8’,f9’,f10’,f15’ 89.85 97.69 

10 f4’,f5’,f6’,f8’,f9’,f10’,f12’,f15’ 90.15 98 

Average - 90.06 97.90 

Performance of selected feature subsets on 650 writers of the IAM data set 
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Appendix E

Sample Images

Dataset : IAM 

Appendix E 

Sample Images 
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Dataset : RIMES 
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Dataset : Graphem 
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Dataset : IFN/ENIT 
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Sample Signatures 
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Appendix F 

Graphem Retrieval Software: User Interface 

 

Query Image 

Image selected from 

the retrieved list 

Retrieved list of similar 

images: Ranks, Image 

Names & Distances 

Weights for each of 

the features 



 

 128 

Bibliography 

[Ahmad et al., 2003] Ahmad, M. B., Park, J.-A., Chang, M. H., Shim, Y.-S., & Choi, T.-S. 

(2003). Shape registration based on modified chain codes. In Advanced Parallel Processing 

Technologies (pp. 600–607).: Springer Berlin / Heidelberg. 

[Aiolli et al., 1999] Aiolli, F., Simi, M., Sona, D., Sperdut, A., Starita, A., & Zaccagnini, G. 

(1999). Spi: a system for palaeographic inspections. AIIA Notizie, 4, 34–38. 

[Arazi, 1977] Arazi, B. (1977). Handwriting identification by means of run-length 

measurements. IEEE Trans. Syst., Man and Cybernetics, 7(12), 878–881. 

[Arazi, 1983] Arazi, B. (1983). Automatic handwriting identification based on the external 

properties of the samples. IEEE Trans. Syst., Man and Cybernetics, 13(4), 635–642. 

[Bach et al., 1996] Bach, J. R., Fuller, C., Gupta, A., Hampapur, A., Horowitz, B., Humphrey, 

R., Jain, R. C., & Shu, C.-F. (1996). Virage image search engine: an open framework for image 

management. In SPIE Conf. on Storage and Retrieval for Still Image and Video Databases IV, 

volume 2076. 

[Baggett, 2004] Baggett, B. (2004). Handwriting Analysis 101-The Basic Traits. Empressé 

Publishing. 

[Bandera et al., 1999] Bandera, A., Urdiales, C., Arrebola, F., & Sandoval, F. (1999). 2d object 

recognition based on curvature functions obtained from local histograms of the contour chain 

code. Pattern Recognition Letters, 20, 49 – 55. 

[Bar-Yosef, 2005] Bar-Yosef, I. (2005). Input sensitive thresholding for ancient hebrew 

manuscript. Pattern Recognition Letters, 26, 1168 – 1173. 

[Belongie et al., 2002] Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object 

recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 24(4), 509–522. 

[Bensefia et al., 2002] Bensefia, A., Nosary, A., Paquet, T., & Heutte, L. (2002). Writer 

identification by writer's invariants. In IWFHR '02: Proceedings of the Eighth International 

Workshop on Frontiers in Handwriting Recognition (pp. 274–279). Washington, DC, USA: 

IEEE Computer Society. 

[Bensefia et al., 2003] Bensefia, A., Paquet, T., & Heutte, L. (2003). Information retrieval based 

writer identification. In IGS'03:In Proceedings of the 11th Conference of the International 

Graphonomics Society. 



 

  129

[Bensefia et al., 2005a] Bensefia, A., Paquet, T., & Heutte, L. (2005a). Handwritten document 

analysis for automatic writer recognition. Electronic Letters on Computer Vision and Image 

Analysis, ELCVIA, 5(2), 72–86. 

[Bensefia et al., 2005b] Bensefia, A., Paquet, T., & Heutte, L. (2005b). A writer identification and 

verification system. Pattern Recognition Letters, 26(13), 2080–2092. 

[Boulétreau, 1997] Boulétreau, V. (1997). Vers un classement de l’écrit par des méthodes 

fractales. PhD thesis. 

[Boulétreau et al., 1995] Boulétreau, V., Vincent, N., & Emptoz, H. (1995). A writing qualification 

invariant towards line thickness and resolution changings. In ACCV'95:In Proceedings of the 

Asian Conference on Computer Vision (pp. 325–329). 

[Boulétreau et al., 1998] Boulétreau, V., Vincent, N., Sabourin, R., & Emptoz, H. (1998). 

