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Goals

▶ Introduce and formalize confounding and selection biases
▶ Introduce DAGs and d-separation
▶ Define causal models through DAGs and the do operator
▶ Discuss rules to identify causal effects from observational data
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Example I: do vitamin-based supplements protect from the
flu?

▶ The dataset vitamines.csv contains n = 200 (simulated)
observations for variables
▶ X : vitamin yes/no (1/0)
▶ Y : flu yes/no (1/0)
▶ Z : lifestyle healthy/unealthy (1/0).

▶ These data were simply observed, i.e. they do not come from
an interventional experiment.

▶ Load the data in R and estimate the conditional probabilities

P(Y = 1|X = 1), P(Y = 1|X = 0),

the relative risk RR = P(Y =1|X=1)
P(Y =1|X=0) , and test the independence

between X and Y .



How to do it in R
▶ Download the dataset in your favorite folder, say the

Desktop, then load it into R with

setwd("~/Desktop") # Unix systems
setwd("C:/Users/account_name/Desktop") # Windows
d <- read.table(file = "vitamines.csv",

sep = ",",
header = TRUE)

▶ To compute the proportion of people with Y = 1 among those
with X = 1 and to test the independence between X and Y :

mean(d$grippe[d$vitamines == 1])
# alternatively:
prop.table(table(d$vitamines, d$grippe))
# rows: vitamins, columns: flu
chisq.test(table(d$vitamines, d$grippe))



A randomized trial

▶ From the preliminary analysis of these observational data, it
looks like that taking vitamin supplements is associated to a
lower flu risk.

▶ But can we conclude that supplements protect from the flu?
▶ This is a causal question!
▶ One way to answer is to carry out an interventional

experiment.
▶ The dataset vitamines_trial.csv contains n = 200

observations from a (simulated) randomized trial in which
participants were assigned to the arm X = 0 or X = 1.

▶ Re-run the previous analysis on this dataset and comment the
results.



Confounding bias

▶ Results from the interventional data are clear: no effect of
vitamins on flu risk whatsoever!

▶ The association seen in the observational data is an example
of spurious association due to confounding.

▶ Can you see why? Reconsider the observational data and
estimate the following conditional probabilities

P(X = 1|Z = 0), P(Y = 1|Z = 0)

and
P(X = 1|Z = 1), P(Y = 1|Z = 1).



Underlying causal model

▶ It looks like people with an healthy lifestyle tend to take
supplements and, because of more hygienic behaviors, are at
lower flu risk.

▶ The actual model used to simulate the data is

Crucial question:

▶ Assuming this causal diagram, is it possible to estimate the
effect of X on Y from the observational dataset?



Adjusting for confounding
▶ The idea is to assess the association between X and Y

holding Z fixed (ceteris paribus)
▶ For z ∈ {0, 1}, estimate the conditional probabilities

P(Y = 1|Z = z , X = 1), P(Y = 1|Z = z , X = 0)

and the relative risk

RRz = P(Y = 1|Z = 1, X = 1)
P(Y = 1|Z = 1, X = 0)

▶ Test the independence between X and Y while taking into
account Z with the Cochran-Mantel-Haenszel test (function
mantelhaen.test(...)). We say that Z is an adjustment
variable.

Why does this work?

▶ In this model, holding Z = z blocks the spurious (i.e.,
non-causal) path between X and Y .



Causal model under intervention

▶ This is exactly what happens in a trial, where it is the
investigator who chooses (albeit randomly) the X value for
each participant.

▶ The causal model under intervention do(X = x) is

▶ Note the missing edge from Z to X : under this intervention,
Z no longer influences X



Example II: comparing kidney stone removal modus
operandi

▶ Summary statistics from observational data:

d < 2cm d ≥ 2cm all ds
success failure success failure success failure

m1 81 6 192 71 273 77
m2 234 36 55 25 289 61

▶ Modus operandi vs Success, unconditional inference:

Pn(success|m1) = 273
350 ≈ 78% < Pn(success|m2) = 289

350 = 83%

▶ It look likes chances of success are higher with m2. . .