Handwriting and signature: One or two personality identifiers? In ICPR '98: Proceedings of the 

14th International Conference on Pattern Recognition-Volume 2 (pp. 1758–1760). Washington, 

DC, USA: IEEE Computer Society. 

[Bulacu & Schomaker, 2003] Bulacu, M. & Schomaker, L. (2003). Writer style from oriented 

edge fragments. In Proc. of the 10th Int. Conference on Computer Analysis of Images and 

Patterns (pp. 460–469).: Springer. 

[Bulacu & Schomaker, 2005] Bulacu, M. & Schomaker, L. (2005). A comparison of clustering 

methods for writer identification and verification. In ICDAR '05: Proceedings of the Eighth 

International Conference on Document Analysis and Recognition (pp. 1275–1279). 

Washington, DC, USA: IEEE Computer Society. 

[Bulacu & Schomaker, 2006] Bulacu, M. & Schomaker, L. (2006). Combining multiple features 

for text-independent writer identification and verification. In IWFHR'06:10th International 

Workshop on Frontiers in Handwriting Recognition. 

[Bulacu & Schomaker, 2007] Bulacu, M. & Schomaker, L. (2007). Text-independent writer 

identification and verification using textural and allographic features. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 29(4), 701–717. Student Member-Bulacu,, Marius 

and Member-Schomaker,, Lambert. 

[Bulacu et al., 2003] Bulacu, M., Schomaker, L., & Vuurpijl, L. (2003). Writer identification 

using edge-based directional features. In ICDAR '03: Proceedings of the Seventh International 

Conference on Document Analysis and Recognition (pp. 937–941). Washington, DC, USA: 

IEEE Computer Society. 



 

  130

[Chen & Chen, 1997] Chen, T.-Y. & Chen, C.-J. (1997). Improvements of simple genetic 

algorithm in structural design. International Journal for Numerical Methods in Engineering, 40, 

1323–1334. 

[Chiu & Tseng, 1997] Chiu, H.-P. & Tseng, D.-C. (1997). A feature-preserved thinning 

algorithm for handwritten chinese characters. Signal Processing, 58(2), 203–214. 

[Chung & Wong, 1998] Chung, Y. Y. & Wong, M. T. (1998). High accuracy handwritten character 

recognition system using contour sequence moments. In ICSP’98: Porceedings of the fourth 

International Conference on Signal Processing (pp. 1249 – 1252). 

[Costa & Jr, 2001] Costa, L. D. F. & Jr, R. M. C. (2001). Shape Analysis and Classification: 

Theory and Practice. CRC Press. 

[Crettez, 1995] Crettez, J.-P. (1995). A set of handwriting families: style recognition. In ICDAR 

'95: Proceedings of the Third International Conference on Document Analysis and Recognition 

(pp. 489–494). 

[Dos Santos et al., 2009] Dos Santos, E. M., Sabourin, R., & Mauping, P. (2009). 

Overfitting cautious selection of classifier ensembles with genetic algorithms. International 

Journal of Information Fusion, 10, 150–162. 

[Duda & Hart, 2000] Duda, R. O. & Hart, P. E. (2000). Pattern Classification and Scene 

Analysis, 2nd Edition. John Wiley & Sons Inc. 

[Eaton, 1938] Eaton, H. D. (1938). Handwriting a neurological study. California and Western 

Medicine, 48(6), 430–435. 

[Eglin et al., 2007] Eglin, V., Bres, S., & Carlos, R. (2007). Hermite and gabor transforms for 

noise reduction and handwriting classification in ancient manuscripts. International Journal on 

Document Analysis and Recognition, 9(2), 101–122. 

[Eldridge et al., 1984] Eldridge, M., Nimmo-Smith, I., Wing, A., & Totty, R. (1984). The 

variability of selected features in cursive handwriting: Categorical measures. Journal of the 

Forensic Science Society, 24, 179–219. 

[Feng & Tan, 2004] Feng, M.-L. & Tan, Y.-P. (2004). Contrast adaptive binarization of low 

quality document images. IEICE Electronics Express, 1(16), 501–506. 

[Fisher, 1995] Fisher, Y. (1995). Fractal Image Compression : Theory and Application. Springer-

Verlag, New York. 

[Freeman, 1974] Freeman, H. (1974). Computer processing of line-drawing images. 

Computing Surveys, 6(1), 57–97. 



 

  131

[Friedman & Kandel, 1999] Friedman, M. & Kandel, A. (1999). Introduction to Pattern 

Recognition : Statistical, Structural, Neural and Fuzzy Logic Approaches. World Scientific 

Publishing Company. 

[Gilloux, 1994] Gilloux, M. (1994). Writer adaptation for handwritten word recognition using 

hidden markov models. In ICPR'94:In Proceedings of the 12th International Conference on 

Pattern Recognition (pp. 135–139). 

[Greening et al., 1995] Greening, C., Sagar, V., & Leedham, C. (1995). Automatic feature 

extraction for forensic purposes. In Proceedings of the Fifth International Conference on Image 

Processing and its Applications (pp. 409 – 414). 

[Grosicki et al., 2008] Grosicki, E., Carré, M., , Brodin, J.-M., & Geoffrois, E. (2008). Rimes 

evaluation campaign for handwritten mail processing. In ICFHR'08: In Proceedings of 11th 

Int'l Conference on Frontiers in Handwriting Recognition. 

[Guyon & Elisseef, 2003] Guyon, I. & Elisseef, A. (2003). An introduction to variable and 

feature selection. Journal of Machine Learning Research, 3, 1157–1182. 

[Guyon et al., 2006] Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A., Eds. (2006). Feature 

Extraction: Foundations and Applications, volume 207 of Studies in Fuzziness and Soft 

Computing. Springer. 

[Guyon et al., 1994] Guyon, I., Schomaker, L., Plamondon, R., Liberman, M., & Janet, S. 

(1994). Unipen project of on-line data exchange and recognizer benchmarks. In ICPR'94: In 

Proceedings of the 12th International Conference on Pattern Recognition (pp. 29–33). 

[Heutte et al., 1998] Heutte, L., Paquet, T., Moreau, J. V., Lecourtier, Y., & Olivier, C. (1998). 

A structural/statistical feature based vector for handwritten character recognition. Pattern 

Recognition Letters, 19, 629–641. 

[Huber & Headrick, 1999] Huber, R. A. & Headrick, A. (1999). Handwriting Identification: 

Facts and Fundamentals. CRC Press. 

[Hull, 1994] Hull, J. (1994). A database for handwritten text recognition research. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 16(5), 550–554. 

[Jain & Dubes, 1988] Jain, A. K. & Dubes, R. C. (1988). Algorithms for Clustering Data. 

Prentice-Hall, Inc. 

[Jain et al., 1999] Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. 

ACM Computing Surveys, 31(3), 264–323. 



 

  132

[Joutel et al., 2007a] Joutel, G., Eglin, V., Bres, S., & Emptoz, H. (2007a). Curvelets based 

feature extraction of handwritten shapes for ancient manuscripts classification. In SPIE (Ed.), 

Document Recognition and Retrieval XIV (pp. 0D1–0D12). 

[Joutel et al., 2007b] Joutel, G., Eglin, V., Bres, S., & Emptoz, H. (2007b). Curvelets based 

queries for cbir application in handwriting collections. In ICDAR '07: Proceedings of the Ninth 

International Conference on Document Analysis and Recognition (ICDAR 2007) Vol 2 (pp. 

649–653). Washington, DC, USA: IEEE Computer Society. 

[Joutel et al., 2008] Joutel, G., Eglin, V., & Emptoz, H. (2008). A complete pyramidal 

geometrical scheme for text based image description and retrieval. In ICISP '08: Proceedings of 

the 3rd international conference on Image and Signal Processing (pp. 471–480). 

[Ke Liu & Suen, 1999] Ke Liu, Y. S. H. & Suen, C. Y. (1999). Identification of fork points on the 

skeletons of handwritten chinese characters. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 21(10), 1095–1100. 

[Kim & Govindaraju, 1997] Kim, G. & Govindaraju, V. (1997). A lexicon driven approach to 

handwritten word recognition for real-time applications. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 19(4), 366–379. 

[Kohonen, 1988] Kohonen, T. (1988). Self-Organization and Associative Memory. Springer; 

2nd edition. 

[Koppenhaver, 2007] Koppenhaver, K. M. (2007). Forensic Document Examination: Principles 

and Practice. Humana Press. 

[Lee & Street, 2002] Lee, K.-M. & Street, W. N. (2002). Incremental feature weight learning 

and its application to a shape-based query system. Pattern Recognition Letters, 23(7), 865 – 

874. 