Simpson’s paradox
▶ Modus operandi vs Success conditionally on Stone size:

Pn(success|d < 2, m1) = 81
87 ≈ 93% > Pn(success|d < 2, m2) = 234

270 ≈ 87%

Pn(success|d ≥ 2, m1) = 192
263 ≈ 73% > Pn(success|d ≥ 2, m2) = 55

80 ≈ 69%

▶ For each stone size, chances of success are higher with m1. Note
the association reversal!

▶ This is an instance of the so called Simpson’s paradox.
▶ Note that the total probability law implies

Pn(success|m1) = Pn(success, d < 2|m1) + Pn(success, d ≥ 2|m1)
= Pn(success|d < 2, m1)× Pn(d < 2|m1)

+ Pn(success|d ≥ 2, m1)× Pn(d ≥ 2|m1)

= 81
87 ×

87
350 + 192

263 ×
263
350 (1)

= 78%.



Spurious association, again
▶ The previous data were generated according to the causal model

▶ According to this model:
▶ Modus operandi A is influenced by Stone size W : m2 is

preferred with small stones and m1 with larger stones.
▶ Success Y is determined by A and W : m1 and small stones

increase chances of success.
▶ But then what happens when we compute Pn(success|m1)?

Knowing the modus operandi A = m1 says something about
▶ Y because of the directed causal path A→ Y
▶ W , which in turns allow to predict Y .

▶ It is the latter non-causal path A←W → Y that distorts the
observed association!



Debunking Simpson’s paradox (I)

▶ The gold standard to decide what is the best modus operandi
would be conducting a trial where the investigator intervenes
by imposing m1 or m2.

▶ Under such intervention, A is no longer influenced by W : the
non-causal path from A to Y is thus blocked.

▶ Mathematically, we are interested in the law of Y after the
intervention:

Pn(success|do(m1))
▶ Can we estimate this post-intervention law without doing an

actual trial?



Debunking Simpson’s paradox (II)
▶ The post-intervention model is

▶ We will see that from this model we obtain
Pn(success|do(m1)) = Pn(success|d < 2, m1)× Pn(d < 2)+

+ Pn(success|d ≥ 2, m1)× Pn(d ≥ 2)

= 81
87 ×

357
700 + 192

263 ×
343
700 ≈ 83%. (2)

▶ Note that we have taken W into account: we will see that W is an
adjustment variable.

▶ Compare equations (2) and (1): can you see why
Pn(success|m1) < Pn(success|do(m1))?

▶ Show that Pn(success|do(m2)) ≈ 78%.



Example III: does the flu protect against appendicitis?
▶ Consider variables

▶ X : flu yes/no (1/0)
▶ Y : appendicitis yes/no (1/0)
▶ V : hospitalization yes/no (1/0)

▶ with the following causal model

▶ X ∼ B(0.3), i.e. a toss of a biased coin with P(X = 1) = 0.3
▶ Y ∼ B(0.05)
▶ (V |X = x , Y = y) ∼ B(px ,y ) with px ,y given by

X = 0 X = 1
Y = 0 0.05 0.2
Y = 1 1 1



Generating the data

▶ Simulate n = 1000 data points (x , y , v) according to the
model

▶ How to do it in R:

n <- 1000
x <- rbinom(n, size = 1, prob = .3)
# alternative:
# x=sample(0:1,size=n,replace=TRUE,prob=c(.7,.3))
# and similarly for y
v <- 1
v[which(x==0 & y==0)] <- rbinom(length(which(y==0 & x==0)),

size = 1, prob = .05)
# and similarly for simulating v when x = 0 and y = 1...



Berkson’s paradox

▶ Compute the estimates Pn(Y = 1|X = 0) and
Pn(Y = 1|X = 1) and show these are essentially the same.

▶ Test the independence between X and Y .
▶ Show that

Pn(Y = 1|X = 0, V = 1) >> Pn(Y = 1|X = 1, V = 1).
▶ Test the independence between X and Y while taking into

account V with the Cochran-Mantel-Haenszel test.
▶ It look likes that X and Y are independent and become

dependent while conditioning on V :
▶ in the general population the probability of appendicitis is the

same irrespective of the flu
▶ but at the hospital, the flu seems to protect against

appendicitis!
▶ This is an instance of the Berkson’s paradox or selection bias.



Debunking Berkson’s paradox (I)

▶ Truth is that X and Y are independent because this is how we
generated them.

▶ We will see that conditioning on V makes X and Y dependent
because it opens the non-causal path X → V ← Y .