[Lee, 1999] Lee, S.-W. (1999). Advances in Handwriting Recognition. World Scientific 

Publishing Company. 

[Leedham & Chachra, 2003] Leedham, G. & Chachra, S. (2003). Writer identification using 

innovative binarised features of handwritten numerals. In ICDAR '03: Proceedings of the 

Seventh International Conference on Document Analysis and Recognition (pp. 413). 

[Leedham et al., 2003] Leedham, G., Yan, C., Takru, K., Tan, J. H. N., & Mian, L. (2003). 

Comparison of some thresholding algorithms for text/background segmentation in difficult 

document images. In ICDAR '03: Proceedings of the Seventh International Conference on 

Document Analysis and Recognition (pp. 859). 



 

  133

[Legault & Suen, 1992] Legault, R. & Suen, C. (1992). A comparison of methods of extracting 

curvature features. In Proceedings of the 11th IAPR International Conference on Pattern 

Recognition. 

[Maarse & Thomassen, 1983] Maarse, F. J. & Thomassen, A. J. W. M. (1983). Produced and 

perceived writing slant: differences between up and down strokes. Acta Psychologica, 54(1-3), 

131–147. 

[Madhvanath & Govindaraju, 1997] Madhvanath, S. & Govindaraju, V. (1997). Contour-based 

image preprocessing for holistic handwritten word recognition. In ICDAR '97: Proceedings of 

the 4th International Conference on Document Analysis and Recognition (pp. 536–539). 

[Mandelbrot, 1975] Mandelbrot, B. (1975). Les objets fractals. Flammarion. 

 

[Margner & Abed, 2009] Margner, V. & Abed, H. E. (2009). Icdar 2009 arabic handwriting 

recognition competition. In ICDAR '09: Proceedings of the 10th International Conference on 

Document Analysis and Recognition (pp. 1383–1387). 

[Margner & Abed, 2007] Margner, V. & Abed, H. E. (2007). Arabic handwriting 

recognition competition. In ICDAR '07: Proceedings of the Ninth International Conference on 

Document Analysis and Recognition (pp. 1274–1278). 

[Margner et al., 2005] Margner, V., Pechwitz, M., & Abed, H. (2005). Icdar 2005 arabic 

handwriting recognition competition. In ICDAR '05: Proceedings of the Eighth International 

Conference on Document Analysis and Recognition (pp. 70– 74). 

[Marti & Bunke, 2002] Marti, U.-V. & Bunke, H. (2002). The iam-database: an english sentence 

database for offline handwriting recognition. International Journal on Document Analysis and 

Recognition, 5, 1433–2825. 

[Marti et al., 2001] Marti, U.-V., Messerli, R., & Bunke, H. (2001). Writer identification using 

text line based features. In ICDAR '01: Proceedings of the Sixth International Conference on 

Document Analysis and Recognition (pp. 101–105). Washington, DC, USA: IEEE Computer 

Society. 

[Mergl et al., 2004] Mergl, R., Juckel, G., Rihl, J., Henkel, V., Karner, M., Tigges, P., 

Schröter, A., & Hegerl, U. (2004). Kinematical analysis of handwriting movements in 

depressed patients. Acta Psychiatrica Scandinavica, 109(5), 383–391. 

[Miura et al., 1997] Miura, K. T., Sato, R., & Mori, S. (1997). A method of extracting 

curvature features and its application to handwritten character recognition. In ICDAR '97: 

Proceedings of the 4th International Conference on Document Analysis and Recognition (pp. 

450–454). 



 

  134

[Moalla et al., 2006] Moalla, I., LeBourgeois, F., Emptoz, H., , & Alimi, A. M. (2006). 

Contribution to the discrimination of the medieval manuscript texts : Application in the 

palaeography. In DAS'06: In Proceedings of the 7th international workshop on Document 

Analysis Systems (pp. 25–37). 

[Nadler & Smith, 1993] Nadler, M. & Smith, E. P. (1993). Pattern Recognition Engineering. 

Wiley-Interscience. 

[Naske, 1982] Naske, R. (1982). Writer recognition by prototype related deformation of 

handprinted characters. In ICPR'82:In Proceedings of the 6th International Conference on 

Pattern Recognition (pp. 819–822). 

[Niblack et al., 1993] Niblack, C. W., Barber, R., Equitz, W., Flickner, M. D., Glasman, E. H., 

Petkovic, D., Yanker, P., Faloutsos, C., & Taubin, G. (1993). The qbic project: querying images 

by content, using color, texture, and shape. In Proc. SPIE Conf. on Storage and Retrieval for 

Image and Video Databases V, volume 1908 (pp. 173–187). 

[Niblack, 1986] Niblack, W. (1986). An Introduction to Digital Image Processing. Prentice-Hall, 

Inc. 

[Nickell, 2007] Nickell, J. (2007). Detecting Forgery Forensic Investigation of Documents. 

University Press of Kentucky. 

[Nickell & Fischer, 1999] Nickell, P. J. & Fischer, J. F. (1999). Crime Science: Methods of 

Forensic Detection. The University Press of Kentucky. 

[Ünlü et al., 2006] Ünlü, A., Brause, R., & Krakow2, K. (2006). Handwriting analysis for 

diagnosis and prognosis of parkinson’s disease. In Proc. of the Int. Symp. Biological and 

Medical Data Analysis, volume LNCS Vol 4345 (pp. 441–450). 

[Nosary et al., 1998] Nosary, A., Heutte, L., Paquet, T., & Lecourtier, Y. (1998). A step 

towards the use of writer's properties for text recognition. 

[Nosary et al., 1999] Nosary, A., Heutte, L., Paquet, T., & Lecourtier, Y. (1999). Defining 

writer's invariants to adapt the recognition task. In ICDAR '99: Proceedings of the Fifth 

International Conference on Document Analysis and Recognition (pp. 765–768). Washington, 

DC, USA: IEEE Computer Society. 

[Nosary et al., 2002] Nosary, A., Paquet, T., Heutte, L., & Bensefia, A. (2002). Handwritten 

text recognition through writer adaptation. In IWFHR '02: Proceedings of the Eighth 

International Workshop on Frontiers in Handwriting Recognition. 

[Olyanova, 1960] Olyanova, N. (1960). The Psychology of Handwriting. Sterling Pub Co 

Inc, NY. 



 

  135

[Otsu, 1979] Otsu, N. (1979). A threshold selection method from grey-level histograms. IEEE 

Trans. Syst., Man., Cybern., SMC-9, 62–66. 

[Päivinen, 2005] Päivinen, N. (2005). Clustering with a minimum spanning tree of scale-

free-like structure. Pattern Recogn. Lett., 26(7), 921–930. 

[Pareti & Vincent, 2006] Pareti, R. & Vincent, N. (2006). Global method based on pattern 

occurrences for writer identification. In IWFHR'06: Proceedings of the 10th International 

Workshop on Frontiers in Handwriting Recognition. 

[Peake & Tan, 1997] Peake, G. S. & Tan, T. N. (1997). Script and language identification from 

document images. In BMVC'97:In Proceedings of British Machine Vision Conference, 

volume 2 (pp. 610–619). 

[Pervouchine & Leedham, 2006] Pervouchine, V. & Leedham, G. (2006). Extraction and 

analysis of document examiner features from vector skeletons of grapheme 'th'. In DAS'06: In 

Proceedings of the 7th international workshop on Document analysis systems (pp. 197–207). 

[Pervouchine & Leedham, 2007] Pervouchine, V. & Leedham, G. (2007). Extraction and 

analysis of forensic document examiner features used for writer identification. Pattern Recogn., 

40(3), 1004–1013. 

[Peura & Iivarinen, 1997] Peura, M. & Iivarinen, J. (1997). Efficiency of simple shape 

descriptors. In In Aspects of Visual Form (pp. 443–451). 

[Plamondon & Lorette, 1989] Plamondon, R. & Lorette, G. (1989). Automatic signature 

verification and writer identification – the state of the art. Pattern Recognition, 22(2), 107–131. 

[Plamondon & Srihari, 2000] Plamondon, R. & Srihari, S. N. (2000). On-line and off-line 

handwriting recognition: A comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell., 

22(1), 63–84. 

[Prim, 1957] Prim, R. (1957). Shortest connection networks and some generalizations. Bell 

Systems Technical Journal, (pp. 1389–1401). 

[Racine et al., 2008] Racine, M. B., Majnemer, A., Shevell, M., & Snider, L. (2008). 

Handwriting performance in children with attention deficit hyperactivity disorder (adhd). 

Journal of Child Neurology, 23(4), 399–406. 