▶ If the question is whether the flu protects against appendicitis,
we should rather look at the consequences of the (unethical)
interventions do(X = 0) and do(X = 1):

Pn(Y = 1|do(X = 0)) and Pn(Y = 1|do(X = 1)). (3)
▶ It is simple to simulate interventions do(X = 0): simply

replace the code generating x with

x <- rep(0, n)

and generate y and v as before.



Debunking Berkson’s paradox (II)

▶ Simulate n0 = 500 observations under the intervention
do(X = 0) and n1 = 500 observations under the intervention
do(X = 1).

▶ Calculate quantities in equation (3) and conclude.
▶ We will introduce formal arguments to show that the

considered causal diagram implies:

P(Y = 1|do(X = x)) = P(Y = 1) for x ∈ {0, 1}



Facultative exercise
▶ Rather than comparing Pn(Y = 1|X = 0, V = 1) and

Pn(Y = 1|X = 1, V = 1) it is interesting to look at

Pn(Y = 1|do(X = 0), V = 1)
Pn(Y = 1|do(X = 1), V = 1)

▶ Compute these quantities from the previous slide’s simulations
and interpret the results.

▶ We will show that we do not need to do real-life interventions
to compute the post-intervention laws: the post-intervention
laws can be computed from observational data as follows

P(Y = 1|do(X = x), V = 1) =
P(Y = 1)P(V = 1|Y = 1, X = x)

P(V = 1|X = x)

for x ∈ {0, 1}.



First summary

▶ Confusion and selection biases might arise when analyzing
observational data.

▶ Association (correlation) is not causation.
▶ We are often interested in questions of causal nature.
▶ Gold standard to provide answers to causal questions is

carrying out interventions (e.g. randomized trials).
▶ Answering causal questions using observational data seem to

require adjusting on selected variables.
▶ Is there always such a set of adjustment variables? And how

to find it?



Directed Acyclic Graphs (DAGs)

▶ We model variables and the relations between them with
diagrams called DAGs.

▶ A DAG is a graph with arrows and no cycles (i.e., starting
from a vertex, it is not possible to go back to it following the
direction of the arrows).



DAGs + joint probability distributions

▶ Let G be a (DAG). Each vertex represents a random variable.
▶ For each variable X we consider its parents pa(X ) in G and

the conditional probability distribution P(X |pa(X ))
▶ We suppose that each variable is independent from all other

non-descendant variables given its parent (Markov property):

X ⊥ (nondesc(X ) \ pa(X )) |pa(X )

▶ It follows that the joint probability distribution is

P(X1, . . . Xn) =
n∏

i=1
P(Xi |pa(Xi)) (4)

▶ The pair (G, P) is called a Bayesian network.



Why are Bayesian networks so useful

▶ Bayesian networks are very convenient for modeling, because
their topology encodes all possible independence relations
between subsets of variables.

▶ The correspondence between the topology of G and the
independence relations characterizing P is given by the rules
of d-separation.

▶ We start by looking at this correspondence for three special
DAGs:
▶ i → w → j and i ← w → j
▶ i → w ← j



Open and blocked paths
We need the following definitions characterizing the paths in G:

1. We say that the paths i → w → j and i ← w → j are opened
and that they are blocked once conditioning on w .

▶ Using Markov property it is easy to show that if the paths
i → w → j and i ← w → j correspond to the whole DAG:
▶ variables i and j are not independent.
▶ variables i and j are independent conditional on variable w .

Intuitively, conditioning on w blocks the information flow.

2. We say that the path i → w ← j is blocked. Conditioning on
the collider w opens the path.

▶ It is easy to show that if the path i → w ← j corresponds to a
whole DAG:
▶ variables i and j are independent
▶ variables i and j are not independent conditional on w .



d-separation

By definition, we say that a set of nodes W in G blocks a path p if

1. p contains at least one sequence i → w → j or i ← w → j ,
with w ∈W ;

OR

2. p contains at least one collider w (i.e., a sequence
i → w ← j) that is outside W and has no descendant in W .

The set W is said to d-separate A and Y in the graph G.



Illustrating d-separation

▶ Consider the path p1 : A← Z3 → Y :
p1 is blocked by {Z3}.