[Rath & Manmatha, 2007] Rath, T. M. & Manmatha, R. (2007). Word spotting for historical 

documents. International Journal on Document Analysis and Recognition, 9, 139–152. 

[Rui et al., 1997] Rui, Y., Huang, T. S., & Mehrotra, S. (1997). Content-based image 

retrieval with relevance feedback in mars. In ICIP'97:In Proceedings of the IEEE International 

Conference on Image Processing (pp. 815–818). 



 

  136

[Rui et al., 1998] Rui, Y., Huang, T. S., Ortega, M., & Mehrotra, S. (1998). Relevance 

feedback: A power tool for interactive content-based image retrieval. IEEE Transactions on 

Circuits and Systems for Video Technology, 8(5), 644 – 655. 

[Sage & Duvoisin, 2001] Sage, J. I. & Duvoisin, R. (2001). Parkinson's Disease: A Guide 

for Patient and Family. Lippincott Williams and Wilkins. 

[Said et al., 2000] Said, H. E. S., Tan, T. N., & Baker, K. D. (2000). Personal identification 

based on handwriting. Pattern Recognition, 33, 149–160. 

[Sarfraz & Ridha, 2007] Sarfraz, M. & Ridha, A. (2007). Content-based image retrieval using 

multiple shape descriptors. In IEEE/ACS International Conference on Computer Systems and 

Applications (pp. 730 – 737). 

[Sauvola et al., 1997] Sauvola, J. J., Seppänen, T., Haapakoski, S., & Pietikäinen, M. (1997). 

Adaptive document binarization. In ICDAR '97: Proceedings of the 4th International 

Conference on Document Analysis and Recognition (pp. 147–152). 

[Schlapbach, 2007] Schlapbach, A. (2007). Writer Identification and Verification. 

[Schlapbach & Bunke, 2004] Schlapbach, A. & Bunke, H. (2004). Using hmm based 

recognizers for writer identification and verification. In IWFHR '04: Proceedings of the Ninth 

International Workshop on Frontiers in Handwriting Recognition (pp. 167–172). Washington, 

DC, USA: IEEE Computer Society. 

[Schlapbach & Bunke, 2006a] Schlapbach, A. & Bunke, H. (2006a). Off-line writer identification 

using gaussian mixture models. In ICPR '06: Proceedings of the 18th International Conference 

on Pattern Recognition (pp. 992–995). Washington, DC, USA: IEEE Computer Society. 

[Schlapbach & Bunke, 2006b] Schlapbach, A. & Bunke, H. (2006b). Off-line writer verification: 

A comparison of a hidden markov model (hmm) and a gaussian mixture model (gmm) based 

system. 

[Schomaker & Bulacu, 2004] Schomaker, L. & Bulacu, M. (2004). Automatic writer 

identification using connected-component contours and edge-based features of uppercase 

western script. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6), 787–

798. 

[Schomaker et al., 2004] Schomaker, L., Bulacu, M., & Franke, K. (2004). Automatic 

writer identification using fragmented connected-component contours. 

[Schomaker, 1998] Schomaker, L. S. (1998). From handwriting analysis to pen-computer 

applications. IEE Electronics Communication Engineering Journal, 10, 93–102. 



 

  137

[Seropian, 2003] Seropian, A. (2003). Analyse de Document et Identification de Scripteurs. 

PhD thesis, University Toulon. 

[Seropian et al., 2003] Seropian, A., Grimaldi, M., & Vincent, N. (2003). Writer identification 

based on the fractal construction of a reference base. In Seventh International Conference on 

Document Analysis and Recognition, ICDAR 2003. 

[Seropian & Vincent, 2002] Seropian, A. & Vincent, N. (2002). Writers authentication and 

fractal compression. In IWFHR'02:In Proceedings of the 8th International Workshop on 

Frontiers in Handwriting Recognition (pp. 434–439). 

[Siddiqi & Vincent, 2007] Siddiqi, I. & Vincent, N. (2007). Writer identification in 

handwritten documents. In ICDAR '07: Proceedings of the Ninth International Conference on 

Document Analysis and Recognition (ICDAR 2007), volume 1 (pp. 108–112).: IEEE Computer 

Society. 

[Siddiqi & Vincent, 2008] Siddiqi, I. & Vincent, N. (2008). Combining global and local 

features for writer identification. In ICFHR '08: Proceedings of the Eleventh International 

Conference on Frontiers in Handwriting Recognition. 

[Siedlecki & Sklansky, 1989] Siedlecki, W. & Sklansky, J. (1989). A note on genetic algorithms 

for large-scale feature selection. Pattern Recognition Letters, 10(5), 335–347. 

[Srihari et al., 2002] Srihari, S. N., Cha, S.-H., Arora, H., & Lee, S. (2002). Individuality of 

handwriting. Journal of Forensic Sciences, 47(4). 

[Srihari et al., 2003] Srihari, S. N., Tomai, C. I., Zhang, B., & Lee, S. (2003). Individuality of 

numerals. In ICDAR '03: Proceedings of the Seventh International Conference on Document 

Analysis and Recognition (pp. 1096–1100). 

[Suen et al., 1992] Suen, C., Nadal, C., Legault, R., Mai, T., & Lam, L. (1992). Computer 

recognition of unconstrained handwritten numerals. Special Issue of Proc IEEE, 80(7), 1162–

1180. 

[Sutanto et al., 2003] Sutanto, P. J., Leedham, G., & Pervouchine, V. (2003). Study of the 

consistency of some discriminatory features used by document examiners in the analysis of 

handwritten letter a. In ICDAR '03: Proceedings of the Seventh International Conference on 

Document Analysis and Recognition (pp. 1091). 

[Tan et al., 2009] Tan, G. X., Viard-Gaudin, C., & Kot, A. C. (2009). Impact of alphabet 

knowledge on online writer identification. In ICDAR'09:In Proceedings of the 10th 

International Conference on Document Analysis and Recognition. 



 

  138

[Tan, 1996] Tan, T. (1996). Written language recognition based on texture analysis. In 

ICIP'96: In Proceedings of International Conference on Image Processing, volume 2 (pp. 185–

188). 

[Tomai et al., 2004] Tomai, C. I., Zhang, B., & Srihari, S. N. (2004). Discriminatory power of 

handwritten words for writer recognition. In ICPR '04: Proceedings of the 17th International 

Conference on Pattern Recognition (pp. 638–641). 

[Viard-Gaudin et al., 1999] Viard-Gaudin, C., Lallican, P. M., Binter, P., & Knerr, S. (1999). 

The ireste on/off (ironoff) dual handwriting database. In ICDAR '99: Proceedings of the Fifth 

International Conference on Document Analysis and Recognition (pp. 455). 

[Vincent & Emptoz, 1995] Vincent, N. & Emptoz, H. (1995). A classification of writings 

based on fractals. Fractal Reviews in the Natural and Applied Sciences, (pp. 320–331). 

[Vincent et al., 2005] Vincent, N., Seropian, A., & Stamon, G. (2005). Synthesis for handwriting 

analysis. Pattern Recogn. Lett., 26(3), 267–275. 

[Vinciarelli, 2002] Vinciarelli, A. (2002). A survey on offline cursive word recognition. 

Pattern Recognition, 35, 1433–1446. 

[Wall & Danielsson, 1984] Wall, K. & Danielsson, P.-E. (1984). A fast sequential method for 

polygonal approximation of digitized curves. Computer Vision, Graphics, and Image 

Processing, 28(3), 220–227. 

[Wilkinson et al., 1992] Wilkinson, R., Geist, J., Janet, S., Grother, P., C.J.C.Burges, Creecy, R., 

Hammond, B., Hull, J., Larsen, N., Vogl, T., & Wilson, C. (1992). The first census optical 

character recognition systems conference. In NISTIR 4912, National Institute of Standards and 

Technology, Gaithersburg, Md., USA,. 

[Wirotius, 2005] Wirotius, M. (2005). Authetification par signature manuscrite sur support 

nomade. PhD thesis, Université de Tours. 

[Wolf & Jolion, 2003] Wolf, C. & Jolion, J.-M. (2003). Extraction and recognition of artificial 

text in multimedia documents. Pattern Anal. Appl., 6(4), 309–326. 

[Xu & Uberbacher, 1997] Xu, Y. & Uberbacher, E. C. (1997). 2d image segmentation using 

minimum spanning trees. Image and Vision Computing, 15, 47–57. 

[Yang et al., 2005] Yang, L., Suen, C. Y., Bui, T. D., & Zhang, P. (2005). Discrimination of 

similar handwritten numerals based on invariant curvature features. Pattern recognition, 38(7), 

947–963. 