▶ p2 : A← Z1 → Z3 → Y :
p2 is blocked by {Z1}, {Z2} and {Z1, Z3}.

▶ p3 : A← Z3 ← Z2 → Y :
p3 is blocked by {Z3}, {Z2} and {Z3, Z2}.

▶ p4 : A← Z1 → Z3 ← Z2 → Y :
p4 is not blocked by S = {Z3} since no emitting-arrow node of p4 is
in S, and p4 contains a collider Z3 which is in S. However, p4 is
blocked by {Z1} or {Z1, Z3} or even ∅.



Probabilistic implications of d-separation

d-separation allows the identification of all the conditional
independence relationships implied by the structure of the DAG:

A and Y are independent in P conditionally on W , and we write
(A ⊥ Y |W )P ,

⇔

W d-separates A and P in G.



Exercise: d-separation

T

W

X Y Z

1. Name all of the parents of Z ; name all the ancestors of Z .
2. Name all the children of W ; name all the descendants of W .
3. List all simple paths between X and T (i.e., no node should appear more

than once).
4. List all the directed paths between X and T .
5. Does {Z} d-separate X and T? And {W }? And {W , Y }?
6. List all the open paths between X and T (i.e., the paths that are not

blocked by ∅).
7. List all the paths between X and T blocked by {Y }.
8. List all minimal conditional independencies between pairs of non-adjacent

variables implied by the DAG. We say that the conditional independence
statement “A independent of B given a set of variables W ” is minimal if
A and B are no longer independent given a subset of W . You can use the
tool dagitty.net



do operator
The do operator, implements mathematically the notion of
intervention in a Bayesian network.

▶ Consider a DAG G and a joint probability distribution P over
its vertices A, X1, . . . , Xn.

▶ Let a be a fixed value. By definition, the distribution of
X1, . . . , Xn following the intervention do(A = a), is obtained
by

1. Removing all arrows pointing towards A in G
2. Setting A = a in all the conditional probability distributions

appearing in the right hand side of factorization (4)

▶ In particular the post-intervention distribution is

P(X1, . . . , Xn|do(A = a)) =
∏

i
P(Xi |pa(Xi))|A=a (5)



Causal DAGs and causal effects
▶ A causal DAG is simply a Bayesian network equipped with the do

operator.
▶ Assuming a causal DAG, we can assess the consequences of an

intervention without the need to actually implement it in the real
life: if all variables are observed we can estimate the
post-intervention distribution from equation (5) using observational
variables only.

▶ This allows to estimate the post-intervention distribution of the
outcome of interest using the total probability law. For instance
with four discrete variables A, X1, X2, X3 = Y :

P(X3|do(A = a)) =
∑
x1,x2

P(X3, X1 = x1, X2 = x2|do(A = a))

∑
x1,x2

∏
i

P(Xi |pa(Xi))|A=a,X2=x2,X3=x3

▶ In turns this allow to estimate causal effects such as the average
treatment effect

P(Y |do(A = 1))− P(Y |do(A = 0)) (6)



Identification problem

▶ But is it still possible to estimate

P(Y = y |do(A = a)) = P(y |do(a)) (7)

without implementing the intervention in the real life if some
of the variables are not observed?

▶ In other words: can we express (7) as a function of the
distribution P of a subset of the observational variables?

▶ This is called the identification problem.
▶ A sufficient condition to identify (7) is the existence of

adjustment variables that have been observed.



Common folklore about adjustment

▶ What are adjustment variables?
▶ Common folklore about adjustment, such as

▶ adjusting for more variables is better
▶ one should adjust for all variables related to both A and Y
▶ adjusting for pre-treatment variables is always safe
▶ adjusting for descendants of A is always bad
▶ mutual adjustment works
▶ . . . are generally false!

▶ We need a formal definition.



Adjustment sets

▶ By definition, W is an adjustment set w.r.t. (A, Y ) in a
causal DAG if

P(y |do(a)) =
{

P(y |a) if W = ∅∑
w P(y |a, w)P(w) = E{P(y |a, W )} otherwise

▶ In this definition, we supposed that the variables in W are
discrete, if the variables in W are continuous, simply replace
sums with integrals.

▶ Note that the right hand sides depend only on the distribution
P of observational variables.

▶ Hence, if all the variables in W have been measured, we can
identify the target P(y |do(a)).