[Yosef et al., 2004] Yosef, I. B., Kedem, K., Dinstein, I., Beit-Arie, M., & Engel, E. (2004). 

Classification of hebrew calligraphic handwriting styles: Preliminary results. In DIAL '04: 



 

  139

Proceedings of the First International Workshop on Document Image Analysis for Libraries 

(pp. 299). 

[Zahn, 1971] Zahn, C. (1971). Graph-theoretical methods for detecting and describing gestalt 

clusters. IEEE Transactions on Computers, C-20, 68–86. 

[Zhang & Srihari, 2003]  Zhang, B. & Srihari, S. N. (2003). Analysis of handwriting 

individuality using word features. In 1142-1146 (Ed.), ICDAR '03: Proceedings of the Seventh 

International Conference on Document Analysis and Recognition. 

[Zhang et al., 2003] Zhang, B., Srihari, S. N., & Lee, S. (2003). Individuality of handwritten 

characters. In ICDAR '03: Proceedings of the Seventh International Conference on Document 

Analysis and Recognition (pp. 1086–1090). Washington, DC, USA: IEEE Computer Society. 

[Zipf, 1949] Zipf, G. (1949). Human Behavior and the Principle of Least Effort. Addison-

Wesley. 

[Zois & Anastassopoulos, 2000]  Zois, E. N. & Anastassopoulos, V. (2000). Morphological 

waveform coding for writer identification. Pattern Recognition, 33(3), 385–398. 

[Zramdini & Ingold, 1993] Zramdini, A. W. & Ingold, R. (1993). Optical font recognition 

from projection profiles. Electronic Publishing, 6, 249–260. 



 

  140

Author’s Publications 

2009 Siddiqi, I., Cloppet, F. and Vincent, N.: “Contour Based Features for the 

Classification of Ancient Manuscripts”, In IGS’09: Proceedings of the 14
th
 

Conference of the International Graphonomics Society, 13th – 16th September 2009, 

Dijon, France. 

 

Siddiqi, I. and Vincent, N.: “Combining Contour Based Orientation and Curvature 

Features for Writer Recognition”. In CAIP'09: Proceedings of the Thirteenth 

International Conference on Computer Analysis of Images and Patterns, 2nd – 4th  

September 2009, Münster, Germany.  

 

Siddiqi, I. and Vincent, N.: “A Set of Chain Code Based Features for Writer 

Recognition”. In ICDAR '09: Proceedings of the Tenth International Conference on 

Document Analysis and Recognition, 26th – 29th July 2009, Barcelona, Spain.  

 

Khurshid, K., Siddiqi, I., Faure, C. and Vincent, N.: “Comparison of Niblack 

Inspired Binarization Methods for Ancient Documents”, In DRR’09: Proceedings 

of the 16
th
 Document Recognition and Retrieval Conference, 21st – 22nd January 

2009, San Jose, CA, USA.  

 

2008 Siddiqi, I. and Vincent, N.: « Descripteurs Locaux de Forme pour la 

Reconnaissance de Scripteur », In CIFED’08: X
e
 Colloque International 

Francophone sur l'Ecrit et le Document, 28th – 31st  October 2008, Rouen, France.  

 

Siddiqi, I. and Vincent, N.: “Stroke Width Independent Feature for Writer 

Identification and Handwriting Classification”. In ICFHR '08: Proceedings of the 

Eleventh International Conference on Frontiers in Handwriting Recognition, 19th – 

21st August 2008, Montreal, Canada. 

 

Siddiqi, I. and Vincent, N.: “Combining Global and Local Features for Writer 

Identification”. In ICFHR '08: Proceedings of the Eleventh International 

Conference on Frontiers in Handwriting Recognition, 19th – 21st August 2008, 

Montreal, Canada. 

 

 



 

  141

Siddiqi, I. and Vincent, N.: “How to Define Local Shape Descriptors for Writer 

Identification and Verification”. In PRIS'08: 8th Int'l workshop on Pattern 

Recognition in Information Systems, 12th – 13th  June 2008, Barcelona, Spain. 

 

2007 Siddiqi, I. and Vincent, N.: “Writer Identification in Handwritten Documents”. In 

ICDAR '07: Proceedings of the Ninth International Conference on Document 

Analysis and Recognition, 23rd – 26th September 2007, Curitiba, Brazil. 

 

 

 

 

 

 

 

 

 