▶ But how do we find such adjustment sets W ?



Adjustment variables and the linear model

Important fact:

Suppose that Y and A are continuous variables and the true
underlying data-generating mechanism is linear, i.e. each variable is
generated as a linear combination of its parent plus a random noise.

⇒

if W is an adjustment set w.r.t. (A, Y ), the average total effect of
A on Y defined in (6) is the coefficient of A in the linear regression
Y ~ A + W.



Back-door criterion

Many criteria exist to find adjustment sets, here we introduce the
most popular one.

▶ We say that W satisfies the back-door criterion w.r.t.(A, Y ) if

1. W does not contain any descendant of A
2. W blocks all back-door paths between A and Y , that is all

paths terminating with an arrow pointing to A.

▶ It can be proven that if W satisfies the back-door criterion,
then W is an adjustment set w.r.t. (A, Y ):

P(Y = y |do(A = a)) =
∑
w

P(y |A = a, W = w)P(W = w)

▶ Algorithms exist to find subsets of variables satisfying the
back-door criterion, e.g. in the R package dagitty.



Illustrating the back-door criterion

▶ The sets {Z1, Z2, Z3}, {Z1, Z3} and {Z2, Z3} all satisfy the
back-door criterion.
⇒ Observing {Z3, Z1} or {Z3, Z2} is sufficient for the estimation of
the causal effect of A on Y .

▶ The set {Z1, Z2} does not satisfy the back-door criterion:
▶ it does not block the path A← Z3 → Y

▶ The set {Z3} does not satisfy the back-door criterion:
▶ it does block paths A← Z3 → Y , X ← Z1 → Z3 → Y and

X ← Z3 ← Z2 → Y . . .
▶ . . . but it does not block the path A← Z1 → Z3 ← Z2 → Y



Intuition behind the back-door criterion

▶ Back-door paths induce spurious dependence between A and
Y , while direct paths carry causal associations.

▶ Blocking back-door paths ensures that association measured
after adjustment is truly causal

▶ In particular, the back-door criterion ensures that
▶ all spurious paths from A and Y are blocked
▶ all directed paths from A to Y are left untouched
▶ no new spurious path is created

▶ One reason why we do not adjust for descendants of A is that
this could block directed path from A to Y , thus invalidating
point 2.



Exercise: back-door criterion
Consider the following DAG

A

B C

D

WX Y

Z

1. List all minimal sets of variables that satisfy the back-door criterion to
determine the causal effect of X on Y .

2. Suppose that we cannot measure Z . Can we still identify the causal effect
of X on Y ?

3. Choose an adjustment set. Write an equation giving the post-intervention
density of Y in terms of conditional densities according to the back-door
criterion.

4. List all sets of variables that satisfy the back-door criterion to determine
the causal effect of W on Y .



Exercise: adjustment variables and the linear model
Consider the data generating mechanism X ← Z → Y with{ Z ∼ U{0,1,2,3}

X = Z +N (0, 0.2)
Y = Z +N (0, 0.2)

where U{0,1,2,3} means that Z is sampled by throwing an unbiased die with four
faces.

1. Does X has a causal effect on Y ?
2. Load the dataset confusion_linear.csv containing 200 data points

(x , y , z) sampled from this model. We forget that we know the model
that has generated the data and we analyse the available dataset.

3. Make a scatter plot of x and y .
4. Estimate the coefficient of X in the linear regression of Y as a function of

X and test its significance. What do you observe?
5. Is Z an adjustment variable w.r.t. (X , Y )?
6. In the previous scatter plot, color the points according to the z values.
7. Estimate the coefficient of X in the linear regression of Y as a function of

X and Z and test its significance. Comment the result.



Second summary and conclusions

▶ If we assuming a causal DAG and observe adjustment variables
then we can identify the post-intervention distribution of
interest without the need to carry out a real-life intervention.

▶ Warning: the inference quality will crucially depend on how
well the assumed causal DAG match the data-generating
mechanism.

▶ How do we learn the causal DAG?
▶ From expert knowledge
▶ Active field of research about data-driven methods

▶ Other methods exist to identify the causal targets of interest:
matching, propensity scores, instrumental variables,. . .

▶ Two other approaches exist to define causal models:
▶ structural equation modeling
▶ counterfactual variables
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